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Lecture 0
Introduction

Philosophy is written in that gigantic book which is perpetually open in front of our eyes (I
allude to the universe), but no one can understand it who doesnot strive beforehand to learn
the language and recognize the letters in which it is written. It is written in mathematical
language, and its letters are triangles, circles and other geometrical figures, and without
these means it is humanly impossible to understand any of it;without them, all we can do
is to wander aimlessly in an obscure labyrinth.

Galileo Galilei

The evolution of many systems from physics, biology, chemistry, engineering,
economics, social sciences can be rewritten in the mathematical language which
uses ordinary or partial differential equations. Due to theanalysis of the differen-
tial equations we have the hope that we need not wander aimlessly in an obscure
labyrinth but that we understand the corresponding evolution problems.

In order to illustrate this statement, think of the motion ofa pendulum, for
example the oscillations of the great lantern in the nave of Pisa cathedral. At
the end of the 16th century, after mere observation of this lantern and probably
other pendula, Galilei conjectured that on the one hand the period of one swing
is proportional to the length of the pendulum and on the otherhand this period
is independent of the amplitude of the swing. The conjectureabout the precise
period of one swing would have many consequences if it was true, especially
since it is connected to the problem of measuring time. But how could Galilei
confirm his conjecture? Could or can it be confirmed mathematically? Discovered
some 30 years after Galilei by Newton and Leibniz, the differential calculus (the
calculus of fluxions, as it was called by Newton) turned out tobe an appropriate
mathematical language into which the oscillations of the great lantern in the nave
of Pisa cathedral could be translated. At least then, by the mathematical analysis
of the corresponding differential equation, there was an explanation why Galilei’s
conjecture was very close to the truth but not quite the truth; in particular, there
was an explanation why the period of one swing does depend on the amplitude.
Moreover, the differential calculus could be used to construct noncircular pendula
for which the period does not depend on the amplitude, that is, to solve the so-called
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2 0 Introduction

tautochrone problem1. But the success of the new language of differential calculus
may be illustrated by a second classical example: the motionof planets and stars.
The problem to describe and predict their motions fascinated astronomers since the
ancient times, but there was, like in the case of the pendulum, a language missing
to explain all the observations of the great astronomers. Starting from his law of
gravitation and his second law of equilibrium of forces, andby translating these
laws into the mathematical language of differential equations, Newton was able
to confirm Kepler’s laws about the elliptic orbits and the regular motions of the
planets in our solar system.

Today, more than three centuries after Newton wrote down histreatise on the
theory of fluxions, and after the rise of the calculus of variations, it has turned out
that a large number of evolution models may be expressed in the mathematical
language of ordinary and partial differential equations. Besides the evolution
models from classical mechanics, the mechanics of points and solids, we want to
mention other phenomena such as the evolution of heat or diffusing particles, the
evolution of waves (water waves, electromagnetic waves, the oscillations of elastic
materials), the evolution of cells or other populations, the evolution of soap bubbles
or other surfaces. These are only a few, however important examples besides many
others. Moreover, it is natural to expect that the list of allphenomena which may
be expressed in the mathematical language using ordinary and partial differential
equations is still open. For all the phenomena, one aspect, which is mentioned
in Galilei’s citation, is important for our work: the mathematical analysis of the
various differential equations and the interpretations ofthe qualitative properties
which we deduce from this analysis allow us to understand thevarious evolution
phenomena in a deeper way. One aim of this course is to make a small step in this
process of understanding, as far as gradient systems are concerned. We believe
that the class of gradient systems forms a fundamental classwithin the differential
equations.

The translation of evolution models into the mathematical language using
ordinary or partial differential equations very often starts from first principles like
the equilibrium of forces, the conservation of total energy, the conservation of total
mass or the conservation of total number of individuals. Onemay therefore be
surprised when discovering that the resulting differential equations aredissipative
in the sense that a characteristic quantity - like for example again some form of
energy - isstrictly decreasing in time, unless the system is at rest. Although in
the theory of dynamical systems the worddissipativeis used in a wider sense, we
think it reflects well the existence of a strictly decreasingquantity: the Concise
Oxford Dictionary translates the verbdissipateby disperse, dispel, (cause to)
disappear, (cloud, vapour, care, fear, darkness); break upentirely, bring or come

1 To tell the truth, by geometrical arguments, Huygens disproved Galilei’s conjecture before the
discovery of differential calculus and in addition solved the tautochrone problem. Only later, by us-
ing differential calculus, Lagrange, Euler and Abel gave analytic proofs of the fact that the cycloid
is the solution to this problem.



0 Introduction 3

to nothing; squander (money); fritter away (energy, attention). Galilei’s lantern
in Pisa, like any other mechanical pendulum, stabilizes andfinally comes to rest
because of inner friction forces and because of the frictionbetween the lantern
and the surrounding air. The friction forces, however smallthey are compared to
the leading gravitational force, can not be completely neglected when translating
Newton’s second law into a second order differential equation. The analysis of this
differential equation shows that the friction is the reasonfor the dissipation of the
total energy of the pendulum (kinetic energy plus potentialenergy). For a similar
reason, a vibrating string on a guitar or a violon eventuallyceases to vibrate if let
alone, and the same is true for a drum or any other vibrating plate.

The simplest partial differential equation arising from the problem of heat con-
duction is the linear heat equation

ut −∆u = 0.

It is a result of the principle of conservation of total heat and of Fourier’s law, as we
will see in this course. At the same time we shall see that the linear heat equation is
a dissipative evolution equation. Both properties, conservation (of heat) and dissi-
pation (of energy), are not necessarily contradictory: experiments confirm that due
to heat conduction in a physical material the heat distribution in an isolated volume
eventually tends to a uniform, constant distribution. In other words, there is an ef-
fect of stabilization of the heat distribution, while the total amount of heat remains
conserved. The effect of stabilization can be explained by the existence of a charac-
teristic quantity which is dissipated by the heat equation,and it is only a side-order
remark that in the case of the linear heat equation there are actually infinitely many
such quantities. But even more is true, as we shall see: the linear heat equation, as
well as the more general diffusion equation

ut −divc(x, |∇u|)∇u = 0,

the Cahn-Hilliard equation from phase separation models, the mean curvature
equation, and many other dissipative parabolic evolution equations can be written
as abstract gradient systems.

The abstractgradient system

u̇+ ∇E (u) = 0

is the prototype example of a dissipative evolution equation. In this abstract
differential equation,E is a real-valued function defined on an open subset ofRd,
of a Banach space, or of a finite or infinite dimensional manifold. The function
E plays the role of the characteristic quantity mentioned above. Its gradient∇E

depends on the ambient metric and will be defined later; for the moment being it
suffices to think of the case thatE is defined onRd and∇E is the usual euclidean
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gradient:∇E (u) = ( ∂E

∂u1
(u), . . . , ∂E

∂ud
(u)).

Let u be a solution of the above gradient system, that is,u is a differentiable
Rd-valued function defined on an intervalI ⊆ R which satisfies the equation ˙u+
∇E (u) = 0 everywhere onI . If E (u) denotes the composition of the functionsE

andu, then one calculates

d
dt

E (u(t)) = 〈∇E (u(t)), u̇(t)〉
= −〈u̇(t), u̇(t)〉 ≤ 0;

here we denoted by〈·, ·〉 the euclidean inner product, we used the chain rule
and the assumption thatu is a solution. This simple but fundamental relation
shows that the functionE (u) is strictly decreasing in time unless the solutionu
is constant, which would mean that the underlying evolutionis at rest. In other
words, the quantityE , which may be some form of energy, is dissipated by
the gradient system. This fundamental property of a gradient system, namely
dissipativity, but also the gradient structure itself may be used to prove existence
and uniqueness of solutions, and to obtain qualitative results about their regularity
and their long-time behaviour, like the stabilization or non-stabilization of solutions.

Let us end this Introduction by a philosophical question. The dissipation of some
form of energy is a characteristic property of many evolution phenomena, and many
results which will be proved in this course remain true in a more general context
of dissipative evolution equations; we see this as a motivation for our approach,
too. But at the same time some questions arise: how much larger is the class of
dissipative evolution equations compared to the class of gradient systems? How
to show that some dissipative ordinary or partial differential equation is a gradient
system? And how to show that it is not a gradient system? Very probably we will not
be able to answer these farreaching questions which are already interesting for the
Navier-Stokes equations. Nevertheless, by modifying a well known citation from
Einar Hille we would like to say:we hail a gradient system whenever we see one
and we seem to see them everywhere2 ... We hope that the reader of this course will
share our impression.

2 The original citation from the 1948 edition of his book onFunctional Analysisis: I hail a semi-
group whenever I see one and I seem to see them everywhere. This vision has been largely shared
by many respectful mathematicians.



Lecture 1
Gradient systems in euclidean space

We start by recalling the definition of the derivative of a real-valued function onRd,
we define the euclidean gradient of such a function, we define what we mean by a
euclidean gradient system, and we present an example of sucha gradient system.

We believe that the definition of derivative and euclidean gradient should be well
known for the reader, and we shall in the sequel use several results from differential
calculus, like for example the chain rule, the product rule,and also the definition of
the derivative of a function between finite (or infinite) dimensional spaces without
proving or even stating them (some results, however, can be found in the Appendix).
By recalling the definition of derivative and gradient, despite of our believe that they
are well known, we only want to make sure from the very beginning that they are
different objects. Let us say it in this form: a function comes always along with its
derivative, while this is not immediately the case for a gradient which depends in
addition on the geometry of the ambient space on which the function is defined.

First properties of the gradient system

u̇+ ∇eucE (u) = 0

are studied. We introduce the concept of energy for a generalordinary differential
equation, that is, a quantity which is decreasing along solutions of gradient systems.
The phenomenon of a decreasing quantity is very frequent in many examples of
ordinary differential equations which the nature providesto us, and it is this phe-
nomenon and its consequences which are discussed in severalplaces of this course.

1.1 The spaceRd

We fix some notation inRd. Elements ofRd are denoted in one of the following
ways:

5



6 1 Gradient systems in euclidean space

u or (ui) or (ui)1≤i≤d or
(
u1, . . . ,ud

)
or






u1
...

ud




 ;

in particular, we do not distinguish between column vectorsand row vectors.

The euclidean inner product onRd is given by

〈u,v〉 = 〈u,v〉euc=
d

∑
i=1

uivi for everyu = (ui), v = (vi) ∈ R
d.

The subscripteucmay be omitted if it is clear from the context that the euclidean in-
ner product is meant. An inner product, and in particular theeuclidean inner product
onRd, induces a norm by setting‖u‖ := 〈u,u〉1/2.

We denote by(Rd)′ the dual space ofRd, that is, the space of all linear functionals
R

d → R. Given a linear functionalu′ ∈ (Rd)′, we write

u′(u) or u′u or 〈u′,u〉 or 〈u′,u〉(Rd)′,Rd

for the value ofu′ at the pointu. The dual space(Rd)′ is equipped with the norm

‖u′‖(Rd)′ = sup
‖u‖

Rd≤1
|〈u′,u〉|.

It may happen that we simply use‖ · ‖ for the norm both onRd and on(Rd)′, for
example, if it is clear from the context, and especially fromthe element to which
the norm is applied, which norm is meant. Similarly, there will be no confusion if
we use〈·, ·〉 for an inner product of two elements ofRd, and for the duality between
an element in(Rd)′ and an element inRd.

Continuity of functions from or toRd or (Rd)′ is always meant with respect
to the topology induced by a norm. Recall on this occasion that on a given finite
dimensional space likeRd or (Rd)′ there is in fact only one such topology since any
two norms on this space are equivalent.

Lemma 1.1 (Representation lemma).For every linear functional u′ ∈ (Rd)′ there
exists a unique vector u∈ Rd such that

u′(v) = 〈u,v〉euc for every v∈ R
d. (1.1)

Proof. For everyu∈ Rd we define a linear functionalu′ ∈ (Rd)′ by

u′(v) := 〈u,v〉euc, v∈ R
d.

Due to the bilinearity and definiteness of the euclidean inner product, the mapping
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J : R
d → (Rd)′,

u 7→ u′

thus defined is linear and injective. SinceRd and(Rd)′ are bothd-dimensional (d <
∞), the mappingJ is actually a linear isomorphism. This means that every linear
functionalu′ on Rd is represented by some unique elementu∈ Rd via the identity
(1.1) and the lemma is proved.

1.2 Fréchet derivative

Let U be an open subset ofRd, and letE : U → R be a function. We say thatE is
differentiable if for everyu∈U there exists a linear functionalu′ ∈ (Rd)′ such that

lim
‖h‖→0

E (u+h)−E (u)−〈u′,h〉
‖h‖ = 0. (1.2)

By definition, if a function is differentiable, then in the neighbourhood of every
pointu∈U it can be written as the sum of a constant term, a linear term, and a rest
of ordero(h). The functionh 7→ E (u+ h) is approximated by the affine function
h 7→ E (u)+ 〈u′,h〉, with a rest of ordero(h), so that a particular case of Taylor’s
theorem (Taylor expansion up to order 1) is true. The functionalu′, which represents
the linear term, is uniquely determined (exercise!).

Thederivative is the function functionE ′ : U → (Rd)′ which assigns to every
u∈U the unique linear functionalu′ ∈ (Rd)′ for which (1.2) holds. Consequently,
we denote the derivative ofE at a pointu by E ′(u). We say thatE is continuously
differentiable if E is differentiable and if the derivative is continuous fromU into
(Rd)′. The set of all continuously differentiable functionsU → R is a vector space
which is denoted byC1(U).

Givenu∈ U , we say that the functionE admits adirectional derivative in di-
rection h∈ R

d if the limit

∂E

∂h
(u) := lim

t→0

E (u+ th)−E (u)

t

exists. Ifh = ei is a canonical basis vector, then we call∂E

∂ei
(u) =: ∂E

∂ui
(u) also the

partial derivative of E with respect to ei . It is an exercise to show that ifE is
differentiable, thenE admits at everyu∈U directional derivatives in all directions
h∈ Rd and

∂E

∂h
(u) = E

′(u)h.
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1.3 Euclidean gradient

There are several ways to introduce the gradient of a differentiable function, and
the most familiar but least flexible is perhaps the one from Lemma 1.2 below.
But the gradient is an object, as we already pointed out, which depends on the
geometry of the ambient space. This is euclidean space here,with the euclidean
inner product and the euclidean norm. The following definition seems therefore to
be more appropriate.

Let U be an open subset ofRd, and letE : U → R be a differentiable function.
The euclidean gradientof E is the function∇eucE which assigns to every point
u∈U the unique element∇eucE (u) ∈ Rd such that

E
′(u)v = 〈∇eucE (u),v〉euc for everyv∈ R

d. (1.3)

By the Representation Lemma (Lemma 1.1) the euclidean gradient ∇eucE is well
defined in the sense that it exists and that it is unique. We emphasize that the eu-
clidean gradient at some pointu is an element ofRd and that this vector has to be
distinguished from the derivativeE ′(u) which is an element of the dual space(Rd)′.

It should be clear that the two setsRd and(Rd)′ are different from the set theo-
retical point of view. On the other hand, as it is often done inmathematics, one may
identify the two spaces via some linear isomorphism. One natural isomorphism is
given via the euclidean inner product〈·, ·〉euc onRd and the Representation Lemma
(Lemma 1.1).

The following lemma gives an alternative expression of the euclidean gradient in
terms of partial derivatives.

Lemma 1.2 (Euclidean gradient and partial derivatives).For every u∈U,

∇eucE (u) = ( ∂E

∂e1
(u), . . . , ∂E

∂ed
(u)).

Proof. Let
(
∇eucE (u)

)

i be thei-th component of the euclidean gradient ofE . By
definition of the euclidean inner product and by definition ofthe canonical basis
vectorsei we have

(
∇eucE (u)

)

i = 〈∇eucE (u),ei〉euc. Moreover, by definition of the
partial derivatives and the euclidean gradient, for every 1≤ i ≤ d,

∂E

∂ei
(u) = E

′(u)ei

= 〈∇eucE (u),ei〉euc

=
(
∇eucE (u)

)

i .

This was the claim.

More important than the previous identification of the gradient is the property
that the gradient direction coincides with the direction ofsteepest ascent, that is
the direction into whichE has greatest directional derivative. The last line of the
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following lemma characterizes the euclidean gradient in terms of the derivative and
the steepest ascent direction.

Lemma 1.3 (Euclidean gradient and steepest ascent).Assume thatE is differ-
entiable at u∈ U and thatE ′(u) 6= 0. Then there exists a unique steepest ascent
direction, that is, there exists a unique vector v∈ Rd with ‖v‖ = 1 such that

‖E ′(u)‖ = sup
‖w‖=1

E
′(u)w = E

′(u)v.

Given this steepest ascent direction v one has

∇eucE (u) = ‖E ′(u)‖v.

Proof. This statement is a consequence of the Cauchy-Schwarz inequality. By defi-
nition of the gradient and by the Cauchy-Schwarz inequalitywe have for‖w‖ = 1

E
′(u)w = 〈∇eucE (u),w〉euc≤ ‖∇eucE (u)‖‖w‖ = ‖∇eucE (u)‖,

and equality holds if and only if∇eucE (u) andw are colinear. Hence, ifE ′(u) 6= 0,
thenv = ∇eucE (u)/‖∇eucE (u)‖ is the desired unique vector in the unit ball which
maximizes the directional derivatives ofE .

Lemma 1.4.Let U ⊆ Rd be an open set, and letE : U → R be a differentiable
function. ThenE is continuously differentiable if and only if the euclideangradient
∇eucE : U → Rd is continuous.

Proof. Let J : Rd → (Rd)′ be the isomorphism from the proof of the Representation
Lemma (Lemma 1.1). With this isomorphism one hasE ′ = J∇eucE , or ∇eucE =
J−1E ′. The claim follows from these two equalities and the fact that J andJ−1 are
continuous.

1.4 Euclidean gradient systems

A euclidean gradient systemis an ordinary differential equation of the form

u̇+ ∇eucE (u) = 0, (1.4)

whereE is a given continuously differentiable, real-valued function on an open
subsetU of Rd. The unknown in this equation is anRd-valued functionu defined
on an intervalI ⊆ R, which is in general also unknown.

A euclidean gradient system is a special case of the general ordinary differential
equation

u̇+F(t,u) = 0, (1.5)
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where F : D → Rd is a function on an open setD ⊆ R1+d; consider
F(t,u) = ∇eucE (u) for (t,u) ∈ D = R ×U . In the general ordinary differen-
tial equation, the unknown is again a functionu : I → R

d defined on an interval
I ⊆R. The equalities (1.4) and (1.5) have to be understood as equalities of functions
defined on some intervalI . In this way, we avoid to write the argument ofu in both
differential equations. The argument ofu will in the following usually be denoted
by t and is interpreted astime, although in concrete applications it may have a
different interpretation. Together with the argument, thegradient system has the
form u̇(t)+ ∇eucE (u(t)) = 0.

We call a functionu : I → R
d a solution of the differential equation (1.5) ifu is

continuous,F(·,u(·)) is locally integrable, and if

u(t) = u(s)−
∫ t

s
F(r,u(r)) dr for everys, t ∈ I .

Since the gradient system (1.4) is a special case of the ordinary differential equation
(1.5), a solution of the gradient system (1.4) is therefore acontinuous functionu :
I → Rd such that

u(t) = u(s)−
∫ t

s
∇eucE (u(r)) dr for everys, t ∈ I .

A solution in the above sense is a priori not differentiable in the classical sense
and is not a solution in the sense which one might expect from the formulation of
the equation. Instead, a solution satisfies the differential equations (1.4) and (1.5)
only in an integrated form. However, ifE is continuously differentiable as we
assumed, then its euclidean gradient is continuous by Lemma1.4, and therefore,
by the preceding equality and the fundamental theorem of calculus, a solution
of the gradient system is necessarily continuously differentiable and satisfies the
equation ˙u + ∇eucE (u) = 0 pointwise everywhere. However, ifu is a solution
of the differential equation ˙u + F(t,u) = 0 and if the functionF satisfies only
weak regularity conditions (F is not necessarily continuous), then there may exist
solutions which are not differentiable in the classical sense.

If u is a solution of the gradient system (1.4), then the time derivative of u is
always equal to the negative gradient−∇E (u) and therefore points into the direction
of steepest descent (Lemma 1.3). It is therefore natural to expect that the energyE
is decreasing along any solution of the gradient system. Theproof of this fact has
been given in the Introduction and we recall it here.

Lemma 1.5.Whenever u is a solution of the gradient system(1.4), andE is contin-
uously differentiable, then the compositionE (u) = E ◦ u is a decreasing function.
Moreover, if the compositionE (u) is constant, then the solution u itself is constant.

Proof. Since the functionE and the solutionu are continuously differentiable, the
compositionE (u) is continuously differentiable, too. Hence, it suffices to prove that
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the derivative ofE (u) is nonpositive. For this, we simply calculate the derivative of
this function:

d
dtE (u) = E ′(u)u̇ (chain rule)

= 〈∇eucE (u), u̇〉euc (definition of the euclidean gradient)

= −〈u̇, u̇〉euc (u is a solution of the gradient system)

≤ 0 (positivity of the euclidean inner product).

This inequality implies thatE (u) is decreasing, but it also implies that ifE (u) is
constant, then〈u̇, u̇〉euc= 0. Since the euclidean inner product is definite, one then
obtains ˙u = 0, and thereforeu is constant, too.

LetU ⊆ Rd be an open set and letF : U → Rd be a continuous function. We call
a functionE : U → R anenergy function for the ordinary differential equation

u̇+F(u) = 0, (1.6)

if for every solutionu of this differential equation the compositionE (u) = E ◦u is
decreasing. By the preceding lemma,E is always an energy function for the gradi-
ent system (1.4). The existence of an energy function is quite common for ordinary
differential equations coming from applications. For example, in ordinary differen-
tial equations arising from physical models it is natural that some physical energy
is decreasing or conserved along solutions. These models are certainly a motivation
for the term ”energy function”. Very often, an energy function is also calledLya-
punov function. In some places of the literature, an energy function is alsocalled
cost function, mainly because of applications to optimisation problems.Differential
equations admitting an energy function may be calleddissipative systems1.

Lemma 1.6.Every limit point of a global solution of the euclidean gradient system
(1.4) is an equilibrium point ofE .

In other words: if u: R+ → Rd is a solution, ifϕ = lim
n→∞

u(tn) exists for some

(tn) ր ∞, and ifϕ ∈U, then∇eucE (ϕ) = 0.

Proof. By the preceding lemma, the composed functionE (u) is decreasing. More-
over, since lim

n→∞
E (u(tn)) = E (ϕ) exists by assumption and by continuity ofE , it

follows thatE (u) is bounded below. Integrating the equalityd
dt E (u) = −‖u̇‖2 we

then obtain that the integral
∫ ∞

0 ‖u̇‖2 is finite. This implies lim
t→∞

∫ t+1
t ‖u̇‖2 = 0.

Hence,

1 to dissipate (lat.: dissipare): to cause to lose energy (such as heat) irreversibly (http://www.
thefreedictionary.com/). Other explanations are: to spend or expend intemperatelyor
wastefully. Or: to attenuate to or almost to the point of disappearing. Of course, a constant function
is an energy function for every ordinary differential equation, but this trivial energy function does
not allow us to call every differential equation dissipative. One should have the additional property
from Lemma 1.5 in mind.
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lim
n→∞

u(tn +s) = lim
n→∞

(
u(tn)+

∫ tn+s

tn
u̇
)

= ϕ uniformly in s∈ [0,1],

since, by Hölder’s inequality,

sup
s∈[0,1]

∥
∥

∫ tn+s

tn
u̇
∥
∥≤ sup

s∈[0,1]

∫ tn+s

tn
‖u̇‖ ≤

(
∫ tn+1

tn
‖u̇‖2)

1
2 → 0 asn→ ∞.

By continuity of∇eucE , this implies lim
n→∞

∇eucE (u(tn+s)) = ∇eucE (ϕ) uniformly in

s∈ [0,1], and therefore

∇eucE (ϕ) =

∫ 1

0
∇eucE (ϕ)

= lim
n→∞

∫ 1

0
∇eucE (u(tn +s)) ds

= − lim
n→∞

∫ 1

0
u̇(tn +s) ds

= 0.

This is the claim.

1.5 Algebraic equations and steepest descent

Let U ⊆ Rd be an open set and letF : U → Rd be a continuously differentiable
function. Consider the problem of finding a solution ¯u∈U of the algebraic equation

F(ū) = 0.

One way to solve this problem could be to consider the function E : U → R given
by E (u) = 1

2‖F(u)‖2, where‖ · ‖ is the euclidean norm. Then one hasF(ū) = 0 if
and only ifE (ū) = 0. SinceE is a positive function, the problem amounts to search
for a point where the infimum ofE is attained and, if it is attained, to hope that this
infimum is equal to 0. The infimum ofE can be searched for by a gradient descent
method2.

It is an exercice to show that the derivative of the functionE is given by

E
′(u)v = 〈F(u),F ′(u)v〉 for everyu∈U, v∈ R

d.

We define theadjoint of F ′(u) with respect to the euclidean inner product to be the
linear mappingF ′(u)∗ : Rd → Rd given by

2 This idea has already been proposed by Augustin Cauchy in a short communication to the
Comptes Rendus de l’Académie des Sciences de Paris in 1847,Méthodes générale pour la
résolution des systèmes d’équations simultanées, volume 25 (1847), pages 536–538.
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〈F ′(u)∗v,w〉 = 〈v,F ′(u)w〉 for everyv, w∈ R
d.

With this definition, the euclidean gradient of the functionE is given by

∇E (u) = F ′(u)∗F(u),

and the euclidean gradient system associated withE is hence the differential equa-
tion

u̇+F ′(u)∗F(u) = 0. (1.7)

Proposition 1.7.Assume that F′(v) is invertible for every v∈ U. Assume further
that there exists a (global) solution u: R+ → Rd of (1.7) with relatively compact
range in U. Then there exists̄u∈U such that F(ū) = 0.

Proof. Since the solutionu has relatively compact range inU , there exist a sequence
(tn)ր ∞ and an element ¯u∈U such that limn→∞ u(tn) = ū. By what has been shown
above, the differential equation (1.7) is the euclidean gradient system associated
with the functionE (u) = 1

2‖F(u)‖2. By Lemma 1.6, the element ¯u∈U is therefore
a critical point ofE , that isF ′(ū)∗F(ū) = 0. SinceF ′(ū), and therefore alsoF ′(ū)∗,
is invertible by assumption, this impliesF(ū) = 0.

From the proof of the preceding proposition it turns out thatevery limit point of
every global solution of the gradient system (1.7) having relatively compact range
in U is a solution to the algebraic equationF(ū) = 0. In other words, the problem of
finding a solution to an algebraic equation is transformed into the problem of finding
a global solution of a gradient system having relatively compact range.

We will study the problem of global existence for the first time in the following
lecture and we will see that the gradient structure also helps for that problem.

1.6 Exercises

1.1.The sublevelsof an energy functionE : Rd → R are the setsKc = {u∈ Rd :
E (u) ≤ c} with c ∈ R. Show that each sublevel isinvariant under the gradient
system ˙u+∇eucE (u) = 0, that is, ifu : [0,T]→ Rd is a solution andu(0) ∈ Kc, then
u(t) ∈ Kc for everyt ∈ [0,T].

1.2. a) Prove that every ordinary differential equation of the form u̇+ F(u) = 0
with continuousF : R → R is a euclidean gradient system.

b) Prove that every solution of the above ordinary differential equation is mono-
tone.

1.3. a) Prove that the system
u̇1 +u2

1u2 = 0

u̇2 + 1
3u3

1 = 0

is a euclidean gradient system.
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b) Prove that the differential system of the damped pendulum

u̇1−u2 = 0

u̇2 + αu2+ β sinu1 = 0

α > 0, β > 0, is not a euclidean gradient system.

1.4.Let R
d be equipped with a norm which isstrictly convex, that is, for any two

pointsx, y∈ Rd with ‖x‖ = ‖y‖ = 1 andx 6= y one has‖ x+y
2 ‖ < 1. LetE : Rd → R

be a differentiable function. Prove that for everyu∈ R
d there exists a unique vector

v∈ Rd, ‖v‖ = 1, such that

‖E ′(u)‖ := sup
‖w‖=1

E
′(u)w = E

′(u)v.

Given this vectorv, we define the gradient∇E (u) := ‖E ′(u)‖v. By Lemma 1.3,
this gradient coincides with the euclidean gradient if‖ · ‖ = ‖ · ‖euc. Prove that the
euclidean norm is strictly convex.

Remark: Thep-norm given by‖u‖p = (∑i |ui|p)
1
p is strictly convex if 1< p< ∞.

1.5.Consider the differential equation

u̇+
∇E (u)

‖∇E (u)‖ = 0,

and show that solutions of this differential equation and solutions of the gradient
system ˙v+ ∇E (v) = 0 can be transformed into each other by a change of time vari-
ableu(t) = v(α(t)) andv(t) = u(β (t)) for some functionsα andβ depending onv
andu, respectively. Find the differential equations determining the functionsα and
β .

1.6.Draw the phase portrait (or alternatively: the direction field) of some planar
gradient system and insert the level curves of the underlying energy function. What
do you observe?



Lecture 2
Gradient systems in finite dimensional space

In this lecture we continue to consider functions, gradients and gradient systems
on Rd. But we generalize the notion of gradient and gradient system in two steps.
The key is to replace the euclidean inner product in the definition of the euclidean
gradient by an arbitrary inner product or by a Riemannian metric.

Recall that aninner product on Rd is a bilinear, symmetric, positive definite
form 〈·, ·〉 : Rd ×Rd → R, that is, for everyu, v, w∈ Rd and everyλ ∈ R one has

(i) 〈λu+v,w〉= λ 〈u,w〉+ 〈v,w〉 and〈u,λv+w〉= λ 〈u,v〉+ 〈u,w〉 (bilinearity),

(ii) 〈u,v〉 = 〈v,u〉 (symmetry) and

(iii) 〈u,u〉 ≥ 0 (positivity) with equality only foru = 0 (definiteness).

In the following, we denote byL2(R
d;R) the space of all bilinear formsa : Rd ×

Rd → R, that is, of all forms satisfying property (i) above. This space is a vector
space for the natural addition and the natural scalar multiplication, and it is a Banach
space for the norm

‖a‖ := sup
‖u‖≤1
‖v‖≤1

|a(u,v)|.

The set of all inner products onRd, which we denote by Inner(Rd), is a subset of
L2(R

d;R). It is therefore naturally equipped with the metric inducedby the above
norm.

Lemma 2.1 (Representation lemma).Let 〈·, ·〉 be an inner product onRd. For
every linear functional u′ ∈ (Rd)′ there exists a unique vector u∈ Rd such that

u′(v) = 〈u,v〉 for every v∈ R
d. (2.1)

We say that the functionalu′ ∈ (Rd)′ is representedby the elementu∈ Rd with
respect to the inner product〈·, ·〉.

Proof. Note that for everyu∈ Rd one may define a linear functionalu′ ∈ (Rd)′ by

15
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u′(v) := 〈u,v〉, v∈ R
d.

Due to the bilinearity and definiteness of the inner product〈·, ·〉, the mapping

J : R
d → (Rd)′,

u 7→ u′

thus defined is linear and injective. SinceRd and(Rd)′ are bothd-dimensional (d <
∞), the mappingJ is actually a linear isomorphism. This means that every linear
functionalu′ on Rd is represented by some unique elementu∈ Rd via the identity
(2.1) and the lemma is proved.

Lemma 2.2.Let〈·, ·〉 be an inner product onRd. Then there exists a linear mapping
Q : R

d → R
d which is

(i) symmetric, that is, for every v, w∈ Rd one has〈Qv,w〉euc= 〈v,Qw〉euc,

(ii) positive, that is, for every v∈ Rd one has〈Qv,v〉euc≥ 0,

(iii) definite, that is, if〈Qv,w〉euc= 0 for every w∈ Rd, then v= 0, and

(iv) for every v, w∈ R
d one has

〈v,w〉 = 〈Qv,w〉euc.

Proof. For everyv∈ Rd the mappingv′ : Rd → R given byv′(w) = 〈v,w〉 (w∈ Rd)
is linear and continuous. The Representation Lemma 2.1 applied to the euclidean
inner product (or: the Representation Lemma 1.1) yields that there exists an element
Qv∈ Rd such thatv′(w) = 〈Qv,w〉euc for everyw ∈ Rd. By definition,Q satisfies
property (iv). Moreover, as a consequence of the bilinearity of 〈·, ·〉, the mapping
Q is linear. By definition ofQ and by the symmetry of the inner products〈·, ·〉 and
〈·, ·〉euc,

〈Qv,w〉euc = 〈v,w〉 = 〈w,v〉 = 〈Qw,v〉euc = 〈v,Qw〉euc for everyv, w ∈ R
d.

Hence,Q is symmetric. Moreover, for everyv∈ Rd,

〈Qv,v〉euc= 〈v,v〉 ≥ 0

by positivity of the inner product〈·, ·〉. Finally, by definiteness of the inner product
〈·, ·〉, 〈Qv,w〉euc= 0 for everyw∈ Rd impliesv = 0, and henceQ is definite, too.

LetU ⊆ Rd be an open set. A continuous functiong : U → Inner(Rd) is called a
Riemannian metric onU . Given a Riemannian metric, we write〈·, ·〉g(u) to denote
the inner productg(u) at the pointu∈U , and we denote by‖ ·‖g(u) the correspond-
ing norm onRd.

Lemma 2.3.Let g : U → Inner(Rd) be a Riemannian metric, and let Q: U →
L (Rd) be the function given by
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〈Q(u)v,w〉euc= 〈v,w〉g(u) for every u∈U, v, w∈ R
d.

Then Q is continuous.

Proof. For everyu1, u2 ∈U we have

‖Q(u1)−Q(u2)‖ = sup
‖v‖≤1

‖Q(u1)v−Q(u2)v‖

= sup
‖v‖≤1
‖w‖≤1

|〈Q(u1)v−Q(u2)v,w〉euc|

= sup
‖v‖≤1
‖w‖≤1

|〈v,w〉g(u1) −〈v,w〉g(u2)|

= ‖g(u1)−g(u2)‖.

Sinceg is continuous, the continuity ofQ follows.

2.1 Definition of gradient

Let U ⊆ Rd be an open set and letE : U → R be a continuously differentiable
function. We recall from the preceding chapter that for every u∈U and everyv∈R

d

the derivative and the euclidean gradient are related by theequality

E
′(u)v = 〈∇eucE (u),v〉euc.

Starting from this definition and from the general Representation Lemma 2.1, it is
natural to generalize the notion of gradient. We actually consider two generaliza-
tions.

First, given an arbitrary inner product〈·, ·〉 onRd, thegradient of E with respect
to this inner product is the function∇E which assigns to eachu ∈ U the unique
element∇E (u) ∈ Rd such that

E
′(u)v = 〈∇E (u),v〉 for everyv∈ R

d.

Second, given a Riemannian metricg onU , thegradient of E with respect tog
is the function∇gE which assigns to eachu∈U the unique element∇gE (u) ∈ Rd

such that
E

′(u)v = 〈∇gE (u),v〉g(u) for everyv∈ R
d.

If the metricg is clear from the context, then we may simply write∇E instead of
∇gE . Clearly, the second generalization includes the first one:it suffices to take a
constant Riemannian metric.

Lemma 2.4.If E : U → R is continuously differentiable, and if g is a Riemannian
metric on U, then the gradient∇gE : U → Rd is continuous.
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Proof. If Q is the function from Lemma 2.3, then∇gE (u) = Q(u)−1∇eucE (u). Con-
tinuity of ∇gE is therefore a direct consequence of Lemma 2.3 and Lemma 1.4.

2.2 Definition of gradient system

We call agradient systemany ordinary differential equation inRd which is of the
form

u̇+ ∇gE (u) = 0, (2.2)

where∇gE is the gradient of a continuously differentiable functionE : U → R

with respect to a Riemannian metricg. This gradient system admitsE as an energy
function. The proof is a repetition of the proof of Lemma 1.5.

Lemma 2.5.Whenever u is a solution of the gradient system(2.2), andE is contin-
uously differentiable, then the compositionE (u) = E ◦ u is a decreasing function.
Moreover, if the compositionE (u) is constant, then the solution u itself is constant.

Proof. Since the functionE and the solutionu are continuously differentiable, the
compositionE (u) is continuously differentiable, too. Hence, it suffices to prove that
the derivative ofE (u) is non-positive.

Using the chain rule, the definition of the gradient∇gE , and the differential equa-
tion (2.2), we can calculate

d
dtE (u) = E ′(u)u̇ (chain rule)

= 〈∇gE (u), u̇〉g(u) (definition of the gradient)

= −〈u̇, u̇〉g(u) (u is solution of the gradient system)

≤ 0 (positivity of the inner product〈·, ·〉g(u)).

This inequality implies thatE (u) is decreasing, but it also implies that ifE (u) is
constant, then〈u̇, u̇〉g(u) = 0. Since〈·, ·〉g(u) is definite, one then obtains ˙u = 0, and
thereforeu is constant, too.

2.3 Local existence for ordinary differential equations

This section is a small digression. In view of the existence results for gradient sys-
tems in infinite dimensional spaces, we discuss in some detail the question of local
existence of solutions of gradient systems in finite dimensions. However, since local
existence for general ordinary differential equations is not more difficult to prove,
we state the general result. The following classical resultfrom the theory of ordinary
differential equations, Carathéodory’s theorem, is perhaps known and one may skip
the proof in this case.
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Theorem 2.6 (Carath́eodory). Let D⊆R×Rd be an open set and let F: D →Rd,
F = F(t,u), be a function which satisfies the followingCarathéodory conditions:

F(·,u) is measurable for every u, (2.3)

F(t, ·) is continuous for every t, and (2.4)

for every(t0,u0) ∈ D there existα > 0, r > 0 and m∈ L1(t0,t0 + α) (2.5)

such that‖F(t,u)‖ ≤ m(t) for every t∈ (t0,t0 + α), u∈ B(u0, r).

Then, for every(t0,u0) ∈ D the ordinary differential equation with initial condition

{
u̇+F(t,u) = 0,

u(t0) = u0,
(2.6)

admits alocal solution. This means that there exists an interval I= [t0,t0 +α] ⊆ R

which is not reduced to one point, and there exists a continuous function u: I → Rd

such that for every t∈ I

u(t) = u0−
∫ t

t0
F(s,u(s)) ds. (2.7)

Note that this definition of local solution coincides with the definition from Lec-
ture 1.

We give a “constructive” proof of Carathéodory’s theorem in the sense that we
first define a sequence of local approximate solutions, which“almost” satisfy the
integral equation (2.7), and we then prove that a subsequence of these approxi-
mate solutions converges to an exact solution of the differential equation (2.6). The
compactness argument behind the existence of such a subsequence is based on the
Arzelà-Ascoli theorem.

Proof (Proof of Theorem 2.6).Let (t0,u0) ∈ D, and let the constantsα > 0, r > 0
and the functionm be as in the condition (2.5). DefineM(t) :=

∫ t
t0

m(s) ds for t ∈
[t0, t0 + α]. Then the functionM is continuous andM(t0) = 0. Using this continuity
and choosingα > 0 small enough, we may assume that|M(t)| ≤ r for every t ∈
[t0, t0 + α].

For everyk≥ 2 we define a functionuk ∈C([t0,t0 + α];Rd) by

uk(t) :=







u0 if t ∈ [t0,t0 + α
k ],

u0−
∫ t− α

k
t0 F(s,uk(s)) ds if t ∈ (t0 + α

k ,t0 + 2α
k ], . . . ,(t0 + (k−1)α

k ,t0 + α].

Note first that the functionsuk are well defined in the sense that the function
F(·,uk(·)) in the integral is defined. In fact, one proves easily that

‖uk(t)−u0‖ ≤ r for everyk≥ 2, t ∈ [t0,t0 + α]. (2.8)
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Fix ε > 0. Since the functionM is uniformly continuous on the compact interval
[t0, t0 + α], there existsδ > 0 such that for everyt, t ′ ∈ [t0,t0 + α] the implication

|t − t ′| ≤ δ ⇒ |M(t)−M(t ′)| ≤ ε

is true.
Moreover, for everyk≥ 2 and everyt, t ′ ∈ [t0,t0 + α], t ≥ t ′, one has

‖uk(t)−uk(t
′)‖ ≤

≤







∫ t− α
k

t′− α
k
‖F(s,uk(s))‖ ds≤ |M(t − α

k )−M(t ′− α
k )| if t ≥ t ′ ≥ t0 + α

k ,

∫ t− α
k

t0 ‖F(s,uk(s))‖ ds≤ |M(t − α
k )| if t ≥ t0 + α

k ≥ t ′,

0 if t0 + α
k ≥ t ≥ t ′.

In any case, for everyk≥ 2 and everyt, t ′ ∈ [t0,t0 + α] with |t − t ′| ≤ δ one has

‖uk(t)−uk(t
′)‖ ≤ ε.

This means that the sequence(uk)∈C([t0,t0+α];Rd) is equicontinuous. Moreover,
by the estimate (2.8), this sequence is also uniformly bounded.

Hence, by the Arzelà-Ascoli theorem (Theorem B.43), thereexists a subsequence
(ukj ) of (uk) and a continuous functionu : [t0,t0 + α]→ Rd such thatukj converges
uniformly on [t0, t0 + α] to u.

By condition (2.4), for everyt ∈ [t0,t0 + α] one has

lim
j→∞

F(t,ukj (t)) = F(t,u(t)).

By the estimate (2.8) and by condition (2.5),

‖F(t,uk(t))‖ ≤ m(t) for everyk≥ 2, t ∈ [t0,t0 + α].

Hence, by definition of the functionsuk and by the dominated convergence theorem,
for everyt ∈ [t0, t0 + α]

u(t) = lim
j→∞

ukj (t)

= u0− lim
j→∞

∫ t− α
kj

t0
F(s,ukj (s)) ds

= u0−
∫ t

t0
F(s,u(s)) ds.

Hence,u is a local solution.

Theorem 2.6 is like a key which opens the door to study ordinary differential
equations, or like a source which provides us with solutionsof ordinary differential
equations. The question of local existence, under the Carathéodory assumptions,
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is completely solved, and we can now study properties of these solutions. Note,
however, that without any further assumptions on the function F , one can neither
expect existence of global solutions (defined on[t0,∞), for example), nor uniqueness
of local solutions.

Example 2.7. a) The functionu(t) = 1
1−t , t ∈ [0,1), is a solution of the ordinary

differential equation
{

u̇−u2 = 0,

u(0) = 1,

and can not be extended to a global solution (defined on[0,∞)).

b) The functionsu(t) = 0 andu(t) = 1
4t2, t ∈ R+, are two distinct solutions of

the ordinary differential equation
{

u̇−
√

|u| = 0,

u(0) = 0.

By Exercise 1.2, both differential equations in (a) and (b) are gradient systems.

A solutionu : [t0, t0+α)→Rd of the ordinary differential equation (2.6) is called
amaximal solution if it can not be extended to a solution on a strictly larger interval
[t0, t0 + β ). Local existence of solutions of ordinary differential equationsalways
implies the existence of maximal solutions. The proof of this fact is based on the
Lemma of Zorn.

Corollary 2.8. Under the assumptions of Theorem 2.6, for every(t0,u0) ∈ D there
exists a maximal solution of the problem(2.6).

Proof (Idea).Consider the setS of all pairs(α,u) of positive numbersα ∈ (0,∞]
(∞ is included) and of continuous functionsu : [t0,t0+α)→Rd which are solutions
of the initial value problem (2.6). By Carathéodory’s Theorem, this set is nonempty.

On the setS , we consider the following partial ordering: we say that(α,u) ≤
(β ,v), if α ≤ β with respect to the usual ordering in(0,∞], and ifu is a restriction
of the functionv to the interval[t0,t0 + α). We leave it as an exercise to show that
≤ is really a partial ordering onS .

We also leave it as an exercise to show that every totally ordered subset ofS
admits a maximal element. The claim then follows from Zorn’sLemma.

2.4 Local and global existence for gradient systems

From Carathéodory’s local existence theorem we immediately obtain the following
corollary about local existence of solutions of non-autonomous gradient systems.

Corollary 2.9 (Local existence for non-autonomous gradient systems).Let U ⊆
Rd be an open set, letE : U → R be a continuously differentiable function, and let
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g : U → Inner(Rd) be a Riemannian metric on U. Let I⊆ R be an open interval,
and let f∈ L1(I ;Rd). Then, for every t0 ∈ I and every u0 ∈U the problem

{
u̇+ ∇gE (u) = f ,

u(t0) = u0,
(2.9)

admits a local solution. This means that there exists an interval J = [t0,t0 + α] ⊆ I
which is not reduced to one point, and there exists a continuous function u: J → Rd

such that for every t∈ J

u(t)−u0+

∫ t

t0
∇gE (u(s)) ds=

∫ t

t0
f (s) ds.

Proof. It suffices to check that the assumptions of Carathéodory’stheorem are sat-
isfied. We leave this as an exercise.

Maximal solutions of the gradient system (2.9) are defined inthe same way as for
the general ordinary differential equation (2.6). It follows from Corollary 2.8 that the
gradient system (2.9) always admits a maximal solution. Forthe general ordinary
differential equation as well as for the gradient system an important question is to
determine the maximal existence interval or to show that maximal solutions are
global. By Example 2.7 (a), global existence of solutions does not always hold,
neither for ordinary differential equations nor for gradient systems. But under a
natural assumption on the energy, global existence of solutions of gradient systems
can be proved viaa priori estimates.

A functionE : Rd → R is coerciveif for everyc∈ R thesub-level set

Kc := {u∈ R
d : E (u) ≤ c} is bounded.

Theorem 2.10 (Global existence for gradient systems).LetE : Rd → R be a con-
tinuously differentiable, coercive function, and let g be aRiemannian metric onRd

such that‖v‖g(u) ≤C‖v‖euc for every u, v∈ Rd and some constant C≥ 0. Then, for
every u0 ∈Rd and every continuous f: [0,T]→Rd (T > 0), every maximal solution
u of the non-autonomous gradient system

{
u̇+ ∇gE (u) = f ,

u(0) = u0,
(2.10)

exists on[0,T]. Moreover,

{u(t) : t ∈ [0,T]} ⊆ Kc,

where c= E (u0)+ C
2

∫ T
0 ‖ f‖2

euc depends only on the data u0, f and the embedding
constant C.

Proof. Let u : [0,Tmax) → Rd (Tmax ≤ T) be any maximal solution of the non-
autonomous gradient system (2.10); the existence of such a maximal solution is
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guaranteed by Corollaries 2.9 and 2.8. Since∇gE (u) and f are continuous func-
tions, any (maximal) solution of (2.10) is continuously differentiable and satisfies
the differential equation (2.10) in the classical sense (and not only in the integrated
sense from Corollary 2.9). We will show thatTmax= T.

We multiply equation (2.10) by ˙u with respect to the inner product〈·, ·〉g(u), inte-
grate the result over[0, t] (0 < t < Tmax≤ T), apply the Cauchy-Schwarz inequality
and the assumption on the metricg in order to obtain

∫ t

0
‖u̇‖2

g(u) +

∫ t

0
〈∇gE (u), u̇〉g(u) =

∫ t

0
〈 f , u̇〉g(u)

≤ 1
2

∫ t

0
‖ f‖2

g(u) +
1
2

∫ t

0
‖u̇‖2

g(u)

≤ C
2

∫ T

0
‖ f‖2

euc+
1
2

∫ t

0
‖u̇‖2

g(u).

By definition of the gradient and by the chain rule, we have〈∇gE (u), u̇〉g(u) =

E ′(u)u̇ = d
dtE (u). This and the preceding inequality imply that

1
2

∫ t

0
‖u̇‖2

g(u) +E (u(t)) ≤ E (u0)+
C
2

∫ T

0
‖ f‖2

euc=: c < ∞.

The right-hand side of this inequality is independent oft ∈ [0,Tmax), and the first
term on the left-hand side is positive. As a consequence, therange{u(t) : t ∈
[0,Tmax)} is a subset of the sub-level setKc. By coercivity and continuity ofE ,
Kc is bounded and closed inRd which is finite dimensional. Hence,Kc is compact.

Since the gradient∇gE is continuous onKc (Lemma 2.4) and since the range
of u is contained inKc, we obtain supt∈[0,Tmax) ‖∇gE (u(t))‖euc< ∞. The differential
equation (2.10) then implies that‖u̇‖euc is bounded, and integrable, on[0,Tmax).
Hence,u extends to a continuous function on the closed interval[0,Tmax].

Now, if Tmax < T, then we could extend the solutionu to a larger interval by
solving the gradient system ˙u+ ∇gE (u) = f with initial time Tmax and initial value
u(Tmax). This would contradict to the fact thatu is already a maximal solution, and
henceTmax < T is not possible. As a consequence,Tmax= T, that is,u is a global
solution.

2.5 Newton’s method

Let U ⊆ R
d be an open set, and letF : U → R

d be a continuously differentiable
function. Consider again the problem of finding a solution ¯u ∈ U of the algebraic
equation

F(ū) = 0.

We repeat the idea from the previous lecture and consider thefunctionE : U → R

given byE (u) = 1
2‖F(u)‖2, where‖ · ‖ is the euclidean norm onRd. Then one has
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F(ū) = 0 if and only if E (ū) = 0, and one may try to find a solution of the latter
problem by considering a gradient system associated withE .

In this example, we assume that the derivative

F ′(u) is invertible for everyu∈U,

and we define a Riemannian metricg : U → Inner(Rd) by setting

〈v,w〉g(u) = 〈F ′(u)v,F ′(u)w〉euc, u∈U, v, w∈ R
d.

For everyu ∈ U the bracket〈·, ·〉g(u) is clearly bilinear and symmetric. Moreover,
for everyu∈U , v∈ Rd,

〈v,v〉g(u) = 〈F ′(u)v,F ′(u)v〉euc

= ‖F ′(u)v‖2
euc ≥ 0,

so that 〈·, ·〉g(u) is in addition positive semidefinite. If〈v,v〉g(u) = 0, then
‖F ′(u)v‖2

euc = 0 and henceF ′(u)v = 0 by the definiteness of the euclidean inner
product. SinceF ′(u) is invertible by assumption, this impliesv = 0, and therefore
〈·, ·〉g(u) is definite, too. Continuity ofg follows from the continuity ofF ′.

For the gradient ofE with respect to the metricg we have

〈∇gE (u),v〉g(u) = E ′(u)v (definition of gradient)

= 〈F(u),F ′(u)v〉euc (computeE ′)

= 〈F ′(u)F ′(u)−1F(u),F ′(u)v〉euc (insert the termF ′(u)F ′(u)−1)

= 〈F ′(u)−1F(u),v〉g(u) (definition of metricg).

Comparing left-hand side and right-hand side yields

∇gE (u) = F ′(u)−1F(u).

Hence, the differential equation

u̇+F ′(u)−1F(u) = 0 (2.11)

is a gradient system associated with the energyE . We call this differential equa-
tion continuous Newton’s methodsince it is a continuous (in time) version of the
discrete Newton algorithm

un+1−un+F ′(un)
−1F(un) = 0, n≥ 0. (2.12)

Much could be said about this algorithm which Newton proposed in hisDe analysi
per aequationes numero terminorum infinitas(1669) and in hisMethods of series
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and fluxions(1671) for a special polynomialF1. It was originallynot designed to
be a steepest descent algorithm, that is, a discrete versionof a gradient system. The
original idea of Newton’s method is very different and involves no energy function:
given an approximationun of the exact solution ¯u of the equationF(ū) = 0, Taylor
expansion of order 1 yields the equation

0 = F(ū) = F(un)+F ′(un)(ū−un)+o(ū−un).

Dropping the rest termo(ū−un) by assuming that it is small compared to the other
terms ifun is close to ¯u, and solving the resulting linear equation

0 = F(un)+F ′(un)(un+1−un)

leads to the iteration formula (2.12). It turns out that ifu0 is an initial value close to
ū (close in a sense which can in general not be quantified), thenthe sequence(un) of
iterates given by the Newton algorithm converges to ¯u asn→ ∞. We will not give a
proof of this fact, but we rather content ourselves of havingproved that continuous
Newton’s method is a gradient system2.

Proposition 2.11.Assume that F′(v) is invertible for every v∈ U. Assume further
that there exists a (global) solution u: R+ → Rd of continuous Newton’s method
(2.11), and assume that u has relatively compact range in U. Then there existsū∈U
such that F(ū) = 0.

Proof. See the proof of Proposition 1.7.

2.6 Exercises

2.1.Prove Corollary 2.9.

2.2.Show that a functionE : Rd → R is coercive if and only if lim
‖u‖→∞

E (u) = +∞.

2.3 (Damped pendulum).Givenα > 0, β > 0, ε > 0, consider the two functions
G : R2 → R2 andE : R2 → R given by

G

(
u1

u2

)

=

(
−u2

αu2 + β sinu1

)

and

1 See D. T. Whiteside (ed.),The Mathematical Papers of Isaac Newton, Volume II, 1667–1670,
Cambridge University Press, Cambridge, 1968 and D. T. Whiteside (ed.),The Mathematical Pa-
pers of Isaac Newton, Volume III, 1670–1673, Cambridge University Press, Cambridge, 1969.
2 The observation that the continuous Newton method is a gradient system is taken from J. W.
Neuberger,Prospects for a central theory of partial differential equations, Math. Intelligencer 27
(2005), 47–55
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E

(
u1

u2

)

= −β cosu1 +
1
2

u2
2+ εu2 sinu1.

a) Prove that for everyu∈ R2 \ {(kπ ,0) : k ∈ Z} and everyε > 0 small enough
one has

〈∇eucE (u),G(u)〉euc> 0.

Hint: Recall the special case of Young’s inequality,ab≤ 1
2λ a2 + λ

2 b2, which
is true for everya, b≥ 0, λ > 0.

b) For everyu∈ R2, consider the matrix

A(u) =

(
−u2− ε sinu1 −u2

β sinu1 + εu2 cosu1 αu2 + β sinu1

)

.

Prove that for everyu∈ R2 \ {(kπ ,0) : k ∈ Z} and everyε > 0 small enough
the matrixA(u) is invertible.
Hint: Calculate detA(u) and compare with (a).

c) Prove that for everyu∈ R2 \ {(kπ ,0) : k∈ Z} and everyε > 0 small enough

〈v,w〉g(u) := 〈∇eucE (u),G(u)〉euc〈A(u)−1v,A(u)−1w〉euc, v, w∈ R
2,

defines an inner product onR2. The functiong : R
2 \ {(kπ ,0) : k ∈ Z} →

Inner(R2) thus defined is a Riemannian metric.

d) Show that (forε > 0 small enough)∇gE = G.

e) Conclude that the differential system modeling the damped pendulum

u̇1−u2 = 0

u̇2 + αu2+ β sinu1 = 0

is a gradient system onR2 \ {(kπ ,0) : k ∈ Z}, that is, outside the set of equi-
librium points.

2.4.Let F : Rd → Rd be a continuously differentiable function such thatF ′(u) is
invertible for everyu∈ Rd and such that lim

‖u‖→∞
‖F(u)‖ = +∞.

a) Show that the equationF(ū) = 0 has a solution.

b) Show thatF is surjective.
Hint: Replace the functionF by F − v, wherev ∈ Rd is an arbitrary given
vector.



Lecture 3
Gradients in infinite dimensional space:
the Laplace operator on a bounded interval

Starting with this lecture, we consider real-valued functions which are defined on
infinite dimensional Banach spaces. We study their gradients and the associated
gradient systems. Many of the aspects and objects which we know for gradient
systems in finite dimensional space reappear in the following study: the notion
of derivative, ambient inner product or metric, gradient, gradient system, energy
function, dissipation. But the analysis of gradient systems in infinite dimensional
spaces – local and global existence of solutions, for example – requires more effort.

The effort is worthwhile! Many elliptic partial differential operators which
appear in evolution models from physics, biology, chemistry or engineering turn
out to be gradients, and the corresponding evolution modelslike diffusion models,
phase separation models are gradient systems.

The most prominent example of an elliptic operator is the Laplace operator

∆ = div∇ =
d

∑
i=1

∂ 2

∂x2
i

acting on functions defined on domains inRd. We show that the Laplace operator
on a bounded interval (the second derivative!), equipped with Dirichlet boundary
conditions, is a gradient. This fundamental observation isnot only important for
the study of the heat equationut −uxx = 0 or similar parabolic equations. It is also
important for the study of elliptic boundary value problemsby variational methods.
These problems and the beautiful theory of the calculus of variations are touched
very slightly in this and the following lecture. The study ofgradient systems is
postponed for a while.

In a first step, we define the gradient of a real-valued function defined on an
infinite dimensional Banach space. Our first examples of gradients, in particular the
Laplace operator and other elliptic partial differential operators, are gradients of

27
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quadratic forms. We devote a short separate section to quadratic forms.

Throughout this lecture,V is a real Banach space with norm‖ ·‖V . We denote by
V ′ the dual space ofV, that is, the space of all continuous linear functionalsV → R.
If u′ ∈V ′, then we write

u′(u) or u′u or 〈u′,u〉 or 〈u′,u〉V ′,V

for the value ofu′ at the elementu∈V. The dual spaceV ′ is equipped with the norm
‖u′‖V′ = sup

‖u‖V≤1
〈u′,u〉.

3.1 Definition of gradient

LetU ⊆V be an open subset ofV, and letE : U →R be a function. We say thatE is
differentiable if for every u∈U there exists a continuous linear functionalu′ ∈V ′

such that

lim
‖h‖V→0

E (u+h)−E (u)−〈u′,h〉
‖h‖V

= 0.

The functionalu′ ∈ V ′, if it exists, is unique. Thederivative is the function
E ′ : U →V ′ which assigns to everyu∈ U the unique linear functionalu′ ∈ V ′ for
which the above equality holds. Consequently, we denote thederivative ofE at a
pointu by E ′(u). We say thatE is continuously differentiable if E is differentiable
and if the derivative is continuous fromU into V ′. The set of all continuously
differentiable functionsU → R is a vector space which is denoted byC1(U).

Let H be a real Hilbert space with inner product〈·, ·〉H and associated norm
‖ · ‖H . Assume thatV is continuously and densely embedded intoH. This means
that we can identifyV with a dense subspace ofH (via some injectionV → H) and
there exists a constantC ≥ 0 such that‖u‖H ≤ C‖u‖V for everyu ∈ V. We will
write V →֒ H for this situation.

Given a differentiable functionE : U → R, we define thegradient ∇HE with
respect to the inner product〈·, ·〉H by

D(∇HE ) := {u∈U : there existsv∈ H such that for every

ϕ ∈V one hasE ′(u)ϕ = 〈v,ϕ〉H}, and

∇HE (u) := v,

that is,∇HE (u) is the unique element inH, if it exists, which represents the deriva-
tive E ′(u) with respect to the inner product inH:

E
′(u)ϕ = 〈∇HE (u),ϕ〉H for everyϕ ∈V. (3.1)



3.1 Definition of gradient 29

The “if it exists” is important and marks a difference to gradients in finite dimen-
sional space. The fact that we consider two (in general different) spacesV andH
leads to the necessity to consider thedomain D(∇HE ) of the gradient of∇HE .
This domain is in general strictly contained inU ; not every derivativeE ′(u) can be
represented by some element inH (see the various examples in this lecture).

As soon asV is densely and continuously embedded intoH, the dualH ′ is con-
tinuously embedded into the dualV ′; the restriction toV of a continuous linear
functionalH → R defines a continuous linear functionalV → R. The resulting op-
eratorH ′ →V ′ is linear and continuous, and it is injective by the fact thatV is dense
in H. But the embeddingH ′ → V ′ is in general not surjective, that is, not every
bounded linear functionalu′ ∈V ′ extends to a bounded linear functional onH. As a
consequence, it may happen that a derivativeE ′(u) ∈V ′ does not extend to a linear
functional onH.

However, if a bounded linear functionalu′ ∈ V ′ (for example, the derivative
E ′(u)) extends to a bounded linear functional onH, that is, if u′ ∈ H ′, then this
functional may be represented by some elementu ∈ H due to a generalization of
the Representation Lemmas 1.1 and 2.1. The Riesz-Fréchet representation theorem
(Theorem D.53) says that ifH is a Hilbert space, then for every bounded linear
functionalu′ ∈ H ′ there exists a unique elementu∈ H such that

〈u′,v〉H′ ,H = 〈u,v〉H for everyv∈ H.

By the Riesz-Fréchet representation theorem, an elementu ∈ U belongs to the
domainD(∇HE ) if and only if the derivativeE ′(u) extends to a continuous linear
functional onH.

Similarly as above, one may define the gradient with respect to a metric. Given
a Hilbert spaceH with inner product〈·, ·〉H , we letL2(H;R) be the space of all
bounded bilinear formsa : H ×H → R, that is, the space of all forms such that for
everyu, v, w∈ H and everyλ ∈ R one has

a(λu+v,w) = λa(u,w)+a(v,w) and

a(u,λv+w) = λa(u,v)+a(u,w),

and
|a(u,v)| ≤C‖u‖H ‖v‖H for everyu, v∈ H and someC≥ 0.

This space is a vector space for the natural addition and the natural scalar multipli-
cation, and it is a Banach space for the norm

‖a‖ := sup
‖u‖H≤1
‖v‖H≤1

|a(u,v)|.

Besides the norm convergence we consider also strong convergence of sequences.
We say that a sequence(an) ⊂ L2(H;R) converges stronglyto an elementa ∈
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L2(H;R) if for everyu, v∈H one has lim
n→∞

an(u,v)= a(u,v). Every norm convergent

sequence is strongly convergent.
The set of all inner products onH, which we denote by Inner(H), is a subset

of L2(H;R). It is therefore natural to speak of norm convergent sequences and
strongly convergent sequences in Inner(H). A metric on an open subsetU ⊆ V is
a functiong : U → Inner(H) which maps norm convergent sequences into strongly
convergent sequences, that is, whenever limn→∞ ‖un − u‖V = 0, un, u ∈ U , then
(g(un)) converges strongly tog(u). For everyu∈U , the inner productg(u) is also
denoted by the bracket〈·, ·〉g(u), and the induced norm is denoted by‖ · ‖g(u).

Given a differentiable functionE : U → R and given a metricg, we define the
gradient ∇gE with respect tog by

D(∇gE ) := {u∈U : there existsv∈ H such that for every

ϕ ∈V one hasE ′(u)ϕ = 〈v,ϕ〉g(u)}, and

∇gE (u) := v,

that is,∇gE (u) is the unique element inH, if it exists, which represents the deriva-
tive E ′(u) with respect to the inner product〈·, ·〉g(u):

E
′(u)ϕ = 〈∇gE (u),ϕ〉g(u) for everyϕ ∈V.

If, for every u ∈ U , the inner product〈·, ·〉g(u) is equivalent to the inner product
〈·, ·〉H , then an elementu ∈ U belongs to the domainD(∇gE ) if and only if the
derivativeE ′(u) extends to a continuous linear functional onH.

3.2 Gradients of quadratic forms

A functionE : V →R is aquadratic form if there exists a bilinear, symmetric form
a : V ×V → R such that

E (u) =
1
2

a(u,u).

Recall that a bilinear, symmetric form is a bilinear forma : V×V → R such that for
everyu, v∈V one hasa(u,v) = a(v,u).

Proposition 3.1.A quadratic formE : V → R is continuous if and only if the asso-
ciated bilinear form a is continuous.

Proof. Clearly, if a bilinear forma is continuous, then the associated quadratic
form E is continuous. In order to prove the converse, assume that the function
u 7→ 1

2a(u,u) is continuous. Then, by the polarization identity

a(u,v) =
1
4

(
a(u+v,u+v)−a(u−v,u−v)

)
,
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a is continuous, too.

Proposition 3.2.If E : V →R is a continuous quadratic form with associated bilin-
ear form a: V ×V → R, thenE is continuously differentiable and

E
′(u)v = a(u,v) for every u, v∈V.

The proof of this proposition is left as an exercise, but we point out that actually
more is true: every continuous quadratic form is infinitely many times continuously
differentiable.

Given a continuous quadratic formE : V → R with associated bilinear forma :
V ×V → R, and given a Hilbert spaceH with inner product〈·, ·〉H , such thatV
is densely and continuously embedded intoH, we may compute the gradient ofE

with respect to the inner product inH by using the definition of the gradient and
Proposition 3.2. They imply that

D(∇HE ) = {u∈V : there existsv∈ H such that for every

ϕ ∈V one hasa(u,ϕ) = 〈v,ϕ〉H} and

∇HE (u) = v.

It turns out that the gradient of a quadratic formE with respect to an inner product
〈·, ·〉H is a linear operator onH. The domainD(∇HE ) is a linear subspace ofH and
the mappingu 7→ ∇HE (u) is linear (exercise). We point out that the gradient of a
quadratic form with respect to a metric is in general not linear.

Quadratic forms arise naturally in the study of linear elliptic operators. These
elliptic operators, in turn, appear in many parabolic equations. As already indicated
in the introduction of this lecture, we spend some time in order to introduce elliptic
operators. This implies that we have to define Sobolev spaceson domains. To start
with, we confine ourselves to the one-dimensional case.

3.3 Sobolev spaces in one space dimension

In this section we define Sobolev spaces on intervals. We willnot prove any
properties of Sobolev spaces, and actually, for this lecture it is not necessary to
prove any properties. It suffices to know the definition of Sobolev spaces and the
notion of weak derivative.

Let I ⊆R be anopeninterval. For every continuous functionϕ : I → R we define
thesupport

suppϕ := {x∈ I : ϕ(x) 6= 0},
where the closure is to be taken inI . The space
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D(I) := C∞
c (I) := {ϕ ∈C∞(I) : suppϕ ⊂ I is compact}

is called the space of alltest functionson I .

By the fundamental rule of partial integration, ifu, v : [a,b]→R are continuously
differentiable functions on some compact interval[a,b], then

∫ b

a
uv′ = u(b)v(b)−u(a)v(a)−

∫ b

a
u′v.

In particular, for everyu∈C1([a,b]) and everyϕ ∈ D(a,b)

∫ b

a
uϕ ′ = −

∫ b

a
u′ϕ , (3.2)

sinceϕ(a) = ϕ(b) = 0. In the following definition, this partial integration rule is not
a theorem, but it serves for the definition of a derivative. For every−∞ ≤ a < b≤ ∞
and every 1≤ p≤ ∞, we define the firstSobolev space

W1,p(a,b) := {u∈ Lp(a,b) : there existsv∈ Lp(a,b) such that for every

ϕ ∈ D(a,b) one has
∫ b

a
uϕ ′ = −

∫ b

a
vϕ}.

If p = 2, then we also writeH1(a,b) := W1,2(a,b).
By Lemma G.4, the functionv∈ Lp(a,b) is uniquely determined, if it exists. In

the following, we writeu′ := v, in accordance with the partial integration rule (3.2),
and we callu′ theweak derivative of u. With this notation, the spaceW1,p(a,b) is
the space of all functions inLp(a,b) which admit a weak derivative inLp(a,b). The
spacesW1,p(a,b) are Banach spaces for the norms

‖u‖W1,p :=
(
‖u‖p

Lp +‖u′‖p
Lp

) 1
p , 1≤ p < ∞, and

‖u‖W1,∞ := sup{‖u‖L∞,‖u′‖L∞},

and the spaceH1(a,b) is a Hilbert space for the inner product

〈u,v〉H1 :=
∫ b

a
uv+

∫ b

a
u′v′.

We further define
W1,p

0 (a,b) := D(a,b)
‖·‖

W1,p
,

that is, W1,p
0 (a,b) is the closure of the test functions inW1,p(a,b). The space

W1,2
0 (a,b) is also denotedH1

0(a,b). The following result about Sobolev spaces on
the interval will be proved later.

Theorem 3.3.Let (a,b) be a bounded interval, and let1≤ p≤ ∞. Then:
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a) Every function u∈ W1,p(a,b) is continuous on[a,b]. More precisely: every
function u∈W1,p(a,b) has a continuous representant u: [a,b]→ R.

b) A function u∈W1,p(a,b) belongs to W1,p
0 (a,b) if and only if u(a) = u(b) = 0.

For every 1≤ p ≤ ∞ and everyk ≥ 2 we define inductively thek-th Sobolev
space

Wk,p(a,b) := {u∈W1,p(a,b) : u′ ∈Wk−1,p(a,b)},
which is a Banach space for the norm

‖u‖Wk,p :=
( k

∑
j=0

‖u( j)‖p
Lp

) 1
p if 1 ≤ p < ∞,or

‖u‖W1,∞ := sup{‖u‖L∞,‖u′‖L∞ , . . . ,‖u(k)‖L∞} if p = ∞.

Here,u( j) denotes thej-th weak derivative ofu, u(0) = u. The spaceHk(a,b) :=
Wk,2(a,b) is a Hilbert space for the inner product

〈u,v〉Hk :=
k

∑
j=0

〈u( j),v( j)〉L2.

3.4 The Dirichlet-Laplace operator on a bounded interval

We consider the Sobolev spaceV = H1
0(0,1), equipped with theH1 norm which

turns it into a Hilbert space. We consider in addition the quadratic form E :
H1

0(0,1) → R given by

E (u) =
1
2

∫ 1

0
(u′)2, u∈ H1

0(0,1).

The associated bilinear forma : H1
0(0,1)×H1

0(0,1) → R is given by

a(u,v) =

∫ 1

0
u′v′, u, v∈ H1

0(0,1).

Both functionsE anda are continuous.
We consider the spaceH = L2(0,1) equipped with the usual inner product, that

is

〈u,v〉L2 =

∫ 1

0
uv,

and compute the gradient ofE with respect to this inner product. We only use the
definition of the gradient, Proposition 3.2 and the definition of the Sobolev spaces
H1(0,1) andH2(0,1). First, when we translate the definition of the gradient, we
find
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D(∇L2E ) = {u∈ H1
0(0,1) : there existsv∈ L2(0,1) such that for every

ϕ ∈ H1
0(0,1) one has

∫ 1

0
u′ϕ ′ =

∫ 1

0
vϕ},

∇L2E (u) = v.

This gradient may be characterized in a more explicit way, asfollows.

Let u ∈ D(∇L2E ). Then, by the above characterization of the domain,u ∈
H1

0(0,1) and there existsv∈ L2(0,1) such that for everyϕ ∈ H1
0(0,1) one has

∫ 1

0
u′ϕ ′ =

∫ 1

0
vϕ = −

∫ 1

0
(−v)ϕ .

In particular, this equality holds for every test functionϕ ∈ D(0,1). Recalling now
the definition of the Sobolev spaceH1(0,1), we see thatu′ belongs toH1(0,1)
(that is u ∈ H2(0,1)) and−u′′ = v. This proves thatu ∈ H2(0,1)∩H1

0(0,1) and
∇L2E (u) = −u′′.

Conversely, letu∈ H2(0,1)∩H1
0(0,1). Thenu′′ ∈ L2(0,1), u′ ∈H1(0,1), and by

definition of the Sobolev spaceH1
0(0,1) we obtain the equality

∫ 1
0 u′ϕ ′ = −∫ 1

0 u′′ϕ
for every test functionϕ ∈ D(0,1). By definition of the spaceH1

0(0,1), the test
functions are dense inH1

0(0,1). It is then an exercise to show that the equality
∫ 1

0 u′ϕ ′ = −∫ 1
0 u′′ϕ holds for everyϕ ∈ H1

0(0,1). Sinceu′′ ∈ L2(0,1), this proves
u∈ D(∇L2E ).

Putting the above inclusions together, we have therefore proved that

D(∇L2E ) = H2(0,1)∩H1
0(0,1) and

∇L2E (u) = −u′′.

We set D
(0,1)∆ := −∇L2E and we call this negative gradient theDirichlet-Laplace

operator on the interval(0,1). Solving the boundary value problem






u∈ H2(0,1),

−u′′(x) = f (x) for x∈ (0,1),

u(0) = u(1) = 0,

(3.3)

for a given f ∈ L2(0,1) is equivalent to solving the abstract equation

∇L2E (u) = f (or: − D
(0,1)∆u = f ),

in particular because the domain of the gradient coincides exactly with the space of
all functions inu∈ H2(0,1) which satisfy the Dirichlet boundary conditionu(0) =
u(1) = 0.
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3.5 The Dirichlet-Laplace operator with multiplicative
coefficient

We consider, as in the previous example, the Sobolev spaceV = H1
0(0,1) and the

functionE : H1
0(0,1) → R given by

E (u) =
1
2

∫ 1

0
(u′)2, u∈ H1

0(0,1).

We also consider, as in the previous example, the spaceH = L2(0,1), but now it is
equipped with the inner product

〈v,w〉 =

∫ 1

0
vw

1
m

,

wherem∈ L∞(0,1) is a given positive function such that1
m ∈ L∞(0,1). This inner

product is equivalent to the usual inner product onL2(0,1), as one easily verifies.
What is the gradient ofE with respect to this new inner product?

As in the previous example, we first translate the definition of the gradient into
this situation, by using Proposition 3.2, and we now find

D(∇E ) = {u∈ H1
0(0,1) : there existsv∈ L2(0,1) such that for every

ϕ ∈ H1
0(0,1) one has

∫ 1

0
u′ϕ ′ =

∫ 1

0
vϕ

1
m
},

∇E (u) = v.

This gradient may be characterized in a more explicit way, asfollows.

Let u ∈ D(∇E ). Thenu ∈ H1
0(0,1) and there existsv ∈ L2(0,1) such that for

everyϕ ∈ H1
0(0,1)

∫ 1

0
u′ϕ ′ =

∫ 1

0
vϕ

1
m

= −
∫ 1

0
(−v

1
m

)ϕ .

In particular, this equality holds for every test functionϕ ∈ D(0,1). Recalling the
definition of the Sobolev spaceH1(0,1), we see thatu′ belongs toH1(0,1) (that
is, u∈ H2(0,1)) and−u′′ = v 1

m. This provesu∈ H2(0,1)∩H1
0(0,1) and∇E (u) =

−mu′′.
Conversely, letu ∈ H2(0,1)∩H1

0(0,1). Thenu′′ ∈ L2(0,1), u′ ∈ H1(0,1), and
by definition of the Sobolev spaceH1(0,1), we obtain the equality

∫ 1
0 u′ϕ ′ =

−∫ 1
0 u′′ϕ = −∫ 1

0 mu′′ϕ 1
m first for every ϕ ∈ D(0,1), and then, sinceD(0,1) is

dense inH1
0(0,1), also for everyϕ ∈ H1

0(0,1). Sincemu′′ ∈ L2(0,1), this proves
u∈ D(∇E ).

Putting the above inclusions together, we have therefore proved that
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D(∇E ) = H2(0,1)∩H1
0(0,1) and

∇E (u) = −mu′′.

Hence, solving the abstract equation

∇E (u) = f

is now equivalent to solving the boundary value problem






u∈ H2(0,1),

−m(x)u′′(x) = f (x) for x∈ (0,1),

u(0) = u(1) = 0.

We consider also the following nonlinear variant of the above example. Letε ∈
(0,1), and letm : R → [ε, 1

ε ] be a continuous function. For everyu ∈ H1
0(0,1) we

consider the inner product

〈v,w〉g(u) =

∫ 1

0
vw

1
m(u)

,

wherem(u) = m◦u is the composition of the functionsmandu. The resulting func-
tion g : H1

0(0,1) → Inner(L2(0,1)), u 7→ 〈·, ·〉g(u) maps norm convergent sequences
into strongly convergent sequences (exercise) and is therefore a metric. By repeating
the above computation, one sees that the gradient ofE with respect to the metricg
is given by

D(∇gE ) = H2(0,1)∩H1
0(0,1) and

∇gE (u) = −m(u)u′′.

Hence, solving the abstract equation

∇gE (u) = f

is now equivalent to solving the boundary value problem






u∈ H2(0,1),

−m(u(x))u′′(x) = f (x) for x∈ (0,1),

u(0) = u(1) = 0.

(3.4)

This problem is in general nonlinear.
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3.6 Exercises

3.1.Prove Proposition 3.2.

3.2.Show that the gradient of a quadratic functionE : V → R with respect to an
inner product〈·, ·〉H is a linear operator, that is, the domainD(∇HE ) is a linear
subspace ofH and the mappingu 7→ ∇HE (u) is linear.

3.3 (The Dirichlet-Laplace operator with first order coefficient). Let b : [0,1]→
R be a continuous function and letB(x) :=

∫ x
0 b(y) dy. Consider the energy function

E : H1
0(0,1) → R,

u 7→ 1
2

∫ 1

0
(u′)2e−B.

Compute the gradient∇HE with respect to the inner product〈v,w〉H =
∫ 1

0 vwe−B on
H = L2(0,1). More precisely, show that

D(∇HE ) = H2(0,1)∩H1
0(0,1),

∇HE (u) = −u′′+bu′.

3.4 (A second order operator in “divergence form”).Let a∈ L∞(0,1). Consider
the energy function

E : H1
0(0,1) → R,

u 7→ 1
2

∫ 1

0
a · (u′)2.

Compute the gradient∇L2E with respect to the usual inner product onL2(0,1),
〈v,w〉L2 =

∫ 1
0 vw. More precisely, show that

D(∇L2E ) = {u∈ H1
0(0,1) : au′ ∈ H1(0,1)},

∇L2E (u) = −(au′)′.

3.5.Let ε ∈ (0,1), and letm : R → [ε, 1
ε ] be a continuous function. For everyu ∈

H1
0(0,1) we consider the inner product

〈v,w〉g(u) =
∫ 1

0
vw

1
m(u)

.

Show that the functiong : H1
0(0,1) → Inner(L2(0,1)), u 7→ 〈·, ·〉g(u) is a metric, that

is, it maps norm convergent sequences into strongly convergent sequences.
Hint. One may use, without proof, the Sobolev embedding theorem (Theorem

G.14, Theorem 3.3) which says that the spaceH1
0(0,1) is continuously embedded

into C([0,1]), that is, every functionu ∈ H1
0(0,1) is continuous on[0,1] and there

exists a constantC > 0 (independent ofu) such that‖u‖L∞ ≤C‖u‖H1
0
.





Lecture 4
Gradients in infinite dimensional space:
the Laplace operator and thep-Laplace operator

In this lecture, we present further examples of gradients ininfinite dimensional
space: given an open setΩ ⊆ Rd, we define the Dirichlet-Laplace operator on
L2(Ω) and the Dirichlet-p-Laplace operator onL2(Ω). The reason, why we
give these operators so much importance, can only be given later, when we will
discuss linear and nonlinear diffusion equations as examples of gradient systems.
But actually the Laplace operator and thep-Laplace operator appear not only in
diffusion equations. They also appear in many other models from mathematical
physics, such as wave propagation models, models from fluid mechanics, or in
elasticity.

In order to introduce the new examples, we need to define Sobolev spaces on
open setsΩ ⊆ Rd. In this lecture, we write also

uv := 〈u,v〉euc=
d

∑
i=1

uivi for the euclidean inner product, and

|u| for the euclidean norm onRd.

For a differentiable functionu : Ω → R, whereΩ ⊆ Rd is an open set, we denote
by ∇u its euclidean gradient.

4.1 Sobolev spaces in higher dimensions

Let Ω ⊆ Rd be an open set with boundary∂Ω . For every continuous functionϕ :
Ω → R we define thesupport

suppϕ := {x∈ Ω : ϕ(x) 6= 0},

where the closure is to be taken inΩ . Let

39
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C1
c(Ω) := {ϕ ∈C1(Ω) : suppϕ is compact}.

The following theorem, the integration by parts in higher dimensions, is a con-
sequence of the Divergence Theorem (Theorem F.6). In this theorem,C1(Ω̄ ) is the
set of all continuously differentiable functionsu : Ω → R such thatu and∇u admit
continuous extensions to the closurēΩ . For the definition of what we mean by an
open set of classC1 (a notion related to the regularity of the boundary), and thedef-
inition of the outer normal vector, we refer to Appendix F. Domains with “smooth”
boundary (balls, for example) are of classC1, while domains with corners (triangles,
rectangles) or slits are not of classC1.

A C1 domain with
some outer normal
vectors

A domain with corners
is not of classC1

A domain with a slit
(here an ellipse minus
a curve) is not of class
C1.

Theorem 4.1 (Integration by parts).Let Ω ⊆ Rd be open, bounded and of class
C1. Then there exists a unique Borel measureσ on∂Ω (called thesurface measure)
such that for every u, v∈C1(Ω̄) and every1≤ i ≤ d

∫

Ω
u

∂v
∂xi

=

∫

∂Ω
uvni dσ −

∫

Ω

∂u
∂xi

v,

where n(x) = (ni(x))1≤i≤d denotes the outer normal vector at a point x∈ ∂Ω .

In particular, ifu∈C1(Ω̄) andϕ ∈C1
c(Ω), then

∫

Ω
u

∂ϕ
∂xi

= −
∫

Ω

∂u
∂xi

ϕ ,

and one may prove that this equality holds without any regularity assumption on
Ω . Similarly as in the case of Sobolev spaces on intervals and weak derivatives of
functions of one variable, the rule of integration by parts serves for the definition of
weak partial derivatives. For every 1≤ p≤ ∞ and every openΩ ⊆Rd we define the
first Sobolev space

W1,p(Ω) := {u∈ Lp(Ω) : for everyi = 1, . . . ,d there existsgi ∈ Lp(Ω) such

that for everyϕ ∈C1
c(Ω) :

∫

Ω
u

∂ϕ
∂xi

= −
∫

Ω
giϕ}.

We also writeH1(Ω) instead ofW1,2(Ω). By Lemma G.4, the functionsgi ∈ Lp(Ω)
are uniquely determined, if they exist. In the following, wewrite ∂u

∂xi
:= gi, and we
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call ∂u
∂xi

the i-th weak partial derivative of u and∇u := ( ∂u
∂x1

, . . . , ∂u
∂xd

) the weak

euclidean gradientof u. With these definitions, the Sobolev spaceW1,p(Ω) is the
space of all functions inLp(Ω) which admit all weak partial derivatives inLp(Ω).
If u is continuously differentiable, then partial derivativescoincide with weak
partial derivatives by Gauß’ theorem, and the euclidean gradient coincides with the
weak euclidean gradient by Lemma 1.2.

The Sobolev spacesW1,p(Ω) are Banach spaces for the norms

‖u‖W1,p :=
(
‖u‖p

Lp +
d

∑
i=1

‖ ∂u
∂xi

‖p
Lp

) 1
p , 1≤ p < ∞, and

‖u‖W1,∞ := sup{‖u‖L∞ ,‖ ∂u
∂x1

‖L∞ , . . . ,‖ ∂u
∂xd

‖L∞},

andH1(Ω) is a Hilbert space for the inner product

〈u,v〉H1 := 〈u,v〉L2 +
d

∑
i=1

〈 ∂u
∂xi

,
∂v
∂xi

〉L2.

We define
W1,p

0 (Ω) := C1
c(Ω)

‖·‖
W1,p

,

that is, W1,p
0 (Ω) is the closure of the spaceC1

c(Ω) in W1,p(Ω), and we put

H1
0(Ω) := W1,2

0 (Ω).

Not all properties of Sobolev spaces on intervals carry overto Sobolev spaces
on open setsΩ ⊆ R

d. For example, it isnot true that every functionu ∈ W1,p(Ω)
is continuous on the closurēΩ , or even in the interiorΩ , unless one makes
further assumptions onp and Ω (dimension ofΩ , regularity of the boundary)!
It is therefore not immediately clear how to give a meaning tothe restriction to
the boundary∂Ω of a function inW1,p(Ω), since the boundary∂Ω is in general
a set of Lebesgue measure zero. The problem of defining such restrictions to the
boundary – one calls them also traces – is not discussed here.We only say that it
is possible to define such traces on the boundary, provided the boundary is regular
enough. If the boundary∂Ω is regular enough, then one can show that the space
W1,p

0 (Ω) is the space of all functions inW1,p(Ω) whose traces on the boundary∂Ω
vanish.

For every 1≤ p ≤ ∞ and everyk ≥ 2 we define inductively thek-th Sobolev
space

Wk,p(Ω) := {u∈W1,p(Ω) : for everyi = 1, . . . , d one has
∂u
∂xi

∈Wk−1,p(Ω)},

which is a Banach space for the norm
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‖u‖Wk,p :=
(
‖u‖p

Lp +
d

∑
i=1

‖ ∂u
∂xi

‖p
Wk−1,p

) 1
p if 1 ≤ p < ∞, and

‖u‖Wk,∞ := sup{‖u‖L∞,‖ ∂u
∂x1

‖Wk−1,∞ , . . . ,‖ ∂u
∂xd

‖Wk−1,∞} if p = ∞.

The spaceHk(Ω) := Wk,2(Ω) is a Hilbert space for the inner product

〈u,v〉Hk := 〈u,v〉L2 +
d

∑
i=1

〈 ∂u
∂xi

,
∂v
∂xi

〉Hk−1.

For further results about Sobolev spaces, we refer to the Appendix or to
[Adams (1975)], [Adams and Fournier (2003)].

4.2 The Dirichlet-Laplace operator

Let Ω ⊆Rd be an open set and consider the Banach spaceV = H1
0(Ω). We consider

the functionE : H1
0(Ω) → R given by

E (u) =
1
2

∫

Ω
|∇u|2, u∈ H1

0(Ω).

This function is a quadratic form with associated bilinear forma given by

a(u,v) =
∫

Ω
∇u∇v, u, v∈ H1

0(Ω).

We consider the Hilbert spaceH = L2(Ω), equipped with the usual inner product.
ThenV is densely and continuously embedded intoH (for the density, it suffices
to prove thatC1

c(Ω) is dense inL2(Ω), see Theorem G.3). The gradient ofE with
respect to the usualL2 inner product is, as computed in Section 3.2, given by

D(∇L2E ) = {u∈ H1
0(Ω) : there existsv∈ L2(Ω) such that for every

ϕ ∈ H1
0(Ω) one has

∫

Ω
∇u∇ϕ =

∫

Ω
vϕ} and

∇L2E (u) = v.

We write D
Ω ∆ := −∇L2E and we call this negative gradient theDirichlet-Laplace

operator onL2(Ω). This term is justified by the following facts.

First, the Laplace operator is the partial differential operator

∆ = div∇ =
d

∑
i=1

∂ 2

∂x2
i

.
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Second, ifu∈ H2(Ω), then, by definition, all weak partial derivatives∂u
∂xi

, ∂ 2u
∂xi∂xj

exist and belong toL2(Ω). In particular,∆u ∈ L2(Ω), if we understand by∆u the

sum of the weak partial derivatives∂
2u

∂x2
i
. By definition of the weak derivatives (or:

by definition of the Sobolev spacesH1 andH2), for every functionϕ ∈C1
c(Ω)

∫

Ω
∇u∇ϕ =

∫

Ω

d

∑
i=1

∂u
∂xi

∂ϕ
∂xi

=
d

∑
i=1

∫

Ω

∂u
∂xi

∂ϕ
∂xi

= −
d

∑
i=1

∫

Ω

∂ 2u

∂x2
i

ϕ = −
∫

Ω

d

∑
i=1

∂ 2u

∂x2
i

ϕ

= −
∫

Ω
∆uϕ .

Since, by definition, the spaceC1
c(Ω) is dense inH1

0(Ω), the equality
∫

Ω ∇u∇ϕ =
−
∫

Ω ∆uϕ actually holds for everyϕ ∈ H1
0(Ω). As a consequence of this and the

definition of D
Ω ∆ , we obtain that everyu∈ H2(Ω)∩H1

0(Ω) belongs to the domain
D(D

Ω ∆) and
D
Ω ∆u = ∆u.

Third, sinceD(D
Ω ∆) ⊆ H1

0(Ω), every function in the domain of the Dirichlet-
Laplace operator satisfies the Dirichlet boundary condition u|∂Ω = 0 in the sense
that its trace (the restriction of the function to the boundary, in the weak sense of
Sobolev spaces) vanishes.

The Dirichlet-Laplace operator is of importance when one studies the boundary
value problem

{
−∆u = f in Ω ,

u = 0 on∂Ω ,

for some given functionf ∈ L2(Ω). We call a functionu∈ H1
0(Ω) aweak solution

of this boundary value problem if for everyϕ ∈ H1
0(Ω)

∫

Ω
∇u∇ϕ =

∫

Ω
f ϕ .

Moreover, we call a functionu∈C2(Ω̄ ) a classical solutionif it satisfies the equa-
tion −∆u = f in Ω (all second derivatives being now classical derivatives) and the
boundary conditionu = 0 on∂Ω , pointwise everywhere. By Gauß’ theorem, every
classical solution is a weak solution. Moreover, one shows in an exercise thatu is a
weak solution if and only if

− D
Ω ∆u = f .

Remark. Unfortunately and unlikely to the case of the Dirchlet-Laplace operator
on the interval, we can not characterize the domain of the Dirichlet-Laplace operator
onΩ , if Ω ⊆Rd is a general open set. For example, one can not prove thatD(D

Ω ∆) =
H2(Ω)∩H1

0 (Ω); only the inclusion⊇ is true in general, as we have shown above.
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As soon as the dimensiond ≥ 2, one can not conclude fromDΩ ∆u∈ L2(Ω) that each

weak partial derivative∂ 2u
∂x2

i
exists and belongs toL2(Ω), not to speak of the weak

mixed partial derivatives ∂ 2u
∂xi ∂xj

. In fact, this is a difficult problem from the theory

of elliptic operators, and we refer to [Gilbarg and Trudinger (2001), Chapter 8], for
example. Only two remarks, without proof: first, ifΩ ′ ⊂ Ω is an open subset such
that the closureΩ̄ ′ is still contained inΩ , then the restriction ofu∈ D(D

Ω ∆) to Ω ′

belongs toH2(Ω ′) (“interior regularity”). Second, ifΩ is of classC2 (a regularity
property of the boundary again), then one does haveD(D

Ω ∆) = H2(Ω)∩H1
0(Ω)

(“global regularity”); for example, this equality is true if Ω is a ball. These results
are not trivial and we summarize that the equalityD(D

Ω ∆) = H2(Ω)∩H1
0 (Ω) is false

in general.

4.3 The Dirichlet-p-Laplace operator

Let Ω ⊆ R
d be an open set and letp > 1. We consider the Banach spaceV =

W1,p
0 (Ω) and the functionE : W1,p

0 (Ω) → R given by

E (u) =
1
p

∫

Ω
|∇u|p, u∈W1,p

0 (Ω).

This function is not a quadratic form (unlessp = 2), but still we can show that it is
continuously differentiable and compute its derivative, by applying a general result
which we state and prove only in the following section.

Theorem 4.2.The functionE is continuously differentiable, and

E
′(u)v =

∫

Ω
|∇u|p−2∇u∇v for every u, v∈W1,p

0 (Ω). (4.1)

Moreover,E andE ′ map bounded sets into bounded sets.

Proof. Consider the functionF : Ω × Rd → R given by F(x,u) = 1
p|u|p. Then

F(x,0) = 0, and the functionF is continuously differentiable. If∂F
∂u (x,u) denotes

the derivative of the functionF(x, ·) at u ∈ Rd, then ∂F
∂u (x,u)v = |u|p−2uv and

| ∂F
∂u (x,u)| = |u|p−1 for everyu, v∈ Rd. Therefore, the functionF satisfies the con-

ditions of Theorem 4.3 below. By Theorem 4.3, the functionF : Lp(Ω ;Rd) → R

given byF (u) =
∫

Ω F(x,u(x)) dx is continuously differentiable and

F
′(u)v =

∫

Ω
|u|p−2uv for everyu, v∈ Lp(Ω ;Rd).

Now the statement of the theorem follows by observing that the functionE is
the composition of the functionF above and the continuous, linear mapping
L : W1,p

0 (Ω) → Lp(Ω ;Rd), u 7→ ∇u, that is,E = F ◦L . Every continuous lin-
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ear mapping is continuously differentiable, so thatE is continuously differentiable,
too. The chain rule yields (4.1). SinceF andF ′ map bounded sets into bounded
sets, by Theorem 4.3, and sinceL is bounded,E andE ′ map bounded sets into
bounded sets, too.

We consider next the Banach spaceV = W1,p
0 (Ω)∩L2(Ω), equipped with the

sum norm‖u‖V := ‖u‖W1,p + ‖u‖L2, and the Hilbert spaceH = L2(Ω), equipped
with the usual inner product. ThenV is continuously and densely embedded into
L2(Ω) and intoW1,p

0 (Ω). By Theorem 4.2, the restriction ofE to the spaceV is
continuously differentiable,E andE ′ map bounded sets into bounded sets, and

E
′(u)v =

∫

Ω
|∇u|p−2∇u∇v for everyu, v∈V.

The gradient ofE with respect to the usualL2 inner product is, according to the
definition, the operator

D(∇L2E ) = {u∈V : there existsv∈ L2(Ω) such that for every

ϕ ∈V one has
∫

Ω
|∇u|p−2∇u∇ϕ =

∫

Ω
vϕ} and

∇L2E (u) = v.

We write D
Ω ∆p := −∇L2E and we call this negative gradient theDirichlet- p-

Laplace operatoronL2(Ω). This term is justified by the following considerations.

Thep-Laplace operator is the suitable partial differential operator which to every
functionu : Ω → R assigns the function

∆pu := div
(
|∇u|p−2∇u

)
.

Note that∆2 is equal to the Laplace operator∆ .

Consider the boundary value problem
{
−∆pu = f in Ω ,

u = 0 on∂Ω ,
(4.2)

where f ∈ L2(Ω) is a given function. We call a functionu ∈ W1,p
0 (Ω)∩ L2(Ω) a

weak solutionof this problem if for everyϕ ∈W1,p
0 (Ω)∩L2(Ω) one has

∫

Ω
|∇u|p−2∇u∇ϕ =

∫

Ω
f ϕ .

With this definition of weak solution, by the definition of theDirichlet-p-Laplace
operator, and by Theorem 4.2, a functionu is a weak solution of the above boundary
value problem if and only if

− D
Ω ∆pu = f .
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4.4 An auxiliary result

Theorem 4.3.LetΩ ⊆ Rd be an open set, and let1 < p < ∞. Let F : Ω ×Rm → R

(m≥ 1) be a measurable function such that

F(x, ·) is continuously differentiable for every x∈ Ω , and

there exist C1 ∈ Lp′(Ω) (p′ :=
p

p−1
), C2 ∈ L1(Ω), C≥ 0 such that

| ∂
∂u

F(x,u)| ≤C1(x)+C|u|p−1 for every x∈ Ω , u∈ R
m, and

|F(x,0)| ≤C2(x) for every x∈ Ω ,

where ∂
∂uF(x,u) is the derivative of the function F(x, ·) at the point u. Then the

functionF : Lp(Ω ;Rm) → R given by

F (u) =

∫

Ω
F(x,u(x)) dx, u∈ Lp(Ω ;Rm),

is well defined, continuously differentiable, and

F
′(u)v =

∫

Ω

∂
∂u

F(x,u(x))v(x) dx for every u, v∈ Lp(Ω ;Rm).

Moreover,F andF ′ map bounded sets into bounded sets.

Proof. We first prove that the functionF is well defined. The two growth conditions
onF and the mean value theorem imply that for everyx∈ Ω and everyu∈ Rm

|F(x,u)| ≤ |F(x,0)|+ |F(x,u)−F(x,0)|

≤ |F(x,0)|+ sup
ξ∈[0,u]

|∂F
∂u

(x,ξ )| |u|

≤ C2(x)+
(
C1(x)+C sup

ξ∈[0,u]

|ξ |p−1) |u|

= C2(x)+C1(x) |u|+C|u|p.

For everyu∈ Lp(Ω ;Rm), Hölder’s inequality implies that
∫

Ω
|F(x,u(x))| dx≤ ‖C2‖L1 +‖C1‖Lp′ ‖u‖Lp +C‖u‖p

Lp.

By this estimate, the functionF is well defined, and we also see that it maps
bounded sets into bounded sets.

Fix u∈ Lp(Ω ;Rm) and define the linear functionalu′ ∈ Lp(Ω ;Rm)′ by

u′(v) =
∫

Ω

∂F
∂u

(x,u(x))v(x), v∈ Lp(Ω ;Rm).
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This linear functionalu′ is well defined since, by Hölder’s inequality, for everyv∈
Lp(Ω ;Rm)

∫

Ω
|∂F
∂u

(x,u(x))v(x)| dx≤ ‖∂F
∂u

(·,u)‖Lp′ ‖v‖Lp

≤
(
‖C1‖Lp′ +C‖u‖p−1

Lp

)
‖v‖Lp. (4.3)

We prove thatF is differentiable and thatF ′(u) = u′. For this, we have to prove
that

lim
‖h‖Lp→0

|F (u+h)−F (u)−u′(h)|
‖h‖Lp

= 0.

For everyh∈ Lp(Ω ;Rm), by Hölder’s inequality,

|F (u+h)−F (u)−u′(h)| ≤ (4.4)

≤
∫

Ω

∣
∣F(x,u(x)+h(x))−F(x,u(x))− ∂F

∂u
(x,u(x))h(x)

∣
∣ dx

=

∫

Ω

∣
∣
F(x,u(x)+h(x))−F(x,u(x))− ∂F

∂u (x,u(x))h(x)

|h(x)|
∣
∣ |h(x)| dx

≤
(
∫

Ω

∣
∣
F(x,u(x)+h(x))−F(x,u(x))− ∂F

∂u (x,u(x))h(x)

|h(x)|
∣
∣p

′
dx
) 1

p′ ‖h‖Lp,

where we interpret the term under the integral as 0 ifh(x) = 0. Let now(hn) ⊂
Lp(Ω ;Rm) be a sequence converging to 0. From this sequence, we can extract a
subsequence (which we denote for simplicity again(hn)) and we can find ag ∈
Lp(Ω) such that

hn → 0 almost everywhere onΩ and

|hn| ≤ g almost everywhere, for everyn.

SinceF(x, ·) is differentiable for everyx∈ Ω , we have for this subsequence

∣
∣
F(x,u(x)+hn(x))−F(x,u(x))− ∂F

∂u (x,u(x))hn(x)

|hn(x)|
∣
∣→ 0 almost everywhere onΩ .

Moreover, using the growth assumptions on∂F
∂u , for everyn and almost everyx we

have

∣
∣
F(x,u(x)+hn(x))−F(x,u(x))− ∂F

∂u (x,u(x))hn(x)

|hn(x)|
∣
∣≤

≤ sup
ξ (x)∈[u(x),u(x)+hn(x)]

|∂F
∂u

(x,ξ (x))|+ |∂F
∂u

(x,u(x))
∣
∣
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≤ 2C1(x)+C sup
ξ (x)∈[u(x),u(x)+hn(x)]

|ξ (x)|p−1 +C|u(x)|p−1

≤ 2C1(x)+C(|u(x)|+ |hn(x)|)p−1 +C|u(x)|p−1

≤ 2C1(x)+C(Cp +1) |u(x)|p−1+CCp |hn(x)|p−1

≤ 2C1(x)+C(Cp +1) |u(x)|p−1+CCpg(x)p−1.

Here, we have also used the estimate

(a+b)p−1 ≤Cpap−1+Cpbp−1,

which is true for everya, b ≥ 0 and some constantCp ≥ 0. Hence, by Lebesgue’s
dominated convergence theorem,

lim
n→∞

∫

Ω

∣
∣
F(x,u(x)+hn(x))−F(x,u(x))− ∂F

∂u (x,u(x))hn(x)

|hn(x)|
∣
∣p

′
dx= 0.

We have thus proved that for every sequence(hn) ⊂ Lp(Ω ;Rm) converging to 0
there exists a subsequence (which we denote for simplicity again by(hn)) such that
the preceding equality holds. We claim that this implies

lim
‖h‖Lp→0

∫

Ω

∣
∣
F(x,u(x)+h(x))−F(x,u(x))− ∂F

∂u (x,u(x))h(x)

|h(x)|
∣
∣p

′
dx= 0. (4.5)

In fact, if this was not true, then there existε > 0 and a sequence(hn) ⊂ Lp(Ω ;Rm)
converging to 0 such that

∫

Ω

∣
∣
F(x,u(x)+hn(x))−F(x,u(x))− ∂F

∂u (x,u(x))hn(x)

|hn(x)|
∣
∣p

′
≥ ε,

which is not possible by what we have proved above.
From (4.5) and the estimate (4.4) we deduce thatF is differentiable andF ′(u)=

u′. In particular,F is continuous, and the estimate (4.3) says

‖F ′(u)‖(Lp)′ ≤ ‖C1‖Lp′ +C‖u‖p−1
Lp ,

so thatF ′ maps bounded sets into bounded sets.
It remains only to prove thatF ′ is continuous. Fixu∈ Lp(Ω ;Rm), and let(hn)⊂

Lp(Ω ;Rm) be a sequence converging to 0. As before, we can extract a subsequence
(which we denote again by(hn)) and we can find ag∈ Lp(Ω) such that

hn → 0 almost everywhere onΩ and

|hn| ≤ g almost everywhere, for everyn.

Then, using the growth assumptions on∂F
∂u as above, by Hölder’s inequality and by

Lebesgue’s dominated convergence theorem,
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limsup
n→∞

‖F ′(u+hn)−F
′(u)‖(Lp)′ ≤

≤ limsup
n→∞

sup
‖v‖Lp≤1

∫

Ω

∣
∣
∂F
∂u

(x,u(x)+hn(x))−
∂F
∂u

(x,u(x))
∣
∣ |v(x)| dx

≤ limsup
n→∞

(
∫

Ω

∣
∣
∂F
∂u

(x,u(x)+hn(x))−
∂F
∂u

(x,u(x))
∣
∣p

′
dx
) 1

p′

= 0.

In particular, limsup and liminf coincide. We have proved that for every sequence
(hn) ⊂ Lp(Ω ;Rm) converging to 0 there exists a subsequence (which we denote
again by(hn)) such that

lim
n→∞

‖F ′(u+hn)−F
′(u)‖(Lp)′ = 0.

An argument by contradiction, as it was already used in this proof, implies thatF ′

is continuous.

4.5 Origins of the Laplace operator

... et j’ose me flatter de présenter aux géomètres, dans cet Ouvrage, une théorie des attrac-
tions des sphéroı̈des et de la figure des planètes plus générale et plus simple que celles qui
sont déjà connues.1

Pierre Simon de Laplace, 1785

In this short section, we try to describe the context in whichthe so-called Laplace
operator and Laplace’s equation appeared for the first time.As we already indicated,
the Laplace operator arises in many partial differential equations describing various
physical problems. One such physical problem is the problemof attraction of
masses and Newton’s gravitational force.

In 1785, in his memoirThéorie des attractions des sphéröıdes et de la figure
des plaǹetes2, Pierre Simon de Laplace describes the gravitational forces induced
by mass distributions concentrated on spheroids (closed surfaces in the space), in
particular by planets. It had been known that the gravitational force induced by a
mass distribution is a vector field which is the gradient of a so-called potential.

... the recognition that a function exists which is a potential for the Newtonian gravitational
force appeared first in Lagrange’s 1773/1774 memoirSur l’équation séculaire de la lunein

1 Oeuvres complètes de Laplace. Tome 10 / publiées sous les auspices de l’Académie des sciences,
par MM. les secrétaires perpétuels – Gauthier-Villars (Paris) - 1878–1912. See the memoirThéorie
des attractions des sphéroı̈des et de la figure des planètes on page 341. It is for us difficult to
translate the beginning of the citation, but a translation could be: ... and I dare to be proud to
present to the geometers, in this work, a theory of attractions of spheroids and of the shape of the
planets which is more general and simpler than those which are already known.
2 Op. cit., pages 341–.
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which it seems to serve principally as a convenient method for calculating the components
of force in various coordinate systems. In 1777, Lagrange devoted a short paper to some of
the properties of potential functions, including an application to the question of replacing
a system of bodies by the centre of mass of the system for the purposes of calculating their
motions.3

The gravitational potential, denoted byV in Laplace’s memoir, can be obtained
by integrating the potential of a point mass over the mass distribution. The
representation of the gravitational potential in this formallows one to consider very
general mass distributions, in particular mass distributions on arbitrary spheroids,
not only round spheres or other regular surfaces. This is an advantage compared to
earlier works on celestial mechanics, as Laplace remarks inhis introduction.

Considering spherical coordinates(r,ϕ ,θ ) and putting cosθ = µ , Laplace ob-
tains the equation4

∂
∂ µ

[(1− µ2)
∂V
∂ µ

]+
1

1− µ2

∂ 2V
∂ϕ2 + r

∂ 2(rV )

∂ r2 = 0,

which is the so-calledLaplace equationfor the gravitational potential

∆V = 0

in spherical coordinates.

In a later memoir from 1789 on Saturn rings5, Laplace writes the above equation
in cartesian coordinates. He writes:

V est la somme des molécules du sphéroı̈de divisées par leurs distances respectives au
point attiré m ; pour avoir l’attraction du sphéroı̈de surce point parallèlement à une droite
quelconque, il faut donc considérer V comme une fonction detrois coordonnées rectangles
dont l’une soit parallèle à cette droite, et différentier cette fonction relativement à cette
coordonnée : le coefficient de la différentielle de la coordonnée, pris avec un signe contraire,
sera la valeur de l’attraction du sphéroı̈de décomposéeparallèlement à la droite donnée et
dirigée vers l’origine de la coordonnée qui lui est parallèle.

Si l’on représent parβ la fonction

1
√

(x−x′)2 +(y−y′)2 +(z−z′)2
,

on aura
V =

∫

β ρ dx′ dy′ dz′.

3 Jahnke, H. N. (Ed.). :A history of analysis. Vol. 24 of History of Mathematics. American Math-
ematical Society, Providence, RI, 2003, p. 198.
4 Oeuvres complètes de Laplace. Tome 10. Op. cit., page 362. We denote the spherical coordinates
slightly differently.
5 Oeuvres complètes de Laplace. Tome 11 / publiées sous les auspices de l’Académie des sciences,
par MM. les secrétaires perpétuels – Gauthier-Villars (Paris) - 1878–1912. See theMémoire sur la
théorie de l’anneau de Saturne.
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... Mais il est facile de s’assurer, par la différentiation, que l’on a

0 =
∂ 2β
∂x2 +

∂ 2β
∂y2 +

∂ 2β
∂z2 ;

on aura donc pareillement

0 =
∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂z2 .

Cette équation, rapportée à d’autres coordonnées, estla base de la théorie que j’ai
présentée dans nosMémoiresde 1782 sur les attractions des sphéroı̈des et sur la figure
des planètes.6

The english translation is taken from [Jahnke (2003), pages198-199]:

V is the sum of the molecules of the spheroid divided by their respective distances to the
attracted point. To find the attraction of the spheroid on this point parallel to a given line,
one must therefore consider V as a function of three rectangular coordinates of which one
is parallel to this line, and differentiate this function with respect to this coordinate. The
differential coefficient of the coordinate, taken with the opposite sign, is the value of the
component of the attraction of the spheroid parallel to the given line and directed toward
the origin of the coordinate which is parallel to it.

If we represent byβ the function

1
√

(x−x′)2 +(y−y′)2 +(z−z′)2
,

[β is the graviational potential of a mass point] then we obtain

V =
∫

β ρ dx′ dy′ dz′.

[ρ is the density]... But it is easy to verify by differentiation that we have

0 =
∂ 2β
∂x2 +

∂ 2β
∂y2 +

∂ 2β
∂z2 ;

likewise we have

0 =
∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂z2 .

Our translation of the last sentence of the french quotationis

This equation, given in different coordinates, is the basisof the theory which I presented in
our Mémoiresfrom 17827 on the attraction of the spheroids and of the shape of the planets.

Laplace’s memoirs from 1785 and 1789 are perhaps the first occasions on which
Laplace’s equation and the Laplace operator appear. The fact that graviational
potentialsV satisfy Laplace’s equation is a direct consequence of the fact that the
potentialβ satisfies Laplace’s equation; this may be checked by a straightforward
calculation. Note that the functionβ is, up to a constant, the so-called fundamental

6 Oeuvres complètes de Laplace. Tome 11. Op. cit., pages 277–278.
7 The memoirThéorie des attractions ...was submitted to the Académie des Sciences in 1782, and
published in 1785.
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solution of Laplace’s equation.

In the following, when studying the problem of heat conduction, we shall see
how the Laplace operator appears as a consequence of Lemma 1.3, Fourier’s law
and the Divergence theorem (Theorem F.6). We shall see that the problem of heat
conduction leads to Laplace’s equation, too, if the heat conduction is stationary
(constant in time); the unkown functionV then represents the heat density.

4.6 Exercises

4.1.Show that every functionu∈ C1
c(Ω) (Ω ⊆ Rd open) vanishes in a neighbour-

hood of the boundary∂Ω .

4.2.Let D
Ω ∆ be the Dirichlet-Laplace operator onL2(Ω), and let f ∈ L2(Ω). Show

thatu∈ H1
0(Ω) is a weak solution of the elliptic boundary value problem

{
−∆u = f in Ω ,

u = 0 on∂Ω ,

if and only if u∈ D(D
Ω ∆) and

− D
Ω ∆u = f .

4.3 (The Neumann-Laplace operator on a bounded interval).Consider the
Sobolev spaceV = H1(0,1) and the quadratic formE : H1(0,1) → R given by

E (u) =
1
2

∫ 1

0
(u′)2.

Compute the gradient∇L2E with respect to the usual inner product inH = L2(0,1).
More precisely, show that

D(∇L2E ) = {u∈ H2(0,1) : u′(0) = u′(1) = 0},
∇L2E (u) = −u′′.

Hint. One may use, without proof, the formula of integration by parts
∫ 1

0 vw′ =

v(1)w(1) − v(0)w(0) − ∫ 1
0 v′w for functions v, w ∈ H1(0,1). The inclusion

D(∇L2E ) ⊂ H2(0,1) is shown similarly as in Section 3.4. In order to show that
everyu∈ D(∇L2E ) satisfies the boundary conditionsu′(0) = u′(1) = 0, use special
“test functions”ϕ ∈ H1(0,1).
Remark. We call N

(0,1)∆ := −∇L2E the Neumann-Laplace operatoron L2(0,1).

Solving the equation− N
(0,1)∆u= f is equivalent to solving the boundary value prob-

lem
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u∈ H2(0,1),

−u′′(x) = f (x) for x∈ (0,1),

u′(0) = u′(1) = 0.

(4.6)

The boundary conditionsu′(0) = 0 andu′(1) = 0 are called Neumann boundary
conditions or no-flux boundary conditions.

4.4 (An Ornstein-Uhlenbeck operator with Dirichlet boundary conditions). Let
Ω ⊆Rd be an open set, and letB : Ω →R be a bounded, continuously differentiable
function with bounded gradient∇B. Consider the quadratic formE : H1

0(Ω) → R

given byE (u) = 1
2

∫

Ω |∇u|2e−B, and let∇HE be its gradient with respect to the
inner product〈v,w〉H =

∫

Ω vwe−B. Show thatH2(Ω)∩H1
0(Ω)⊆ D(∇HE ), and that

for everyu∈ H2(Ω)∩H1
0(Ω) one has∇HE (u) = −∆u+ ∇B∇u.

Hint. You may use, without proof, the product rule∂∂xi
(vw) = ∂v

∂xi
w+v ∂w

∂xi
for v∈

H1(Ω), w∈C1(Ω).

4.5.Let E : V → R be a quadratic form on a Banach spaceV which embeds densely
and continuously into a Hilbert spaceH. Show that the gradient∇HE is a symmetric
operator onH, that is, for everyu, v∈ D(∇HE ) one has

〈∇HE (u),v〉H = 〈u,∇HE (v)〉H .

4.6. a) LetF : (0,1)×R→R be a continuously differentiable function satisfying
the hypotheses of Theorem 4.3 for somep > 1, and let f (x,u) := ∂F

∂u (x,u).
Show that the functionE : H1

0(0,1) → R given by

E (u) =
∫ 1

0

[1
2
(u′)2 +F(·,u)

]

is continously differentiable and compute the gradient with respect to the usual
inner product inL2(0,1). More precisely, show that

D(∇L2E ) = H2(0,1)∩H1
0(0,1),

∇L2E (u) = −u′′+ f (·,u).

b) Let F and f be as in (a), and let furtherm∈ L∞(0,1) be a positive function
such that1

m ∈ L∞(0,1). Find a Banach spaceV, a functionE : V → R and a
Hilbert spaceH such thatV →֒ H and

D(∇HE ) = H2(0,1)∩H1
0(0,1),

∇HE (u) = −mu′′ + f (·,u).

4.7 (The Dirichlet-Laplace operator).

a) (Poincaré’s inequality).Show that〈u,v〉H1
0

=
∫ 1

0 u′v′ defines an inner product

on H1
0(0,1) which is equivalent to the usualH1 inner product〈·, ·〉H1 (that
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is, the corresponding norms are equivalent). Note that it suffices to prove that
there exists a constantλ > 0 such that

λ
∫ 1

0
u2 ≤

∫ 1

0
(u′)2 for everyu∈ H1

0(0,1).

Hint. Prove this inequality first foru∈C1
c(0,1).

b) On the spaceV = H2(0,1)∩H1
0(0,1) we consider the quadratic formE : V →

R given byE (u) = 1
2

∫ 1
0 (u′′)2. Compute the gradient ofE with respect to the

inner product〈·, ·〉H1
0

defined in (a). More precisely, show that

D(∇H1
0
E ) = {u∈ H3(0,1)∩H1

0(0,1) : u′′ ∈ H1
0(0,1)},

∇H1
0
E (u) = −u′′.

Hint. One may use the following two facts: first, for everyψ ∈C1
c(0,1) there

exists a (unique) solution of the problem






ϕ ∈C2([0,1]),

−ϕ ′′(x) = ψ(x) for x∈ (0,1),

ϕ(0) = ϕ(1) = 0.

Note thatϕ ∈V. Second, ifv, w∈ L1(0,1) and if
∫ 1

0 vψ =
∫ 1

0 wψ for everyψ ∈
C1

c(0,1), thenv = w. The first fact may be proved by integrating the equation
−ϕ ′′ = ψ twice and adjusting constants. For the second fact, see Lemma G.4.

4.8. a) Let A : R
d → R

d be a linear mapping and assume thatA = ∇HE is the
gradient of a quadratic formE : Rd → R with respect to an inner product
〈·, ·〉H . Show that the spectrum ofA (considered also as a linear mappingCd →
Cd) is real, that is, wheneverAu = λu for someλ ∈ C and some nonzero
u∈ Cd, thenλ ∈ R.

b) (The damped mathematical pendulum).Let α, β > 0. Show that the ordi-
nary differential equation of the damped mathematical pendulum

u̇1−u2 = 0

u̇2 + αu2+ β u1 = 0

is not a gradient system of the form ˙u+ ∇HE (u) = 0 if α < 2
√

β (that is, if
the damping is weak).
Remark. By changing Exercise 2.3 in an appropriate way, one can show
that the damped mathematical pendulum is a gradient system of the form
u̇+ ∇gE (u) = 0, at least onR2\ {0}.



Lecture 5
Bochner-Lebesgue and Bochner-Sobolev spaces

This lecture on integration theory is a short introduction to the Bochner integral
of Banach space-valued functions, to Bochner-Lebesgue spaces and to Bochner-
Sobolev spaces. These notions are necessary notions in order to study abstract
differential equations in Banach spaces and, in particular, gradient systems in
Banach spaces; the solutions of such abstract differentialequations naturally live
in Bochner-Lebesgue or Bochner-Sobolev spaces of Banach space-valued functions.

We suppose that the reader is familiar with the Lebesgue integral of real-valued
functions. While it is then relatively straightforward to define integrals, Lebesgue
and Sobolev spaces of functions with values inRd – by reducing everything to the
components of such functions – the situation is a priori lessclear if one considers
functions with values in general Banach spaces. Should one argue componentwise,
which means here, ifu : Ω → X is a function with values in a Banach space
X, to reduce everything to the scalar-valued case by considering the functions
〈x′,u〉X′ ,X with x′ ∈ X′? This seems to be one possibility, and if properly done, it
leads to the definition of the so-called Pettis integral. Forour purposes, however,
we follow another strategy by repeating the ideas of the Lebesgue integral for
functions with values in Banach spaces (notion of step function, measurability,
integrability, integral). This leads to the definition of the Bochner integral which
shares many properties of the Lebesgue integral, to Bochner-Lebesgue spaces and
to Bochner-Sobolev spaces.

Here and throughout, we consider only open subsets inRd with the Lebesgue
measure as measure spaces, but most of the results on the Bochner integral and
Bochner-Lebesgue spaces remain true for general measure spaces. We take the op-
portunity to prove some results for Bochner-Sobolev spacesof functions defined on
intervals – which are equally true for functions with valuesin Banach spaces and
for scalar-valued functions –, which were not proved in Lecture 3.

55
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5.1 The Bochner integral

Let X be a real Banach space with norm‖ ·‖, let Ω ⊆Rd be an open set, and denote
by A the Lebesgueσ -algebra onΩ , that is, the smallestσ -algebra which contains
the Borelσ -algebra (generated by the open sets) and all subsets of setsof Lebesgue
measure zero. The Lebesgue measure onΩ is denoted byµ .

A function f : Ω →X is calledstep function, if there exists a sequence(An)⊆A

of mutually disjoint Lebesgue measurable sets and a sequence (xn) ⊂ X such that
f = ∑n1Anxn, where 1A denotes the characteristic function of the setA. A function
f : Ω → X is mesurable, if there exists a sequence( fn) of step functionsfn : Ω →
X such thatfn → f pointwise almost everywhere. Note that in the caseX = R,
this definition of measurability is equivalent to the one which says that preimages
of measurable sets should be measurable. With the definitionof measurability, the
proofs of the statements (a)-(e) in the following lemma are straightforward.

Lemma 5.1.Let X and Y be two real Banach spaces.

a) Every continuous function f: Ω → X is measurable.

b) If f : Ω → X is measurable, then‖ f‖ : Ω → R is measurable.

c) If f : Ω → X is measurable and if g: X →Y is continuous, then the composite
function g◦ f : Ω →Y is measurable.

d) If f : Ω → X and g: Ω → R are measurable, then the product f g: Ω → X is
measurable.

e) If f : Ω → X and g: Ω → X′ are measurable, then the product〈g, f 〉X′ ,X :
Ω → R is measurable.

f) If ( fn) is a sequence of measurable functionsΩ → X such that fn → f point-
wise almost everywhere, then f is measurable.

The statement (f) may be obtained as a consequence of the correspond-
ing statement withX = R and the following theorem which due to Pettis; see
[Hille and Phillips (1957), Theorem 3.5.3].

Theorem 5.2 (Pettis).A function f : Ω → X is measurable if and only if〈x′, f 〉 is
measurable for every x′ ∈ X′ (we say that f isweakly measurable) and there exists
a Lebesgue null set N∈ A such that f(Ω \N) is separable.

We say that a functionf : Ω → X is integrable if f is measurable and
∫

Ω ‖ f‖ <
∞, that is, if f is measurable and the positive function‖ f‖ : Ω → R is integrable
in the usual Lebesgue sense. For every integrablestep function f: Ω → X, f =

∑n1Anxn, we define the(Bochner) integral
∫

Ω
f dµ := ∑

n
µ(An)xn.

The series∑n µ(An)xn converges absolutely and the limit is independent of the rep-
resentation off , as one can easily show. Hence, the Bochner integral for integrable
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step functions is well defined; the integral
∫

Ω f dµ is an element ofX. For every
integrable functionf : Ω → X we define the(Bochner) integral

∫

Ω
f dµ := lim

n→∞

∫

Ω
fn dµ ,

where( fn) is any sequence of step functionsΩ →X such that‖ fn‖ ≤ ‖ f‖ and fn →
f pointwise almost everywhere. We note without proof that such a sequence( fn)
always exists, that the step functionsfn are integrable, that the limit of the integrals
∫

Ω fn dµ exists and that the limit is independent of the choice of the sequence( fn).
The Bochner integral is therefore a natural generalizationof the Lebesgue integral
of a scalar-valued function. The Bochner integral enjoys many properties known
from the Lebesgue integral. For example, the triangle inequality

∥
∥

∫

Ω
f dµ

∥
∥≤

∫

Ω
‖ f‖ dµ

is true. Lebesgue’s dominated convergence theorem holds true, too.

Theorem 5.3 (Lebesgue, dominated convergence).Let ( fn) be a sequence of in-
tegrable functionsΩ → X and let f : Ω → X be a function. Suppose that there
exists an integrable function g: Ω → R such that‖ fn‖ ≤ g for every n and fn → f
pointwise almost everywhere. Then f is integrable and

∫

Ω
f dµ = lim

n→∞

∫

Ω
fn dµ .

It is easy to prove that the Bochner integral is linear in the following sense.

Lemma 5.4 (Linearity of the Bochner integral).

a) For every integrable f , g: Ω → X the sum f+g is integrable and
∫

Ω
( f +g) dµ =

∫

Ω
f dµ +

∫

Ω
g dµ .

b) For every integrable f: Ω → X and every linear continuous T: X → Y the
function T f : Ω →Y is integrable and

∫

Ω
T f dµ = T

∫

Ω
f dµ .

We also use the following notation for the Bochner integral:
∫

Ω
f or

∫

Ω
f (t) dµ(t),

and ifΩ = (a,b) is an interval inR, then we write

∫ b

a
f or

∫ b

a
f (t) dµ(t) or

∫ b

a
f (t) dt
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for the Bochner integral of an integrable functionf : (a,b) → X.

5.2 Bochner-Lebesgue spaces

For every measurable functionf : Ω → X and every 1≤ p < ∞ we put

‖ f‖Lp :=
(
∫

Ω
‖ f‖p dµ

)1/p
.

We also put
‖ f‖L∞ := inf{C≥ 0 : µ({‖ f‖ ≥C}) = 0}.

For every 1≤ p≤ ∞ we then define

L
p(Ω ;X) := { f : Ω → X measurable :‖ f‖Lp < ∞}.

Similarly as in the scalar case, one can show thatL p(Ω ;X) is a vector space and
that‖ · ‖Lp is a seminorm onL p(Ω ;X). If we let

Np := { f ∈ L
p(Ω ;X) : ‖ f‖Lp = 0}

= { f ∈ L
p(Ω ;X) : f = 0 almost everywhere}

then the quotient space

Lp(Ω ;X) := L
p(Ω ;X)/Np := { f +Np : f ∈ L

p(Ω ;X)}

becomes a Banach space for the norm

‖[ f ]‖Lp := ‖ f‖Lp ([ f ] = f +Np).

The norm of the equivalence class[ f ] is well defined, that is, it is independent of
the representativef in this class. We call the spacesLp(Ω ;X) Bochner-Lebesgue
spaces. As in the scalar case, we identifyfunctions f∈ L p(Ω ;X) with theirequiv-
alence classes[ f ] ∈ Lp(Ω ;X), and we say thatLp is a function space. In particular,
we identify two functions if they are equal almost everywhere.

If Ω = (a,b) is an interval inR we simply write

Lp(a,b;X) := Lp((a,b);X).

For boundedΩ ⊆ Rd and if 1≤ q≤ p≤ ∞ we have the inclusions

C(Ω̄ ;X) ⊆ L∞(Ω ;X) ⊆ Lp(Ω ;X) ⊆ Lq(Ω ;X) ⊆ L1(Ω ;X),

as can be easily proved by using Hölder’s inequality. In particular, if Ω is bounded
and f is continuous on the closurēΩ , then f belongs toLp(Ω ;X) for every 1≤ p≤
∞.
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Let us collect some results (without proof) about Bochner-Lebesgue spaces
which are used in following lectures.

Theorem 5.5.If 1≤ p < ∞ and if X is separable, then Lp(Ω ;X) is separable. More
precisely, whenever(hn) ⊆ Lp(Ω) and(xn) ⊆ X are two dense sequences, then

F := { f : Ω → X : f = hnxm for some n, m∈ N}

is countable and total in Lp(Ω ;X), that is,spanF is dense in Lp(Ω ;X).

Let 1≤ p≤ ∞ and letp′ = p
p−1 be the conjugate exponent (with usual interpreta-

tions if p = 1 or p = ∞). By Hölder’s inequality, for everyf ∈ Lp(Ω ;X) and every
g∈ Lp′(Ω ;X′) the function〈 f ,g〉X,X′ is integrable and

∣
∣

∫

Ω
〈 f ,g〉X,X′

∣
∣≤ ‖ f‖Lp(Ω ;X) ‖g‖Lp′ (Ω ;X′).

Moreover,

‖g‖Lp′ = sup
‖ f‖Lp≤1

∣
∣

∫

Ω
〈 f ,g〉X,X′

∣
∣.

Thus, similarly as in the scalar case, we may identifyLp′(Ω ;X′) with a closed sub-
space ofLp(Ω ;X)′. The linear mapping which maps everyg ∈ Lp′(Ω ;X′) to the
continuous linear formf 7→ ∫

Ω 〈 f ,g〉 is, as in the scalar case, an isometry. However,
and this is different to the scalar case, this mapping is in general not surjective, even
if p < ∞. The usual identificationLp(Ω)′ ∼= Lp′(Ω) (for p < ∞) is no longer true
for general Bochner-Lebesgue spaces, that is, we do not havea full identification of
the dual space ofLp(Ω ;X) in terms of the Bochner integral and Bochner-Lebesgue
spaces. However, the following results are true; for the proof of the first two state-
ments, see [Diestel and Uhl (1977)], the third statement is an easy exercise.

Theorem 5.6. a) If 1≤ p < ∞ and if X is reflexive, then Lp(Ω ;X)′ ∼= Lp′(Ω ;X′).

b) If 1 < p < ∞ and if X is reflexive, then the space Lp(Ω ;X) is reflexive, too.

c) If H is a Hilbert space, then the space L2(Ω ;H) is a Hilbert space for the
inner product

〈 f ,g〉L2(Ω ;H) :=
∫

Ω
〈 f ,g〉H , f , g∈ L2(Ω ;H).

5.3 Bochner-Sobolev spaces in one space dimension

Let X be a real Banach space,−∞ ≤ a < b≤ ∞, andp∈ [1,∞]. The firstBochner-
Sobolev spaceis the space
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W1,p(a,b;X) := {u∈ Lp(a,b;X) : there existsv∈ Lp(a,b;X) such that for

everyϕ ∈C1
c(a,b) one has

∫ b

a
uϕ ′ = −

∫ b

a
vϕ}.

By Lemma G.4, the functionv is uniquely determined, if it exists. We writeu′ := v
and we callu′ theweak derivativeof u. The spacesW1,p(a,b;X) are Banach spaces
for the norms

‖u‖W1,p :=
(
‖u‖p

Lp +‖u′‖p
Lp

) 1
p if 1 ≤ p < ∞, and

‖u‖W1,∞ := sup{‖u‖L∞ ,‖u′‖L∞}.

The linear mapping

T : W1,p(a,b;X) → Lp(a,b;X)×Lp(a,b;X), u 7→ (u,u′),

shows thatW1,p(a,b;X) is isomorphic to a closed subspace ofLp(a,b;X) ×
Lp(a,b;X). From this and from Theorems 5.5 and 5.6 we immediately obtain the
following properties of Bochner-Sobolev spaces.

Theorem 5.7. a) If 1≤ p < ∞ and if X is separable, then W1,p(a,b;X) is sepa-
rable.

b) If 1 < p < ∞ and if X is reflexive, then the space W1,p(a,b;X) is reflexive, too.

c) If H is a Hilbert space, then the space H1(a,b;H) :=W1,2(a,b;H) is a Hilbert
space for the inner product

〈u,v〉H1(a,b;H) :=
∫ b

a
〈u,v〉H +

∫ b

a
〈u′,v′〉H , u, v∈ H1(a,b;H).

In the rest of this section, we prove the analog of Theorem 3.3and a little bit
more.

Lemma 5.8.Let u∈ W1,p(a,b;X) be such that u′ = 0. Then u is constant almost
everywhere.

Proof. Chooseψ ∈ C1
c(a,b) such that

∫ b
a ψ = 1. Then, for everyϕ ∈ C1

c(a,b),
the functionϕ − (

∫ b
a ϕ)ψ is the derivative of a function inC1

c(a,b) since
∫ b

a (ϕ −
(
∫ b

a ϕ)ψ) = 0. Hence, by assumption and by definition of the weak derivative,

0 =

∫ b

a
u(ϕ − (

∫ b

a
ϕ)ψ) for everyϕ ∈C1

c(a,b).

If we putc :=
∫ b

a uψ ∈ X, then the preceding equality becomes

∫ b

a
(u−c)ϕ = 0 for everyϕ ∈C1

c(a,b).

By Lemma G.4,u = c almost everywhere.
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Lemma 5.9.Let (a,b) be a bounded interval, t0 ∈ [a,b], g∈ Lp(a,b;X), and set

u(t) :=
∫ t

t0
g(s) ds for every t∈ [a,b].

Then u∈W1,p(a,b;X) and u′ = g.

Proof. Let ϕ ∈C1
c(a,b). Then, by Fubini’s theorem,

∫ b

a
uϕ ′ =

∫ b

a

∫ t

t0
g(s) dsϕ ′(t) dt

=
∫ t0

a

∫ t

t0
g(s) dsϕ ′(t) dt+

∫ b

t0

∫ t

t0
g(s) dsϕ ′(t) dt

= −
∫ t0

a

∫ s

a
ϕ ′(t) dtg(s) ds+

∫ b

t0

∫ b

s
ϕ ′(t) dtg(s) ds

= −
∫ t0

a
ϕ(s)g(s) ds−

∫ b

t0
ϕ(s)g(s) ds

= −
∫ b

a
gϕ .

Theorem 5.10.Let (a,b) be a bounded interval and u∈ W1,p(a,b;X). Then there
exists a continuous functioñu : [a,b]→X, which coincides with u almost everywhere
and such that for every s, t∈ [a,b]

ũ(t)− ũ(s) =

∫ t

s
u′(r) dr.

Proof. Fix t0 ∈ (a,b) and setv(t) :=
∫ t
t0

u′(s) dsfor everyt ∈ [a,b]. Clearly, the func-

tion v is continuous. By Lemma 5.9,v∈W1,p(a,b;X) andv′ = u′. By Lemma 5.8,
u−v = c almost everywhere for some constantc∈ X. This proves thatu coincides
almost everywhere with the continuous function ˜u = v+c, and that

ũ(t)− ũ(s) = v(t)−v(s) =
∫ t

s
u′(r) dr.

Due to Theorem 5.10, we may identify every functionu∈W1,p(a,b;X) with its
continuous representative ˜u, and we simply say that every function inW1,p(a,b;X)
is continuous. We state this in the following form.

Theorem 5.11 (Sobolev embedding theorem).Let (a,b) be a bounded interval.
Then W1,p(a,b;X) is contained in C([a,b];X) and there exists a constant C≥ 0
such that

‖u‖L∞ ≤C‖u‖W1,p for every u∈W1,p(a,b;X).

Proof. The fact that every functionu ∈ W1,p(a,b;X) is continuous on[a,b] fol-
lows from Theorem 5.10. The boundedness of the identity mappingW1,p(a,b;X)→
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C([a,b];X), u 7→ u may be seen as a consequence of the closed graph theorem. In
fact, if un → u in W1,p(a,b;X) andun → v in C([a,b];X), then, since both spaces
are continuously embedded intoLp(a,b;X), un → u andun → v in Lp(a,b;X). By
uniqueness of the limit, this is only possible ifu = v. Hence, the identity mapping is
closed.

Theorem 5.12 (Product rule, integration by parts).Let(a,b) be a bounded inter-
val, fix1≤ p≤ ∞, and let u∈W1,p(a,b;X) and v∈W1,p(a,b).

a) (Product rule). The product uv belongs to W1,p(a,b;X) and

(uv)′ = u′v+uv′.

b) (Integration by parts).

∫ b

a
u′v = u(b)v(b)−u(a)v(a)−

∫ b

a
uv′.

For every 1≤ p ≤ ∞ and everyk ≥ 2 we define inductively thek-th Bochner-
Sobolev spaces

Wk,p(a,b;X) := {u∈W1,p(a,b;X) : u′ ∈Wk−1,p(a,b;X)},

which are Banach spaces for the norms

‖u‖Wk,p :=
( k

∑
j=0

‖u( j)‖p
Lp

) 1
p if 1 ≤ p < ∞, and

‖u‖W1,∞ := sup{‖u‖L∞,‖u′‖L∞ , . . . ,‖u(k)‖L∞},

If H is a Hilbert space, thenHk(a,b;H) := Wk,2(a,b;H) is a Hilbert space for the
inner product

〈u,v〉Hk :=
k

∑
j=0

〈u( j),v( j)〉L2.

Finally, we define

W1,p
0 (a,b;X) := C1

c(a,b;X)
‖·‖W1,p

,

and we putH1
0(a,b;H) := W1,2

0 (a,b;H).

Theorem 5.13.Let (a,b) be a bounded interval. A function u∈ W1,p(a,b;X) be-
longs to W1,p

0 (a,b;X) if and only if u(a) = u(b) = 0.

Proof. The “only if” part is a consequence of the definition ofW1,p
0 (a,b;X) and

the Sobolev embedding theorem (Theorem 5.11). The less obvious “if” part is left
without proof.
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Theorem 5.14 (Poincaŕe’s inequality). Let (a,b) be a bounded interval and1 ≤
p < ∞. Then there exists a constantλ > 0 such that

λ
∫ b

a
‖u‖p ≤

∫ b

a
‖u′‖p for every u∈W1,p

0 (a,b;X).

Proof. Let u∈C1
c(a,b;X). Then

∫ b

a
‖u(t)‖p dt =

∫ b

a

∥
∥

∫ t

a
u′(s) ds

∥
∥p

dt

≤
∫ b

a

(
∫ t

a
‖u′(s)‖ ds

)p
dt

≤
∫ b

a
(t −a)p−1

∫ t

a
‖u′(s)‖p ds dt

≤ (b−a)p−1
∫ b

a

∫ b

a
‖u′(s)‖p ds dt

= (b−a)p
∫ b

a
‖u′(s)‖p ds.

This calculation yields Poincaré’s inequality for everyu ∈ C1
c(a,b;X) with λ =

(b−a)−p. Since, by definition,C1
c(a,b;X) is dense inW1,p(a,b;X), the full claim

may be obtained by an approximation argument.

5.4 Exercises

5.1.Prove Theorem 5.12.
Hint. Prove the statement first foru∈W1,p(a,b;X) andv∈C1([a,b]).

5.2.Let X andY be two Banach spaces such thatY is continuously embedded into
X. Fix p∈ [1,∞) and let

W = W1,p(0,1;X)∩Lp(0,1;Y)

be equipped with the norm

‖u‖p
W

= ‖u‖p
Lp(0,1;Y)

+‖u′‖p
Lp(0,1;X)

,

so thatW is a Banach space. We recall from Theorem 5.10 that every function
u∈ W is continuous with values inX.

a) Show that the spaceW0 := {u∈ W : u(0) = 0} is a closed subspace ofW .

b) Show that thetrace space

Tr := {x∈ X : there existsu∈ W such thatu(0) = x}
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equipped with the norm

‖x‖Tr := inf{‖u‖W : u∈ W andu(0) = x}

is a Banach space.
Hint. Find a natural bijectionW /W0 → Tr.

c) Show thatY ⊆ Tr ⊆ X and that the embeddings are continuous.

d) Show that ifX andY are Hilbert spaces and ifp= 2, thenTr is a Hilbert space.

e) Show that
W ⊆C([0,1];Tr)

with continuous embedding.

Remark. The trace spaceTr is also denoted by(X,Y) 1
p′ ,p

(with p′ = p
p−1).

It is a particular example in the scale of so-calledreal interpolation spaces
(X,Y)θ ,p which can be defined similarly by considering weightedLp spaces,
[Lunardi (1995)]. In general,Tr is a strict subspace ofX, so that the embedding
from (e) is not a direct consequence of the Sobolev embeddingtheorem 5.11.

5.3.Let Ω ⊆ Rd be open and bounded, and letp∈ [1,∞).

a) Show that the mapping

J : C([0,1];C(Ω̄)) → C([0,1]× Ω̄)

given by(Ju)(t,x) = u(t)(x) ((t,x) ∈ [0,1]× Ω̄) is bijective.

b) Show that for everyu∈C([0,1];C(Ω̄)) one has

‖u‖Lp(0,1;Lp(Ω)) = ‖Ju‖Lp((0,1)×Ω).

c) Using the fact thatCc(U) is dense inLp(U) wheneverU ⊆ R
m is open and

p < ∞ (Theorem G.3), show thatC([0,1];C(Ω̄)) is dense inLp(0,1;Lp(Ω)).

d) Conclude thatJ extends to an isometric isomorphismLp(0,1;Lp(Ω)) →
Lp((0,1)×Ω).

Remark. While the above isomorphy seems to be natural, it is not immediately
clear how to assign to a function (equivalence class)u∈ Lp(0,1;Lp(Ω)) a function
(equivalence class)Ju∈ Lp((0,1)×Ω). The direct definition(Ju)(t,x) = u(t)(x)
leads to the problem of measurability ofJu. One way to circumvent this problem of
measurability is the way described in this exercise.

5.4.Let X andY be two Banach spaces such thatY →֒ X andX′ →֒ Y′ (dense and
continuous embeddings), and letp∈ [1,∞). Show that every function

u∈W1,p(0,1;X)∩L∞(0,1;Y)

(admits a representative which) isweakly continuouswith values inY, that is, for
everyy′ ∈Y′ the function〈y′,u〉Y′,Y is continuous.



Lecture 6
Gradient systems in infinite dimensional spaces:
existence and uniqueness of solutions

In this lecture we consider gradient systems in infinite-dimensional spaces. Under
the assumption that the underlying energy is a convex function and under certain
other assumptions we obtain existence and uniqueness of solutions. The proof of
this key theorem (the proof of existence of a solution) is based on the so-called Ritz
/ Ritz-Galerkin / Faedo-Galerkin method. We see three advantages of this method.
First, it is constructive, and it is therefore particularlyinteresting from the point of
view of numerical analysis. Second, the method is intuitiveand the four important
steps of the proof are easy to remember (we hope that the reader agrees with this
opinion; we do not claim that the whole proof with all technical details is easy to
remember). Finally, we think that the method is efficient since it leads directly to a
maximal regularity result.

Throughout, letV be a Banach space with norm‖ · ‖V . Let U ⊆ V be an open
subset, and letE : U → R be a continuously differentiable function. In addition, let
H be a Hilbert space with inner product〈·, ·〉H , and assume thatV is densely and
continuously embedded intoH. The gradient∇HE : D(∇HE ) → H is defined as in
Lecture 3.

6.1 Gradient systems in infinite dimensional spaces

A non-autonomous1 gradient systemis a differential equation of the form

u̇+ ∇HE (u) = f , (6.1)

1 autonomous (greek: auto+nomos, nomos= law; http://www.thefreedictionary.
com/): not controlled by others or by outside forces; independent. Or: Independent of the laws
of another state or government; self-governing.

65
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whereE as above andf ∈ L2
loc(I ;H), I ⊆ R being an interval (the subscript means

that f is square integrable on every compact subinterval ofI ). We call this gradient
system non-autonomoussince the functionf depends explicitly on the time variable.

A solution of the gradient system (6.1) is a measurable functionu : I →V such
that

u∈W1,2
loc (I ;H)∩L∞

loc(I ;V),

u(t) ∈ D(∇HE ) for almost everyt ∈ I , and

the equality (6.1) holds almost everywhere onI .

This definition of solution may look arbitrary and is motivated mainly by the
existence and uniqueness result below, and by the energy inequality therein. We
point out that the solutions in the above sense are exactly the solutions which have
maximal possible regularity in the sense that ifu is a solution, then the two terms
on the left-hand side of (6.1) have the same regularity (local square integrability) as
the given right-hand side.

By the Sobolev embedding theorem (Theorem 5.11), every solution is continuous
with values inX; this will allow us to give a sense to the initial value problem in
Theorem 6.1. IfV = H is finite-dimensional and if∇HE is continuous (that is, if
E is continuously differentiable), then every solution in the above sense is also a
solution as defined in Lecture 1, and in particular as considered in Carathéodory’s
theorem (Theorem 2.6). Conversely, ifu is a solution in the sense of Lecture 1, then
u is a solution in the above sense. This follows from the fact that the composite
function∇HE (u) is, by continuity, locally square-integrable, that for every s, t ∈ I

u(t)−u(s)+
∫ t

s
∇HE (u(τ)) dτ =

∫ t

s
f (τ) dτ,

and from Lemma 5.9. Thus, in the finite-dimensional case, both notions of solutions
coincide.

By definition of the gradient,u is a solution of (6.1) if and only ifu∈W1,2(I ;H)∩
L∞(I ;V) and

〈u̇,v〉H +E
′(u)v = 〈 f ,v〉H for everyv∈V and almost everyt ∈ I . (6.2)

We call (6.2) thevariational form of the gradient system (6.1).

6.2 Global existence and uniqueness of solutions for gradient
systems with convex energy

Let E : V → R be a function. We say thatE is convexif
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E (λu+(1−λ )v)≤ λE (u)+ (1−λ )E (v) for everyu, v∈V, λ ∈ [0,1].

Moreover, we say thatE is coerciveif for every c∈ R the sublevel set

Kc = {u∈V : E (u) ≤ c} is bounded inV.

The following existence and uniqueness result for the gradient systems (6.1) with
initial value is the main result of this lecture and a key result in the study of gradient
systems. We say that it is aglobal existence result since the statement asserts exis-
tence of solutions on the whole interval on which the right-hand sidef is defined.
Note that this interval is bounded in the statement, that is,T < ∞.

Theorem 6.1.Suppose that V is a reflexive, separable Banach space, and suppose
that E : V → R is a convex, coercive, continuously differentiable function and that
E ′ maps bounded sets into bounded sets. Then, for every f∈ L2(0,T;H) (T < ∞)
and every u0 ∈V the gradient system with initial value

{
u̇+ ∇HE (u) = f ,

u(0) = u0,
(6.3)

admits a unique solution u∈W1,2(0,T;H)∩L∞(0,T;V). For this solution, and for
every t∈ [0,T], the energy inequality

∫ t

0
‖u̇‖2

H +E (u(t)) ≤ E (u0)+

∫ t

0
〈 f , u̇〉H (6.4)

holds true.

Uniqueness

Uniqueness of solutions is a consequence of differentiability and convexity ofE ,
and the following lemma.

Lemma 6.2.LetE : V → R be a differentiable, convex function on a Banach space
V. Then, for every u, v∈V,

〈E ′(u)−E
′(v),u−v〉V′,V ≥ 0.

Proof. By convexity, for everyu, v∈V and everyλ ∈ (0,1)

E (u+ λ (v−u))≤ (1−λ )E (u)+ λE (v).

Hence,
E (u+ λ (v−u))−E (u)

λ
≤ E (v)−E (u).

Letting λ → 0 in this inequality gives
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〈E ′(u),v−u〉V′,V ≤ E (v)−E (u).

Changing the roles ofu andv in this inequality gives

〈E ′(v),u−v〉V′,V ≤ E (u)−E (v).

Summing up the preceding two inequalities yields the claim.

Proof (Proof of Theorem 6.1 – Uniqueness).Let u1 andu2 be two solutions of (6.3).
Then, by Lemma 6.2, for almost everyt ∈ [0,T],

1
2

d
dt
‖u1(t)−u2(t)‖2

H = 〈u1(t)−u2(t), u̇1(t)− u̇2(t)〉H

= −〈u1(t)−u2(t),∇HE (u1(t))−∇HE (u2(t))〉H

= −〈u1(t)−u2(t),E
′(u1(t))−E

′(u2(t))〉V,V′

≤ 0.

As a consequence, for almost everyt ∈ [0,T],

‖u1(t)−u2(t)‖2
H ≤ ‖u1(0)−u2(0)‖2

H = 0,

and thereforeu1 = u2.

Existence

Existence of a solution of the gradient system (6.3) is proved by constructing a
sequence of solutions of approximating gradient systems onfinite-dimensional
spaces, by extracting a convergent subsequence, and by showing that the limit is a
solution we are looking for. For the existence part of the proof of Theorem 6.1, we
need the following two compactness results from functionalanalysis; see Theorems
E.18 and D.57. We recall the necessary notions of weak convergence and weak∗

convergence.

Given a Banach spaceX, we say that a sequence(un) ⊆ X converges weaklyto
an elementu ∈ X (and we writeun ⇀ u) if for every u′ ∈ X′ limn→∞〈u′,un〉X′,X =
〈u′,u〉X′,X. If X is a Hilbert space with inner product〈·, ·〉X , then, by the Riesz-
Fréchet representation theorem (Theorem D.53),un ⇀ u if and only if for every
v∈ X limn→∞〈un,v〉X = 〈u,v〉X.

Let X′ be the dual space ofX. We say that a sequence(u′n) ⊆ X′ converges

weakly∗ to an elementu′ ∈ X′ (and we writeu′n
weak∗
→ u′) if for every u ∈ X

limn→∞〈u′n,u〉X′ ,X = 〈u′,u〉X′,X .

Theorem 6.3. a) (Banach-Alaoglu). Let X be a separable Banach space. Then
every bounded sequence in X′ admits a weak∗ convergent subsequence.
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b) Every bounded sequence in a Hilbert space admits a weakly convergent sub-
sequence.

Proof (Proof of Theorem 6.1 – Existence).To prove existence of a solution, we use
the so called Ritz / Ritz-Galerkin / Faedo-Galerkin approximation. We consider a se-
quence of appropriate gradient systems on appropriate finite dimensional subspaces
of V, for which local existence is known. Then, by proving appropriate norm and
energy bounds, we show that the approximating problems admit global solutions.
The bounds for the solutions are also used to extract weak andweak∗ convergent
subsequences. Finally, we show that the weak limit is a solution of the gradient sys-
tem (6.3). It turns out that especially in the crucial step ofproving norm and energy
bounds, the gradient structure of our problem is particularly helpful.

Part 1 (Formulation of approximating problems in finite-dim ensional
spaces):Let (wn) be an arbitrary sequence inV such that span{wn : n≥ 1} is dense
in V; such a sequence exists becauseV is separable.

For everym∈ N, we put

Vm = span{wn : 1≤ n≤ m},

and we chooseum
0 ∈Vm such that

lim
m→∞

um
0 = u0 in V.

This is possible since
⋃

mVm is dense inV and sinceVm ⊆Vm+1.
For every m ∈ N, we consider the variational problem of findingum ∈

W1,2
loc ([0,Tm);Vm) such that







〈u̇m,v〉H +E ′(um)v = 〈 f ,v〉H

for everyv∈Vm and almost everyt ∈ (0,Tm),

um(0) = um
0 .

(6.5)

Problem (6.5) is equivalent to the problem of finding a solution um ∈
W1,2

loc ([0,Tm);Vm) of the non-autonomous gradient system

{
u̇m+ ∇HmEm(um) = Pm f

um(0) = um
0 ,

(6.6)

whereEm is the restriction ofE to Vm, Hm = Vm is equipped with the inner product
induced byH, ∇HmEm is the gradient ofEm in Vm with respect to the inner product
〈·, ·〉H , andPm : H → H is the orthogonal projection fromH ontoVm with respect to
the inner product〈·, ·〉H . SinceVm is finite dimensional, for everyu∈Vm the gradient
∇HmEm(u) exists and belongs toVm.

By the corollary to Carathéodory’s theorem (Corollary 2.8), problem (6.6)
admits a maximal solutionum ∈ W1,2

loc ([0,Tm);Vm) (remember that solutions in the
sense of Carathéodory’s theorem are weakly differentiable). Maximal solution



70 6 Gradient systems in infinite dimensional spaces: existence and uniqueness of solutions

means that eitherTm = T, or Tm < T and the solutionum can not be extended to any
larger interval. For everym∈ N, let um be a maximal solution of (6.6).

Part 2 (Bounds for the solutionsum of the approximating problems): We
show that the maximal solutionsum are global, that is,Tm = T, and that the
sequence(um) is bounded in appropriate function spaces. This part of the proof
essentially repeats arguments from the proof of Theorem 2.10.

We multiply the equation (6.6) by ˙um with respect to the inner product〈·, ·〉H (or:
we takev = u̇m in (6.5)), integrate the result over[0,t] (t ∈ (0,Tm)), and apply the
Cauchy-Schwarz inequality in order to obtain

∫ t

0
‖u̇m(s)‖2

H ds+E (um(t))−E (um
0 ) = (6.7)

=

∫ t

0
〈 f (s), u̇m(s)〉H ds

≤ 1
2

∫ t

0
‖ f (s)‖2

H ds+
1
2

∫ t

0
‖u̇m(s)‖2

H ds.

Since limm→∞ um
0 = u0 in V, and sinceE is continuous, we have limm→∞ E (um

0 ) =
E (u0). In particular, the sequence(E (um

0 )) is bounded. Hence, there exists a con-
stantC≥ 0 which is independent ofmsuch that, for everyt ∈ (0,Tm),

1
2

∫ t

0
‖u̇m(s)‖2

H ds+E (um(t)) ≤C+
1
2

∫ T

0
‖ f (s)‖2

H ds. (6.8)

The right-hand side of this inequality is independent ofm andt ∈ (0,Tm), and the
first term on the left-hand side is positive. This implies that the set{um(t) : m∈
N, t ∈ (0,Tm)} is contained in the sublevel setKc, wherec := C+ 1

2

∫ T
0 ‖ f (s)‖2

H ds.
By coercivity ofE , Kc is bounded inV, and therefore

sup
m∈N

sup
t∈[0,Tm)

‖um(t)‖V < ∞.

Since the continuous, convex, coercive functionE is bounded from below (see ex-
ercise!), we in addition deduce from the inequality (6.8) that

sup
m∈N

‖u̇m‖L2(0,Tm;H) < ∞.

SinceTm ≤ T is finite, this implies that for eachm∈ N the function ˙um is integrable
on [0,Tm). Hence,um extends to a continuous function on the closed interval[0,Tm],
and Carathéodory’s theorem and the definition of maximal solution imply that this
is only possible ifTm = T, that is, theum are global.

From the preceding two inequalities and the continuous embeddingV →֒ H we
obtain that

(um) is bounded inW1,2(0,T;H)∩L∞(0,T;V). (6.9)
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By assumption, the derivativeE ′ : V →V ′ maps bounded sets into bounded sets, so
that the boundedness of(um) in L∞(0,T;V) implies that

(E ′(um)) is bounded inL∞(0,T;V ′).

Part 3 (Extracting a convergent subsequence):The spaceW1,2(0,T;H) is
a Hilbert space and the spacesL∞(0,T;V) ∼= L1(0,T;V ′)′ and L∞(0,T;V ′) ∼=
L1(0,T;V)′ are dual spaces by reflexivity ofV (andV ′) and by Theorem 5.6. More-
over, the spacesL1(0,1;V ′) andL1(0,1;V) are separable by Theorem 5.5. Hence,
by Theorem 6.3, there existu∈W1,2(0,T;H), v∈ L∞(0,T;V), χ ∈ L∞(0,T;V ′) and
a subsequence of(um) (which we denote for simplicity again by(um)) such that

um ⇀ u in W1,2(0,T;H),

um
weak∗
→ v in L∞(0,T;V), and

E
′(um)

weak∗
→ χ in L∞(0,T;V ′).

We leave it as an exercise to show thatu∈ W1,2(0,T;H)∩L∞(0,T;V) andu = v.
Moreover, it is an exercise to show that every continuous linear operator between
two Hilbert spaces maps weakly convergent sequences into weakly convergent se-
quences. Since the operatorW1,2(0,T;H) → L2(0,T;H), u 7→ u̇ and the point eval-
uationsW1,2(0,T;H) → H, u 7→ u(0) andW1,2(0,T;H) → H, u 7→ u(T) are lin-
ear and continuous (for the continuity of the point evalutions, use the Sobolev
embedding theorem 5.11 in order to see this), the weak convergence of(um) in
W1,2(0,T;H) therefore implies

u̇m ⇀ u̇ in L2(0,T;H),

um(0) ⇀ u(0) in H and

um(T) ⇀ u(T) in H.

The above weak respectively weak∗ convergences in the respective function
spaces mean that

∫ T

0
〈v,um〉V ′,V →

∫ T

0
〈v,u〉V ′,V for everyv∈ L1(0,T;V ′),

∫ T

0
〈u̇m,v〉H →

∫ T

0
〈u̇,v〉H for everyv∈ L2(0,T;H), and (6.10)

∫ T

0
〈E ′(um),v〉V ′,V →

∫ T

0
〈χ ,v〉V′,V for everyv∈ L1(0,T;V).

Part 4 (Showing that the limit u is a solution): First of all, we have just seen
thatum(0) ⇀ u(0) in H. On the other hand,um(0) = um

0 by (6.5), andum
0 → u0 in V

by the choice of the sequence(um
0 ). SinceV is continuously embedded intoH, we

obtainu(0) = u0, that is,u satisfies the initial condition in (6.3). It remains to show
thatu satisfies also the differential equation.
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Let w ∈ Vm andϕ ∈ L2(0,T). For everyn ≥ m we multiply equation (6.6) by
ϕ(·)w with respect to the inner product〈·, ·〉H , integrate over(0,T) and obtain that

∫ T

0
〈u̇n(t),ϕ(t)w〉H dt+

∫ T

0
〈E ′(un(t)),ϕ(t)w〉V ′,V dt =

∫ T

0
〈 f (t),ϕ(t)w〉H dt.

Lettingn→ ∞ in this last equality and using (6.10), we obtain

∫ T

0
〈u̇(t),ϕ(t)w〉H dt+

∫ T

0
〈χ(t),ϕ(t)w〉V ′,V dt =

∫ T

0
〈 f (t),ϕ(t)w〉H dt.

Using the fact that{ϕ(·)w : w ∈
⋃

m

Vm, ϕ ∈ L2(0,T)} spans a dense subspace of

L2(0,T;V) (Theorem 5.5), we obtain for everyv∈ L2(0,T;V)

∫ T

0
〈u̇,v〉H dt+

∫ T

0
〈χ ,v〉V′,V dt =

∫ T

0
〈 f ,v〉H dt. (6.11)

It is left to show thatχ = E ′(u). We multiply equation (6.6) byum with respect
to the inner product〈·, ·〉H , integrate the result over(0,T), and obtain

∫ T

0
E

′(um)um dt =

∫ T

0
〈 f ,um〉H dt−

∫ T

0
〈u̇m,um〉H dt (6.12)

=

∫ T

0
〈 f ,um〉H dt−

∫ T

0

1
2

d
dt
‖um‖2

H dt

=
∫ T

0
〈 f ,um〉H dt− 1

2
‖um(T)‖2

H +
1
2
‖um

0 ‖2
H .

The weak convergenceum(T) ⇀ u(T) in H implies

‖u(T)‖2
H ≤ lim inf

m→∞
‖um(T)‖2

H .

This estimate, the convergenceum
0 → u0 in H, the equality (6.12) and the weak

convergenceum ⇀ u in L2(0,T;H) imply that

limsup
m→∞

∫ T

0
E

′(um)um dt ≤
∫ T

0
〈 f ,u〉H dt− 1

2
‖u(T)‖2

H +
1
2
‖u0‖2

H (6.13)

=

∫ T

0
〈 f ,u〉H dt−

∫ T

0

1
2

d
dt
‖u‖2

H dt

=

∫ T

0
〈 f ,u〉H dt−

∫ T

0
〈u̇,u〉H dt

=

∫ T

0
〈χ ,u〉V′,V dt.

In the last equality we have also used (6.11). By Lemma 6.2 andintegration over
(0,T),
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∫ T

0
〈E ′(um),um−u〉V′,V ≥

∫ T

0
〈E ′(u),um−u〉V′,V ,

so that the weak∗ convergencesum
weak∗
→ u andE ′(um)

weak∗
→ χ imply

liminf
m→∞

∫ T

0
〈E ′(um),um〉V ′,V ≥

∫ T

0
〈χ ,u〉V′,V .

This inequality together with (6.13) implies

lim
m→∞

∫ T

0
〈E ′(um),um〉V ′,V =

∫ T

0
〈χ ,u〉V′,V . (6.14)

Let v∈ L∞(0,T;V) be arbitrary, and setwλ = (1−λ )u+ λv, whereλ ∈ (0,1). By
Lemma 6.2 and integration over(0,T),

∫ T

0
〈E ′(um)−E

′(wλ ),um−wλ 〉V ′,V ≥ 0.

Using the definition ofwλ , this inequality can be rewritten as

λ
∫ T

0
〈E ′(um),u−v〉V′,V ≥

≥ λ
∫ T

0
〈E ′(wλ ),u−v〉V′,V +

∫ T

0
〈E ′(wλ ),um−u〉V′,V −

∫ T

0
〈E ′(um),um−u〉V′,V .

Lettingm→ ∞ in this inequality, we obtain on using again the weak∗ convergences

um
weak∗
→ u, E ′(um)

weak∗
→ χ , and (6.14) that

λ
∫ T

0
〈χ ,u−v〉V′,V ≥ λ

∫ T

0
〈E ′(wλ ),u−v〉V′,V .

We divide byλ > 0 and letλ → 0, use the continuity ofE ′ and Lebesgue’s domi-
nated convergence theorem. Then

∫ T

0
〈χ ,u−v〉V′,V ≥

∫ T

0
〈E ′(u),u−v〉V′,V .

Sincev ∈ L∞(0,T;V) is arbitrary in this inequality, and sinceu ∈ L∞(0,T;V), we
therefore obtain

∫ T

0
〈χ ,v〉V′,V ≥

∫ T

0
〈E ′(u),v〉V′,V for everyv∈ L∞(0,T;V).

This inequality implies
E

′(u) = χ .

Replacingχ in (6.11) byE ′(u), it follows that u is a solution of the differential
equation in (6.2).
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Energy inequality

The following lemma is a consequence of the Hahn-Banach theorem and will not
be proved here (see Corollary E.37).

Lemma 6.4.Let X be a Banach space, un, u∈X, and letF : X →R be a continuous
convex function. Then un ⇀ u impliesF (u) ≤ lim infn→∞ F (un).

Proof (Proof of Theorem 6.1 – Energy inequality).We maintain the notation from
the preceding proof of existence of a solution. In particular, (um) is the sequence of
solutions of the approximating problems (6.6) which we obtainedafterextracting a
subsequence, andu is the solution of the gradient system (6.3) which we obtained
as a weak limit of the sequence(um).

We recall from (6.7) that for everymone has the energy equality

∫ t

0
‖u̇m(s)‖2

H ds+E (um(t)) = E (um
0 )+

∫ t

0
〈 f (s), u̇m(s)〉H ds. (6.15)

We also recall that limm→∞ um
0 = u0 in V. The continuity ofE thus yields

lim
m→∞

E (um
0 ) = E (u0).

The weak convergence ˙um ⇀ u̇ in L2(0,T;H) implies that for everyt ∈ [0,T]

lim
m→∞

∫ t

0
〈 f (s), u̇m(s)〉H ds=

∫ t

0
〈 f (s), u̇(s)〉H ds.

By Lemma 6.4 applied withX = L2(0,T;H) andF (v) =
∫ t

0 ‖v‖2
H , the same weak

convergence implies that for everyt ∈ [0,T]

∫ t

0
‖u̇(s)‖2

H ds≤ lim inf
m→∞

∫ t

0
‖u̇m(s)‖2

H ds.

The weak convergenceum ⇀ u in W1,2(0,T;H) implies that for everyt ∈ [0,T] one
hasum(t) ⇀ u(t) in H. On the other hand, since(um) is bounded inL∞(0,T;V), we
deduce that for almost everyt ∈ [0,T] one hasum(t) ⇀ u(t) in V. By Lemma 6.4
applied withX = V andF = E , this implies that for almost everyt ∈ [0,T]

E (u(t)) ≤ lim inf
m→∞

E (um(t)).

Taking the limes inferior (asm→ ∞) on both sides of (6.15) yields the energy in-
equality (6.4). Theorem 6.1 is completely proved.
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6.3 Exercises

6.1.Show that a quadratic formE : V → R on a Banach spaceV is convex if and
only if it is nonnegative, that is,E ≥ 0.

6.2.Let Ω ⊂Rd be open, and letp∈ (1,∞). Show that the energyE :W1,p(Ω)→R,
E (u) = 1

p

∫

Ω |∇u|p is convex.

6.3.Let V be a Banach space, and letC⊆V be a bounded convex set.

a) Show that every continuous, convex functionE : C→ R is bounded from be-
low.

b) Show that every continuous, convex, coercive functionE : V → R is bounded
from below.

Remark. In this exercise, continuity ofE may be replaced by lower semicontinuity.
The functionE : C→ R is lower semicontinuousif lim n→∞ un = u (with un, u∈C)
impliesE (u) ≤ lim infn→∞ E (un).
There is a theorem which asserts that every continuous, convex, coercive function
E : V → R on a reflexiveBanach space attains its infimum (and in particular it is
bounded from below; see Theorem E.38). While that result is nontrivial, this exer-
cise here may be solved by using only the definition of convexity and continuity.

6.4 (De Giorgi – Energy dissipation rate).In this exercise, we come back to fi-
nite dimensional gradient systems. LetE : R

d → R be a continuously differentiable
function, and letg : Rd → Inner(Rd) be a Riemannian metric. Show that a contin-
uously differentiable functionu : I → Rd (I ⊆ R an interval) is a solution of the
gradient system

u̇+ ∇gE (u) = 0

if and only if, for everyt ∈ I , the energy inequality

d
dt

E (u(t)) ≤−1
2
‖u̇(t)‖2

g(u)−
1
2
‖∇gE (u(t))‖2

g(u)

holds.
Remark. According to a remark in L. Ambrosio,Gradient flows in metric spaces
and in the space of probability measures, and applications to Fokker-Planck equa-
tions with respect to log-concave measures, Bolletino della Unione Matematica Ital-
iana IX1 (2008), 223-240, this observation is due to E. De Giorgi; seeE. De Giorgi,
A. Marino and M. Tosques,Problems of evolution in metric spaces and maximal de-
creasing curves, Atti Accad. Naz. Lincei rend. Cl. Sci. Fis. Mat. Natur.68 (1980),
180-187 and G. Perelman and A. Petrunin,Quasigeodesics and gradient curves in
Alexandrov spaces, unpublished preprint (1994).





Lecture 7
Diffusion equations

As far as the laws of mathematics refer to reality, they are not certain; and as far as they
are certain, they do not refer to reality.1

Albert Einstein

Diffusion equations are prominent examples of gradient systems, and they
provide us with the first examples of abstract gradient systems where we can apply
the Theorem 6.1 on global existence and uniqueness of solutions.

Although it is not strictly necessary for this course on gradient systems, we spend
some time on the derivation of the various mathematical models related to the prob-
lem of heat conduction, of diffusion of particles, and of denoising of images. While
the assumptions which lead one to the linear heat equation – the heat conservation
law and Fourier’s law – may be criticized, it is certainly useful to keep them in mind
throughout the following study. The comparison of the results obtained from the
mathematical analysis of the various models and of the physical experiments can
help to justify or reject a particular model. In this respect, the proof of existence
and uniqueness of solutions is a test for the validity of a model. We consider two
comparatively simple diffusion equations for which we can prove global existence
and uniqueness of solutions.

7.1 Heat conduction

Let Ω ⊆ Rd be an open set respresenting a spatial domain (so usuallyd ≤ 3). We
consider the problem of heat conduction insideΩ . For this, we consider a function
u= u(t,x) which represents the heat density depending on the time variablet ∈ [0,T]
and on the space variablex∈ Ω . Given an open setO ⊆ Ω , the integral

1 Albert Einstein,Geometrie und Erfahrung (Geometry and experience), An Address to the Prus-
sian Academy of Sciences in Berlin on January 27th, 1921. German original quotation: Insofern
sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und insofern sie
sicher sind, beziehen sie sich nicht auf die Wirklichkeit.

77
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∫

O

u(t,x) dx

is then the total amount of heat, at timet, inside the volumeO. This total amount of
heat depends explicitly on the time variable; it changes infinitesimally only if heat
is transported through the boundary∂O or if there is a heat source or sink insideO.
This is expressed by the heat conservation law

d
dt

∫

O

u(t,x) dx
︸ ︷︷ ︸

infinitesimal
change of heat

= −
∫

∂O

j(t,x)n(x) dσ(x)
︸ ︷︷ ︸

heat transport
through boundary

+

∫

O

f (t,x) dx
︸ ︷︷ ︸

heat production
or loss insideO

. (7.1)

Here j = j(t,x) is the heat flux vector which indicates into which direction and,
by its length, how much heat is transported,n = n(x) is the outer normal vector
at x ∈ ∂O, and the Euclidean inner productjn is the amount of heat which
is transported into normal direction; heat, which is transported into tangential
direction does not leave or enter the volumeO and has therefore no influence on
the infinitesimal change of total amount of heat. Note that the minus sign on the
right-hand side is necessary, for if the heat flux points intoO, then the total amount
of heat should increase and the left-hand side and the right-hand side should be
positive. However, for inwards pointingj , the inner productjn is negative. The
term f = f (t,x) stands for a heat source or sink (depending on whether it is positive
or negative), and it depends here on time and space. We have also assumed thatO
is of classC1, and we denote byσ the surface measure on∂O.

When we interchange the time derivative with the integral onthe left-hand side
(by assuming that the functionu is regular enough), and when we apply Gauß’ diver-
gence theorem (Theorem F.6) to the first term on the right-hand side, then equation
(7.1) becomes

∫

O

∂
∂ t

u(t,x) dx= −
∫

O

div j(t,x) dx+
∫

O

f (t,x) dx,

where divj = ∑d
i=1

∂ j i
∂xi

is the divergence ofj . The preceding formula is true for every

volumeO ⊆ Ω (O of classC1), which is only possible if

∂
∂ t

u(t,x) = −div j(t,x)+ f (t,x) for every(t,x) ∈ (0,T)×Ω . (7.2)

Experiments show that heat is transported away from zones with higher heat
density into zones with lower heat density. Recall from Lemma 1.3 that the negative
euclidean gradient−∇u (the gradient is to be taken in thex variable only) points into
the direction of steepest descent, that is, into the direction whereu decreases most
rapidly. It is therefore natural to assume that the heat flux vectorj and the negative
temperature gradient−∇u point into the same direction. In the simplest model, one
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may assume that the length of the heat fluxj and of the negative temperature gradient
−∇u are proportional to each other. This leads to the linear constitutive relation

j(t,x) = −c∇u(t,x) (Fourier’s law), (7.3)

wherec > 0 is the heat conductivity characterizing the material; we assume here
that c does not depend on time or space, that is, the material fillingΩ is ideally
homogeneous. Inserting Fourier’s law into (7.2) and notingthat div∇ = ∆ is the
Laplace operator, we obtain the heat equation

∂
∂ t

u(t,x) = c∆u(t,x)+ f (t,x) for every(t,x) ∈ (0,T)×Ω . (7.4)

If instead of Fourier’s law (7.3) we consider a nonlinear constitutive relation with
the heat conductivity depending onu and∇u, c = c(u,∇u), then we are lead to the
nonlinear heat equation

∂
∂ t

u = div(c(u,∇u)∇u)+ f in (0,T)×Ω . (7.5)

The choicec = c(|∇u|) = |∇u|p−2 leads to the nonlinear heat equation

∂
∂ t

u = ∆pu+ f in (0,T)×Ω ,

where∆p is thep-Laplace operator:∆pu = div(|∇u|p−2∇u). The choicec= c(u) =
mum−1 leads to the porous medium equation

∂
∂ t

u = ∆(um)+ f in (0,T)×Ω .

On the boundary∂Ω , we consider three types of behaviour. Either, we assume
that the boundary is ideally conducting and that the heat density outsideΩ is kept
at a certain level,

u = uΩc on (0,T)× ∂Ω (Dirichlet boundary condition),

or we assume that the boundary is ideally isolating and thereis no heat flux through
the boundary,

jn = 0 on(0,T)× ∂Ω (Neumann boundary condition),

or we assume that the heat flux through the boundary depends onthe difference
between the heat density inside and outsideΩ , for example linearly,

jn = b(u−uΩc) on (0,T)× ∂Ω (Robin boundary condition).
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In the first and in the last equality,uΩc is the heat density outsideΩ and in the
simple models one setsuΩc = 0. Of course, one may imagine other types of
boundary conditions, for example mixed boundary conditions (one part of the
boundary∂Ω might be conducting, while the other part is isolating).

In the case that the constitutive relation for the heat flux vector is Fourier’s law,
and if uΩc = 0, the Dirichlet, Neumann and Robin boundary conditions canbe
rewritten as

u = 0 on(0,T)× ∂Ω (Dirichlet boundary condition),

∂
∂nu = 0 on(0,T)× ∂Ω (Neumann boundary condition),

and
∂

∂nu+ b
c u = 0 on(0,T)× ∂Ω (Robin boundary condition),

respectively. Here,∂∂nu = ∇un is the outer normal derivative ofu.

7.2 The reaction-diffusion equation

Again, letΩ ⊆ R
d be an open set representing a spatial domain. We consider now

a functionu = u(t,x) which represents the concentration of a chemical component
or the density of a biological population occupying the regionΩ . In this case, for a
given open setO ⊆ Ω , the integral

∫

O

u(t,x) dx

is the total amount of the chemical component or of the population, at timet, inside
the volumeO. The conservation law can be expressed similarly as in (7.1),

d
dt

∫

O

u(t,x) dx= −
∫

∂O

j(t,x)n(x) dσ(x)+

∫

O

f (t,x,u(t,x)) dx. (7.6)

where j = j(t,x) is now the drift vector of particles resp. individuals, andf =
f (t,x,u) indicates the production ofu due to chemical reaction, resp. birth or death
of individuals (depending on whetherf is positive or negative).

Experiments show that particles resp. individuals wander from regions where
they are dense to regions where they are rarer, and that the drift rate is proportional
to the norm of the gradient of the density and points to the opposite direction of the
gradient. This is expressed by

j(t,x) = −c∇u(t,x) (Fick’s law). (7.7)

Here, the diffusion coefficientc might be constant, or depend onu and/or on∇u. In
this way we obtain the reaction-diffusion equation
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∂
∂ t

u(t,x) = div(c∇u)+ f (·, ·,u) in (0,T)×Ω . (7.8)

This equation is equipped with boundary conditions, too. The Dirichlet boundary
conditions mean that there are no particles resp. individuals on the boundary (or
that their number is fixed), while Neumann boundary conditions mean that particles
resp. individuals can not leave the regionΩ .

7.3 The Perona-Malik model in image processing

Let Ω ⊆ R
d be an open set (d = 2 ord = 3). A black-and-whiteimageis a function

u : Ω →R. At every pointx∈Ω , the valueu(x) stands for a grey-level. A reasonable
image takes only values in the interval[0,1]; for example, the value 0 stands for a
black pixel, the value 1 for a white pixel, and values in(0,1) for a grey pixel with a
grey-level between black and white (the role of 0 and 1 is justconvention and may
be inverted of course).

Suppose thatu0 describes the input image which is an image destroyed by a
noise. The task is to remove the noise. One possible algorithm to denoise the image
is to solve the problem







ut −div(c(|∇u|)∇u) = 0 in (0,T)×Ω ,

∂
∂nu = 0 on(0,T)× ∂Ω ,

u(0,x) = u0(x) for x∈ Ω ,

(7.9)

and to takeu(T, .) for some T > 0 as the output image. Perona and Malik
[Perona and Malik (1990)] proposed to take the diffusion coefficient c depending
on the magnitude of the gradient,|∇u|, in such a way that if|∇u| is small (in zones
where the grey level does not vary too much), then the system (7.9) smoothes the
image (it behaves like a diffusion equation), and if|∇u| is large, then the diffusion
(the regularization) is stopped and edges will be preserved(observe that|∇u| is large
where the image has edges). This is achieved by a functionc = c(|∇u|), wherec is
decreasing,c(0) = 1, and lim

s→∞
c(s) = 0 (zero diffusion for larges= |∇u|). The func-

tionsc(s) = (1+ s)p−2 (p < 2), c(s) = e−s or c(s) = e−s2
are possible candidates,

and according to the model it seems that the faster the functionc decreases ass→∞,
the better the edges in the image are preserved.
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7.4 Global existence and uniqueness of solutions

The linear heat equation

We first consider the initial-boundary value problem






ut −uxx = f in (0,T)× (0,1),

u(t,0) = u(t,1) = 0 for t ∈ (0,T),

u(0,x) = u0(x) for x∈ (0,1),

(7.10)

whereu0 : [0,1] → R and f : (0,T)× (0,1) → R, f = f (t,x), are two given func-
tions. This problem is a model for the heat conduction in a rod(one dimensional
spatial domain), with ideally conducting end points, heat conductivityc = 1, given
initial heat distributionu0 and heat sourcef .

We recall from Lecture 3 the observation that solving the time-independent /
stationary problem 





u∈ H2(0,1),

−uxx(x) = f (x) for x∈ (0,1),

u(0) = u(1) = 0,

for a given f ∈ L2(0,1) is equivalent to solving the abstract equation

− D
(0,1)∆u = f ,

where the Dirichlet-Laplace operator D
(0,1)∆u = −∇L2E is the L2-gradient of the

energyE : H1
0(0,1) → R given by

E (u) =
1
2

∫ 1

0
(u′)2.

Without addressing the problem what could be a solution of the problem (7.10)
(certainly it is a function of the two variablest and x), it seems to be natural to
replace the problem (7.10) by the abstract gradient system

{

u̇− D
(0,1)∆u = f ,

u(0) = u0,
(7.11)

in which the unknownu is a function of the time variable only and takes its values
in L2(0,1).

Theorem 7.1.For every u0 ∈ H1
0(0,1) and every f∈ L2(0,T;L2(0,1)) (T > 0)

the gradient system(7.11) admits a unique solution u∈ H1(0,T;L2(0,1)) ∩
L∞(0,T;H1

0(0,1)).
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Proof. The domain of the energyE , that is, the spaceV = H1
0(0,1) is separable

and reflexive. The energyE is a continuous quadratic form, and therefore it is
continuously differentiable by Proposition 3.2. The derivativeE ′ is linear and con-
tinuous, and therefore bounded. Moreover, sinceE is a nonnegative (E ≥ 0), E

is convex by Exercise 6.1. By Poincaré’s inequality (see Exercise 4.7 or Theorem
5.14), the inner product〈v,w〉H1

0
=
∫ 1

0 v′w′ is equivalent to the usual inner product

〈v,w〉H1 =
∫ 1

0 vw+
∫ 1
0 v′w′, and in particular there exists a constantC > 0 such that

‖v‖2
H1 ≤C‖v‖2

H1
0

for everyv∈ H1
0(0,1);

in fact, one may takeC = 1+λ
λ , whereλ > 0 is the constant from Poincaré’s inequal-

ity. As a consequence of this estimate, every sublevel ofE is bounded inH1
0(0,1),

that is,E is coercive. The claim now follows from Theorem 6.1.

A nonlinear reaction-diffusion equation

We consider the nonlinear initial-boundary value problem






ut −uxx+u3 = f in (0,T)× (0,1),

ux(t,0) = ux(t,1) = 0 for t ∈ (0,T),

u(0,x) = u0(x) for x∈ (0,1),

(7.12)

where u0 : [0,1] → R and f : (0,T) × (0,1) → R, f = f (t,x), are two given
functions. This is a model for the evolution of the concentration of a chemical
component in an isolated channel (one dimensional spatial domain), undergoing
diffusion with Fick’s law and diffusion coefficient equal to1, reaction with
production rate−u3, and external supplyf . Note that the “production” rate is really
negative; compare the problem (7.12) with the reaction-diffusion equation (7.8) and
note our convention to write the reaction term on a differentside of the equality sign.

Similarly as in Exercise 4.3 on the Neumann-Laplace operator and in Exercise
4.6, by using Theorem 4.3, one shows that the energyE : H1(0,1) → R given by

E (u) =
1
2

∫ 1

0
(u′)2 +

1
4

∫ 1

0
u4

is continuously differentiable and that

D(∇L2E ) = {u∈ H2(0,1) : ux(0) = ux(1) = 0},
∇L2E (u) = −uxx+u3.

It therefore seems to be natural to replace the problem (7.10) by the abstract gradient
system
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{
u̇+ ∇L2E (u) = f ,

u(0) = u0.
(7.13)

Theorem 7.2.For every u0 ∈ H1(0,1) and every f∈ L2(0,T;L2(0,1)) the gradient
system(7.13)admits a unique solution u∈ H1(0,T;L2(0,1))∩L∞(0,T;H1(0,1)).

Proof. By Theorem 6.1, it suffices to check that the energyE is continuously dif-
ferentiable, convex and coercive, and thatE ′ is maps bounded sets ofH1(0,1) into
bounded sets ofH1(0,1)′ (we note that the energy spaceH1(0,1) is separable and
reflexive). We have already observed thatE is continuously differentiable, and we
leave it as an exercise to show thatE is convex andE ′ bounded. By Hölder’s in-
equality,

E (u) ≥ 1
2

∫ 1

0
(u′)2 +

1
4

(
∫ 1

0
u2)2

,

and this inequality implies thatE is coercive.

Remark 7.3.The question of existence and uniqueness of local and/or global solu-
tions becomes more difficult if we want to study the nonlineardiffusion equation







ut −uxx−u3 = f in (0,T)× (0,1),

ux(t,0) = ux(t,1) = 0 for t ∈ (0,T),

u(0,x) = u0(x) for x∈ (0,1),

(7.14)

in which – with respect to the problem (7.12) – only the sign ofthe nonlinearity
changed. In order to guess the difference, it is instructiveto compare the solutions
of the two ordinary differential equations

u̇+u3 = 0 and u̇−u3 = 0.

The second equation does not admit positive global solutions.

7.5 Exercises

7.1.Throughout, letp > 1.

a) Show that the embeddingW1,p(0,1) →֒ C([0,1]) is compact. Conclude that
the embeddingW1,p(0,1) →֒ Lp(0,1) is compact, too.
Hint. Use the Arzelà-Ascoli theorem.

b) Show that the infimum

λ1 := inf

{∫ 1
0 |u′|p
∫ 1

0 |u|p
: u∈W1,p

0 (0,1), u 6= 0

}
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is attained, that is, there existsu ∈ W1,p
0 (0,1), u 6= 0 such thatλ1

∫ 1
0 |u|p =

∫ 1
0 |u′|p. Recall from Poincaré’s inequality thatλ1 > 0.

c) Let f : R →R be a continuous function,F(s) :=
∫ s

0 f (r) dr. Assume that there
exist constantsc1, c2, c3 ≥ 0 andλ < λ1 such that for everys∈ R

| f (s)| ≤ c1 +c2 |s|p−1 andF(s) ≥−c3−
λ
p
|s|p.

Show that the energyE : W1,p
0 (0,1) → R given byE (u) =

∫ 1
0 [ 1

p|u′|p + F(u)]
is continuously differentiable and coercive.

d) Show that for everyλ ∈ (0,λ1] the energyE : H1
0(0,1) → R, E (u) =

1
2

∫ 1
0 [|u′|2−λ |u|2] is convex, and that it is not convex ifλ > λ1.

Remark. In (b), (c) and (d) one may replace the interval(0,1) by an ar-
bitrary open bounded setΩ ⊆ R

d. By the Rellich-Kondrachov theorem (see
[Adams and Fournier (2003)]), for every boundedΩ the embeddingW1,p

0 (Ω) →֒
Lp(Ω) is compact.

7.2.Let C : R+ → R be a continuously differentiable function such thatC′(0) = 0.
Assume that there existp > 1, c1 ≥ 0, R≥ 0 such thatC′(s) ≤ c1sp−1 for every
s≥ R. Let Ω ⊆ Rd be an open and bounded.

a) Show that the energy

E : W1,p(Ω) → R,

u 7→
∫

Ω
C(|∇u|)

is continuously differentiable, and that for everyu, h∈W1,p(Ω),

E
′(u)h =

∫

Ω
C′(|∇u|) ∇u

|∇u| ∇h,

where the term under the integral is interpreted as 0 if∇u = 0. Moreover,
E ′ : W1,p(Ω) →W1,p(Ω)′ maps bounded sets into bounded sets.

b) Assume in addition thatC is increasing and convex. Show that the energyE

from (a) is convex.

c) Show that the energyE is not coercive.

7.3.Let Ω ⊂ R
d be open. We return to the model of heat conduction inΩ , starting

from the conservation law (7.2). Find an interpretation of the constitutive relation

j(t,x) = −c∇u(t,x)+b(x)u(t,x),

in which b : Ω → Rd is a given function. Which partial differential equation does
one obtain from this constitutive relation and (7.2)?





Lecture 8
Gradient systems in infinite dimensional spaces:
existence and uniqueness of solutions II

The assumptions of Theorem 6.1 on the existence and uniqueness of global
solutions of gradient systems are natural and easy to verifyin applications arising,
for example, from diffusion models; we refer to the problems(7.10) and (7.12)
which were considered and solved in the previous lecture. However, there are
examples of diffusion models / gradient systems to which Theorem 6.1 does not
apply: this is the case for the problem (7.12) if the reactiontermu3 is dropped (the
energy of the Laplace operator with Neumann boundary conditions is not coercive),
for the problem (7.14), in which the reaction term had a different sign, and this is
the case for the Perona-Malik model even if the diffusion coefficient c is chosen
appropriately so that the associated energy is convex; compare with Exercises 7.2
(c) and 8.3 (b). It is therefore necessary to think about moregeneral existence and
uniqueness theorems.

In this lecture we prove a variant of Theorem 6.1. We would like to call it a
generalisation of Theorem 6.1, although it is not a strict generalisation. First, in
Theorem 8.1 below, the energy is assumed to beH-elliptic instead of coercive and
convex. This new property is weaker than coercivitiy and convexity. For example,
the energy of the Neumann-Laplace operator and the energy associated with the
Perona-Malik model areL2(Ω)-elliptic – if in the latter the diffusion coefficient is
chosen appropriately. Second, we consider gradients takenwith respect to general
metrics. The price which we pay for both generalisations is that we can not prove
uniqueness of solutions in general, and the embedding of theenergy spaceV into
the Hilbert spaceH is assumed to be compact. Using again the Ritz / Ritz-Galerkin
/ Faedo-Galerkin method in the proof, the compact embeddingseems to be a neces-
sary assumption. At the same time, it is an open problem whether the hypotheses of
Theorem 8.1 imply uniqueness of solutions or not.

87
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8.1 Global existence and uniqueness of solutions for gradient
systems with elliptic energy

Let V be a Banach space with norm‖ · ‖V . Let U ⊆ V be an open subset, and let
E : U → R be a continuously differentiable function. In addition, let H be a Hilbert
space with inner product〈·, ·〉H , and assume thatV is densely and continuously em-
bedded intoH. Let finally g : U → Inner(H) be a metric onU . A non-autonomous
gradient systemis a differential equation of the form

u̇+ ∇gE (u) = f , (8.1)

with E andg as above andf ∈ L2
loc(I ;H), I ⊆ R being an interval. Asolution of

this gradient system is a measurable functionu : I →V such that

u∈W1,2
loc (I ;H)∩L∞

loc(I ;V),

u(t) ∈ D(∇gE ) for almost everyt ∈ I , and

the equality (8.1) holds almost everywhere onI .

By the Sobolev embedding theorem (Theorem 5.11), every solution is continuous
with values inH; this allows us to give a sense to the initial value problem inThe-
orem 8.1. Moreover, by a similar reasoning as in Lecture 6, ifV = H is finite-
dimensional, then every solution in the above sense is also asolution as defined in
Lecture 1 and vice versa. By definition of the gradient,u is a solution of (8.1) if and
only if u∈W1,2

loc (I ;H)∩L∞
loc(I ;V) and

〈u̇,v〉g(u) +E
′(u)v = 〈 f ,v〉g(u) for everyv∈V, almost everywhere onI . (8.2)

We call (8.2) thevariational form of the gradient system (8.1).

We say that a functionE : V → R is H-elliptic if there existsω ∈ R such that the
functionEω : V → R, u 7→ E (u)+ ω

2 ‖u‖2
H is coercive and convex. If the spaceH is

clear from the context, then we may simply say thatE is elliptic . Note that ifEω
is coercive (resp. convex) for someω ∈ R, thenEω ′ is coercive (resp. convex) for
everyω ′ ≥ ω .

Theorem 8.1.Suppose that V is a reflexive, separable Banach space which iscom-
pactly embedded into H. Suppose thatE is an H-elliptic, continuously differentiable
function such thatE ′ : V →V ′ maps bounded sets into bounded sets. Let T∈ (0,∞).
Suppose in addition that the metric g is continuous in the sense that

un ⇀ u in W1,2(0,T;H),

un
weak∗
→ u in L∞(0,T;V),

vn ⇀ v in L2(0,T;H), and
w∈ L2(0,T;H)







⇒
∫ T

0
〈vn,w〉g(un) →

∫ T

0
〈v,w〉g(u). (8.3)
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Suppose finally that there exist two constants c1, c2 > 0 such that for every u∈ V
and every v∈ H

c1‖v‖H ≤ ‖v‖g(u) ≤ c2‖v‖H .

Then, for every f∈ L2(0,T;H) and every initial value u0 ∈V, there exists a solution
u∈W1,2(0,T;H)∩L∞(0,T;V) of the problem

{
u̇+ ∇gE (u) = f ,

u(0) = u0.
(8.4)

If, in addition, the metric g is constant – that is,〈·, ·〉g(u) = 〈·, ·〉H for every u∈ V
–, then the above problem admits a unique solution. For this solution, the energy
inequality

∫ t

0
‖u̇‖2

H +E (u(t)) ≤ E (u0)+
∫ t

0
〈 f , u̇〉H (8.5)

holds true.

Remark 8.2.Theorem 8.1 is anL2-maximal regularity result for the nonlinear prob-
lem (8.4) in the sense that for everyf ∈ L2(0,T;H) and everyu0 ∈V, the problem
(8.4) admits a solutionu such that the two members ˙u and∇gE (u) of the left-hand
side of (8.4) belong also toL2(0,T;H).

Existence

In the proof of Theorem 8.1, we need the following three lemmas.

Lemma 8.3 (Gronwall).Letϕ : [0,T]→R+ be a nonnegative continuous function.
Assume that there exist two constants C,ω ≥ 0 such that for every t∈ [0,T]

ϕ(t) ≤C+ ω
∫ t

0
ϕ(s) ds.

Then, for every t∈ [0,T],
ϕ(t) ≤Ceωt .

Proof. Let ε > 0 and setψ(t) := ε +C+ ω
∫ t

0 ϕ(s) ds (t ∈ [0,T]). Thenψ is a
positive, nondecreasing, continuously differentiable function. By assumption and
sinceε > 0, for everyt ∈ [0,T],

ψ ′(t) = ω ϕ(t) ≤ ω ψ(t).

Dividing by ψ(t) > 0, and integrating the resulting inequality yields that forevery
t ∈ [0,T]

ψ(t) ≤ ψ(0)eωt = (C+ ε)eωt .

Sinceϕ(t)≤ψ(t) by assumption, and sinceε > 0 is arbitrary, this implies the claim.
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Lemma 8.4. a) (Chain rule). Let X and Y be two Banach spaces, p∈ [1,∞),
(a,b) ⊆ R a bounded interval, and F: X → Y a continuously differentiable
function. Then, for every u∈ W1,p(a,b;X) the composite function F◦ u be-
longs to W1,p(a,b;Y) and d

dt (F ◦u)(t) = F ′(u(t))u̇(t) for almost every t.

b) (Product rule). Let H be a Hilbert space and(a,b) ⊆ R be an interval.
Then, for every u∈ H1(a,b;H) the function‖u‖2

H belongs to W1,1(a,b) and
d
dt‖u(t)‖2

H = 2〈u(t), u̇(t)〉H for almost every t∈ (a,b).

Proof (Sketch).(a) The claim is true for everyu∈C1([a,b];X) by the classical chain
rule. SinceC1([a,b];X) is dense inW1,p(a,b;X) (compare with Corollary G.13,
where this claim is proved forX = R; the proof of Corollary G.13 remains valid
in the case of vector-valued functions), the claim follows upon an approximation
argument which uses also the Sobolev embedding theorem (Theorem 5.11).

The proof of (b) is very similar: the product rule is true for continuously differ-
entiable functionsu∈ H1(a,b;H), and the subspace of continuously differentiable
functions is dense inH1(a,b;H) by the vector-valued variant of Corollary G.13.
The claim thus follows upon an approximation argument.

Lemma 8.5 (Aubin - Lions). Let X and Y be two Banach spaces such that Y→֒ X
with compact embedding. Then, for every p∈ (1,∞), the embedding

W1,p(0,T;X)∩L∞(0,T;Y) →֒C([0,T];X)

is compact, too.

Proof. Let (un) ⊆W1,p(0,T;X)∩L∞(0,T;Y) be a bounded sequence. It suffices to
prove that(un) is relatively compact inC([0,T];X). For everyn ∈ N and everys,
t ∈ [0,T], s≤ t,

‖un(t)−un(s)‖X =
∥
∥

∫ t

s
u̇n(r) dr

∥
∥

X (Theorem 5.10)

≤
∫ t

s
‖u̇n(r)‖X dr (triangle inequality)

≤ ‖u̇n‖Lp(0,T;X) (t −s)
1
p′ (Hölder’s inequality)

≤C(t −s)
1
p′ ,

where the constantC≥ 0 does not depend onn, andp′ = p
p−1 < ∞. This inequality

implies that the sequence(un) is uniformly equicontinuous with values inX.
Since(un) is uniformly bounded inL∞(0,T;Y), there exists a setN of Lebesgue

measure 0 such that for everyt ∈ [0,T] \N the sequence(un(t)) is bounded inY.
SinceY is compactly embedded intoX, we obtain that for everyt ∈ [0,T] \N the
sequence(un(t)) is relatively compact inX. Since[0,T] \N is dense in[0,T], the
Arzelà-Ascoli theorem (Theorem B.43) implies that the sequence(un) is relatively
compact inC([0,T];X).
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Proof (Proof of Theorem 8.1 – Existence).We proceed similarly as in the proof
of Theorem 6.1. In particular, we use the Ritz / Ritz-Galerkin / Faedo-Galerkin
approximation.

Part 1 (Formulation of the finite dimensional approximating problems): We
choose a total sequence(wn) ⊆V, we define the finite dimensional spacesVm, and
we chooseum

0 ∈Vm such thatu0 = lim
m→∞

um
0 , just as in Part 1 of the proof of Theorem

6.1.

For every m ∈ N, we consider the variational problem of findingum ∈
W1,2

loc ([0,T);Vm) such that







〈u̇m,v〉g(um) +E ′(um)v = 〈 f ,v〉g(um)

for everyv∈Vm, almost everywhere on(0,T),

um(0) = um
0 .

(8.6)

Problem (8.6) is equivalent to the problem of finding a solution um ∈
W1,2

loc ([0,T);Vm) of the non-autonomous gradient system inVm

{
u̇m+ ∇gmEm(um) = Pum

m f ,

um(0) = um
0 ,

(8.7)

whereEm andgm are the restrictions ofE andg, respectively, toVm, ∇gmEm is the
gradient ofEm in Vm with respect to the metricgm, andPum

m : H →H is the orthogonal
projection fromH ontoVm with respect to the inner product〈·, ·〉g(um). SinceVm is
finite dimensional, for everyu∈Vm the gradient∇gmEm(u) exists and belongs toVm.

In order to obtain existence of a maximal solutions, we checkthat the function
F : (0,T)×Vm → Vm, (t,u) 7→ ∇gmEm(u)−Pu

m f (t) satisfies the Carathéodory con-
ditions. Sinceg : V → Inner(H) is a metric, it maps norm convergent sequences
in V into strongly convergent sequences in Inner(H). Since Inner(Vm) is finite-
dimensional, norm convergence and strong convergence coincide, and therefore the
restrictiongm : Vm → Inner(Vm) is a Riemannian metric. By Lemma 2.4, the gra-
dient ∇gmEm is continuous, and the first term in the definition ofF satisfies the
Carathéodory conditions.

We check that the second term in the definition ofF satisfies the Carathéodory
conditions, too. For everyu ∈ Vm, let Qm(u) ∈ L (Vm) be the operator given by
〈Qm(u)v,w〉H = 〈v,w〉gm(u) = 〈v,w〉g(u) (v, w ∈ Vm). Then, for everyu, v ∈ Vm and
almost everyt ∈ [0,T],

〈Qm(u)Pu
m f (t),v〉H = 〈Pu

m f (t),v〉g(u) = 〈 f (t),Pu
mv〉g(u) = 〈 f (t),v〉g(u).

Sinceg is a metric, the right-hand side depends continuously onu∈ Vm. SinceVm

is finite-dimensional, weak convergence and norm convergence coincide, and there-
fore for almost everyt ∈ [0,T] the functionVm →Vm, u 7→ Qm(u)Pu

m f (t) is continu-
ous. Sincegm is continuous,Qm is continuous, too (compare with Lemma 2.3), and



92 8 Gradient systems in infinite dimensional spaces: existence and uniqueness of solutions II

since for everyu ∈ Vm the operatorQm(u) is invertible, we obtain that the second
term in the definition ofF is continuous with respect to the second variable. More-
over, since〈·, ·〉g(u) is uniformly equivalent to〈·, ·〉H , for almost everyt ∈ [0,T] and
everyu∈Vm,

‖Pu
m f (t)‖H ≤ 1

c1
‖Pu

m f (t)‖g(u) ≤
1
c1
‖ f (t)‖g(u) ≤

c2

c1
‖ f (t)‖H .

Since f ∈ L2(0,T;H), this implies thatF satisfies the Carathéodory conditions. By
the corollary to Carathéodory’s theorem (Corollary 2.8),problem (8.7) admits a
maximal solutionum ∈ W1,2

loc ([0,Tm);Vm). Maximal means here that eitherTm = T,
or Tm < T and the solutionum can not be extended to any larger interval. For every
m∈ N, let um be a maximal solution of (8.7).

Part 2 (Bounds for the solutionsum of the approximating problems): We
show that the maximal solutionsum are global, that is,Tm = T, and that the
sequence(um) is bounded in appropriate function spaces. This part of the proof
essentially repeats arguments from the proof of Theorem 2.10.

We multiply the equation (8.7) by ˙um with respect to the inner product〈·, ·〉g(um)

(or: we takev = u̇m in (8.6)), integrate the result over[0,t] (t ∈ (0,Tm)), and apply
Lemma 8.4 (a) and the Cauchy-Schwarz inequality in order to obtain

∫ t

0
‖u̇m(s)‖2

g(um(s)) ds+E (um(t))−E (um
0 ) =

=

∫ t

0
〈 f (s), u̇m(s)〉g(um(s)) ds

≤ 1
2

∫ t

0
‖ f (s)‖2

g(um(s)) ds+
1
2

∫ t

0
‖u̇m(s)‖2

g(um(s)) ds.

Since limm→∞ um
0 = u0 in V, and sinceE is continuous, we have limm→∞ E (um

0 ) =
E (u0). In particular, the sequence(E (um

0 )) is bounded. Hence, there exists a con-
stantC1 ≥ 0 which is independent ofmandt ∈ [0,Tm) such that

c1

2

∫ t

0
‖u̇m(s)‖2

H ds+E (um(t)) ≤C1 +
c2

2

∫ T

0
‖ f (s)‖2

H ds. (8.8)

In this estimate we have also used the assumption that the inner products〈·, ·〉g(um)

are uniformly equivalent to the inner product〈·, ·〉H . Let ω ∈ R be such thatEω is
convex and coercive. Then the preceding inequality can be rewritten as

c1

2

∫ t

0
‖u̇m(s)‖2

H ds+‖um(t)‖2
H +Eω(um(t)) ≤

≤C1 +
ω +2

2
‖um(t)‖2

H +
c2

2

∫ T

0
‖ f (s)‖2

H ds. (8.9)
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We estimate the term12‖um‖2
H as follows:

1
2
‖um(t)‖2

H =
1
2
‖um(0)‖2

H +

∫ t

0

1
2

d
ds

‖um(s)‖2
H ds

=
1
2
‖um(0)‖2

H +
∫ t

0
〈u̇m(s),um(s)〉H ds

≤C2 +
c1

4(ω +2)

∫ t

0
‖u̇m(s)‖2

H ds+
ω +2

c1

∫ t

0
‖um‖2

H ds,

whereC2 ≥ 0 is an upper bound for the sequence(1
2‖um

0 ‖2
H). SinceEω is continuous,

convex and coercive,Eω is bounded from below by Exercise 6.3 (b), that is, there
exists a constantC3 ≥ 0 such thatEω(u) ≥ −C3 for every u ∈ V. Inserting this
estimate and the preceding estimate into (8.9), we obtain

c1

4

∫ t

0
‖u̇m(s)‖2

H ds+‖um(t)‖2
H ≤

≤C1 +(ω +2)C2+C3+
(ω +2)2

c1

∫ t

0
‖um(s)‖2

H ds+
c2

2

∫ T

0
‖ f (s)‖2

H ds

= C4 +
(ω +2)2

c1

∫ t

0
‖um(s)‖2

H ds,

whereC4 ≥ 0 does not depend onm andt ∈ [0,Tm). The first term on the left-hand
side is positive. Hence, by applying Gronwall’s inequalityto the functionϕ(t) =
‖um(t)‖2

H , we obtain that for everym and everyt ∈ [0,Tm),

‖um(t)‖2
H ≤C4e

(ω+2)2

c1
t ≤C4e

(ω+2)2

c1
T
.

The right-hand side of this inequality does not depend onm and t ∈ [0,Tm), and
therefore

sup
m∈N

sup
t∈[0,Tm)

‖um(t)‖2
H < ∞.

Inserting this estimate into (8.9), we obtain the existenceof a constantC5 ≥ 0 which
is independent ofmandt such that

c1

2

∫ t

0
‖u̇m(s)‖2

H ds+‖um(t)‖2
H +Eω(um(t)) ≤C5. (8.10)

Since the first two terms on the left-hand side are positive, this inequality implies
that the set{um(t) : m∈ N, t ∈ (0,Tm)} is contained in the sublevel setKC5 of Eω .
By coercivity ofEω , KC5 is bounded inV, and therefore

sup
m∈N

sup
t∈[0,Tm)

‖um(t)‖V < ∞.

We use again the fact thatEω is bounded from below and deduce in addition from
inequality (8.10) that
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sup
m∈N

‖um‖W1,2(0,Tm;H) < ∞.

SinceTm ≤ T is finite, this implies that for eachm∈ N the function ˙um is integrable
on [0,Tm). Hence,um extends to a continuous function on the closed interval[0,Tm],
and Carathéodory’s theorem and the definition of maximal solution imply that this
is only possible ifTm = T, that is, the solutionsum are global.

From the preceding two inequalities and the continuous embeddingV →֒ H we
obtain that

(um) is bounded inW1,2(0,T;H)∩L∞(0,T;V). (8.11)

By assumption, the derivativeE ′ maps bounded sets into bounded sets, so that the
boundedness of(um) in L∞(0,T;V) implies that

(E ′(um)) is bounded inL∞(0,T;V ′).

Part 3 (Extracting a convergent subsequence):The spaceW1,2(0,T;H) is
a Hilbert space and the spacesL∞(0,T;V) ∼= L1(0,T;V ′)′ and L∞(0,T;V ′) ∼=
L1(0,T;V)′ are dual space by reflexivity ofV (andV ′) and by Theorem 5.6. More-
over, the spacesL1(0,T;V ′) andL1(0,T;V) are separable by Theorem 5.5. Hence,
by Theorem 6.3, by the assumption thatV is compactly embedded intoH, and
by Lemma 8.5, there existu ∈ W1,2(0,T;H), v ∈ L∞(0,T;V), w ∈ C([0,T];H),
χ ∈ L∞(0,T;V ′) and a subsequence of(um) (which we denote for simplicity again
by (um)) such that

um ⇀ u in W1,2(0,T;H),

um
weak∗
→ v in L∞(0,T;V),

um → w in C([0,T];H), and (8.12)

E
′(um)

weak∗
→ χ in L∞(0,T;V ′).

We leave it as an exercise to show thatu∈W1,2(0,T;H)∩L∞(0,T;V) andu= v= w.
Moreover, it is an exercise to show that every continuous linear operator between
two Hilbert spaces maps weakly convergent sequences into weakly convergent se-
quences. Since the operatorW1,2(0,T;H) → L2(0,T;H), u 7→ u̇ is continuous and
linear, and by (8.12),

u̇m ⇀ u̇ in L2(0,T;H),

um(0) → u(0) in H and

um(T) → u(T) in H.

The above weak respectively weak∗ convergences in the respective function
spaces mean that
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∫ T

0
〈v,um〉V ′,V →

∫ T

0
〈v,u〉V ′,V for everyv∈ L1(0,T;V ′),

∫ T

0
〈u̇m,v〉H →

∫ T

0
〈u̇,v〉H for everyv∈ L2(0,T;H), and (8.13)

∫ T

0
〈E ′(um),v〉V ′,V →

∫ T

0
〈χ ,v〉V′,V for everyv∈ L1(0,T;V).

Part 4 (Showing that the limit u is a solution): First of all, we have just seen
thatum(0) → u(0) in H. On the other hand,um(0) = um

0 by (8.6), andum
0 → u0 in V

by the choice of the sequence(um
0 ). SinceV is continuously embedded intoH, we

obtainu(0) = u0, that is,u satisfies the initial condition in (8.4). It remains to show
thatu satisfies also the differential equation.

Let w ∈ Vm andϕ ∈ L2(0,T). For everyn ≥ m we multiply equation (8.7) by
ϕ(·)w with respect to the inner product〈·, ·〉g(un), integrate over(0,T) and obtain
that

∫ T

0
〈u̇n(t),ϕ(t)w〉g(un(t)) dt+

∫ T

0
〈E ′(un(t)),ϕ(t)w〉V ′,V dt =

=
∫ T

0
〈 f (t),ϕ(t)w〉g(un(t)) dt.

Letting n → ∞ in this last equality and using (8.13) and the continuity assumption
ong, we obtain

∫ T

0
〈u̇(t),ϕ(t)w〉g(u(t)) dt+

∫ T

0
〈χ(t),ϕ(t)w〉V ′,V dt =

∫ T

0
〈 f (t),ϕ(t)w〉g(u(t)) dt.

Using the fact that{ϕ(·)w : w ∈
⋃

m

Vm, ϕ ∈ L2(0,T)} spans a dense subspace of

L2(0,T;V) (Theorem 5.5), we obtain for everyv∈ L2(0,T;V)

∫ T

0
〈u̇,v〉g(u) +

∫ T

0
〈χ ,v〉V ′,V =

∫ T

0
〈 f ,v〉g(u). (8.14)

It is left to show thatχ = E ′(u). We multiply equation (8.7) byum with respect
to the inner product〈·, ·〉g(um), integrate the result over(0,T), and obtain

∫ T

0
〈E ′(un),un〉V ′,V =

∫ T

0
〈 f ,un〉g(un) −

∫ T

0
〈u̇n,un〉g(un). (8.15)

The continuity assumption (8.3) ong implies

∫ T

0
〈 f ,un〉g(un) −→

∫ T

0
〈 f ,u〉g(u).

Moreover, the continuity assumption ong, the uniform convergence of(un) (see
(8.12)), the Cauchy-Schwarz inequality and the uniform equivalence of〈·, ·〉g(u) and
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〈·, ·〉H imply

∫ T

0
〈u̇n,un〉g(un) =

∫ T

0
〈u̇n,u〉g(un) +

∫ T

0
〈u̇n,un−u〉g(un)

→
∫ T

0
〈u̇,u〉g(u).

Hence, if we letn → ∞ in equation (8.15) and if we use the equality (8.14) with
v = u, we obtain

∫ T

0
〈E ′(un),un〉V ′,V dt −→

∫ T

0
〈χ ,u〉V′,V dt.

SinceE ′
ω(u) = E ′(u) + ωu, sinceun → u in C([0,T];H) (see (8.12)), and since

〈un,un〉V ′,V = ‖un‖2
H , this last convergence implies

∫ T

0
〈E ′

ω(un),un〉V ′,V −→
∫ T

0
〈χ + ωu,u〉V′,V . (8.16)

Let v∈ L∞(0,T;V) andλ ∈ R. By Lemma 6.2 (applied to the convex functionEω )
and integration over(0,T),

∫ T

0
〈E ′

ω(um),um−u−λv〉V′,V ≥
∫ T

0
〈E ′

ω(u+ λv),um−u−λv〉V′,V .

Lettingm→ ∞ in this inequality, we obtain on using again the weak∗ convergences

um
weak∗
→ u, E ′

ω(um)
weak∗
→ χ + ωu, and (8.16) that

−
∫ T

0
〈χ + ωu,λv〉V′,V ≥−

∫ T

0
〈E ′

ω(u+ λv),λv〉V′,V .

We divide byλ > 0 and byλ < 0, letλ → 0+ andλ → 0−, and use the continuity
of E ′ in order to obtain that

∫ T

0
〈χ ,v〉V′,V =

∫ T

0
〈E ′(u),v〉V′,V .

Sincev∈ L∞(0,T;V) is arbitrary, this implies

E
′(u) = χ .

Hence, we may replaceχ by E ′(u) in equality (8.14) and we deduce thatu is a
solution of the variational form of ˙u+ ∇gE (u) = f on [0,T]. In particular,u is a
solution of the gradient system (8.4).
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Uniqueness and energy inequality

See Exercise 8.1 (c).

8.2 Exercises

8.1. a) Prove that a constant metricg : V → Inner(H) – that is,〈·, ·〉g(u) = 〈·, ·〉H

for everyu∈V – satisfies the continuity condition (8.3) from Theorem 8.1.

b) Show that if a functiong : V → Inner(H) satisfies the continuity condition
(8.3), then it is continuous in the following sense:

un ⇀ u in V,
vn ⇀ v in H, and
w∈ H






⇒ 〈vn,w〉g(un) → 〈v,w〉g(u); (8.17)

In particular,g is a metric, that is,un → u in V implies〈v,w〉g(un) → 〈v,w〉g(u)

for everyv, w∈ H.
Open problem.Prove or disprove that the condition (8.17) implies (8.3).

c) Prove the addendum in Theorem 8.1, that is, prove uniqueness of solutions
and the energy inequality (8.5).

8.2 (Quadratic forms).Let E : V → R be a continuous quadratic form on a Banach
spaceV which is densely and continuously embedded into a Hilbert spaceH.

a) Show that ifE is coercive, thenE is convex.

b) Show thatE is H-elliptic if and only if there existω ≥ 0, η > 0 such that

E (u)+
ω
2
‖u‖2

H ≥ η ‖u‖2
V for everyu∈V.

c) Show that ifE is H-elliptic, then there exists an equivalent norm onV which
comes from an inner product (that is,V is a Hilbert space).

d) Show that ifE is H-elliptic, then

‖u‖2
D(∇HE ) := ‖u‖2

H +‖∇HE (u)‖2
H

defines a complete norm on the domainD(∇HE ).

e) Show that ifE is H-elliptic, then for everyu0 ∈V and everyf ∈ L2(0,T;H)
the gradient system

u̇+ ∇HE (u) = f , u(0) = u0,

admits a unique solutionu∈ H1(0,T;H)∩L∞(0,T;V)∩L2(0,T;D(∇HE )).
Hint. We do not assume that the embeddingV →֒ H is compact so that The-
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orem 8.1 does not apply. Use Theorem 6.1 and the observation that u is a
solution if and only ifv(t) = e−ωtu(t) is a solution of

v̇+ ∇HE (v)+ ωv= e−ωt f , v(0) = u0.

8.3 (Perona-Malik model).Let Ω ⊆Rd be open and bounded. Letc : R+ → (0,∞)
be a continuously differentiable function such that there exist p > 1, c1 ≥ 0 and
s0 ≥ 0 such thatc(s)s≤ c1sp−1 for everys≥ s0. Given f ∈ L2(Ω), we call a function
u∈W1,p(Ω)∩L2(Ω) aweak solutionof the problem

{
−div(c(|∇u|)∇u) = f in Ω ,

∂u
∂n = 0 on∂Ω ,

(8.18)

if for every ϕ ∈W1,p(Ω)∩L2(Ω) one has
∫

Ω
c(|∇u|)∇u∇ϕ =

∫

Ω
f ϕ .

a) Assume in addition thatΩ is of classC1 and f ∈C(Ω̄). Show thatu∈C2(Ω̄ )
is a weak solution of the problem (8.18) if and only ifu is a classical solution,
that is, all derivatives are understood to be classical derivatives andu satisfies
the partial differential equation and the boundary condition in the usual sense.

b) Let c(s) = (1+ s)p−2 with p ∈ (1,2), so thatc satisfies the properties from
the Perona-Malik model. LetC(s) :=

∫ s
0 c(r)r dr. Consider the Banach space

V =W1,p(Ω)∩L2(Ω) with norm‖u‖V = ‖u‖W1,p +‖u‖L2. Show that the func-
tion E : V → R, E (u) =

∫

Ω C(|∇u|) is continuously differentiable,L2(Ω)-
elliptic, and thatE ′ maps bounded sets into bounded sets. Show thatu is a
weak solution of (8.18) if and only if∇L2E (u) = f .
Remark. Recall from Exercise 7.2 thatE is convex ifC is convex and non-
decreasing. Note thatC is convex if and only ifsc(s) is nondecreasing. In
particular, if C is convex, then the coefficientc can not decrease arbitrarily
rapidly.

c) In addition to the assumptions of (b), assume thatΩ ⊆ R2 is of classC1. Con-
clude that for everyu0 ∈W1,p(Ω) and everyf ∈ L2(0,T;L2(Ω)) there exists
a unique solutionu∈W1,2(0,T;L2(Ω))∩L∞(0,T;W1,p(Ω)) of the problem

u̇+ ∇L2E (u) = f , u(0) = u0.

Write the variational form of this gradient system.
Remark. If p ∈ (1,2) andΩ ⊆ R2 is bounded and of classC1, then, by the
Rellich-Kondrachev theorem,W1,p(Ω) →֒ L2(Ω) with compact embedding.



Lecture 9
Regularity of solutions

After having proved existence of solutions of abstract gradient systems, several
questions about their qualitative behaviour arise naturally. Some of them are about
regularity of the solutions. Is the regularity of the solutions which we obtained in
Theorems 6.1 and 8.1 the optimal one or can we expect higher regularity if the
data in the gradient system (6.3) and (8.4) are more regular?For example, when
can we expect that solutions of gradient systems are continuous or continuously
differentiable with values in the energy spaceV? When does the energy inequality
(8.5) hold, and when is it actually an energy equality? Finding answers to these
questions is a crucial step before studying, for example, the long time behaviour of
solutions of gradient systems.

It turns out that for a certain class of gradient systems, including linear, and
so-called semilinear and quasilinear problems, higher regularity can be obtained
from mere existence and maximal regularity results such as Theorems 6.1 and 8.1.
The idea of the proof, which we present in this lecture, is theso-called parameter
trick and a clever application of the implicit function theorem; it is due to Angenent
(see [Angenent (1990b)] and also [Angenent (1990a)]).

The regularity result in this lecture is true for abstract differential equations and
there is no necessity to confine the study to gradient systems. We come back to
gradient systems in the following lectures.

9.1 Interpolation

In this section, we recall shortly some results which were the subject of Exercise
5.2. LetD andX be two Banach spaces such thatD is densely and continuously
embedded intoX. For everyp∈ [1,∞) we consider the space

MRp(X,D) := W1,p(0,1;X)∩Lp(0,1;D)

99
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equipped with the norm

‖u‖p
MRp(X,D)

:= ‖u‖p
W1,p(0,T;X)

+‖u‖p
Lp(0,T;D)

,

which turns it into a Banach space. We recall from Theorem 5.10 that every func-
tion u∈ MRp(X,D) is continuous with values inX; more precisely, every element
u ∈ MRp(X,D) admits a representative which is continuous with values inX. It
makes therefore sense to evaluate functionsu ∈ MRp(X,D) in everyt ∈ [0,1] and
in particular to define thetrace space

Trp(X,D) := {x∈ X : there existsu∈ MRp(X,D) such thatu(0) = x}.

This space is a Banach space for the norm

‖x‖Trp := inf{‖u‖MRp : u∈ MRp(X,D) andu(0) = x}.

The fact that Trp(X,D) is a Banach space becomes clear from considering the com-
mutative diagram

MRp(X,D)
δ0−−−−→ X

q


y

x

i

MRp(X,D)/MR0
p(X,D) −−−−→

b
Trp(X,D)

in which δ0 is the point evaluation att = 0 (a continuous linear operator, by The-
orem 5.10), MR0p(X,D) := {u ∈ MRp(X,D) : u(0) = 0} is its kernel (a closed
subspace, by continuity ofδ0), q is the canonical quotient map,b is the canoni-
cal bijection onto the range ofδ0, and i is the canonical injection. The quotient
space MRp(X,D)/MR0

p(X,D) is clearly a Banach space and‖ · ‖Trp is the natural
norm which turnsb into an isometric isomorphism. In the literature, the tracespace
Trp(X,D) is also denoted by(X,D) 1

p′ ,p
(with p′ = p

p−1); it is a particular example

in the scale of so-called real interpolation spaces(X,D)θ ,p which depend on two
parameters (0< θ < 1, 1≤ p≤ ∞ or (θ , p) = (1,∞)); see [Lunardi (1995), Chapter
1], [Lunardi (2009)]. One has

D ⊆ Trp(X,D) ⊆ X,

and the embeddings are dense and continuous. It is also true –but a little bit less
obvious to prove – that

MRp(X,D) ⊆C([0,1];Trp(X,D))

with dense and continuous embedding. Using translations and dilations, it is clear
from this embedding that for everya, b∈ R, a < b, one has

W1,p(a,b;X)∩Lp(a,b;D) →֒C([a,b];Trp(X,D)). (9.1)
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9.2 Time regularity – Angenent’s trick

Let D andX be two Banach spaces such thatD is densely and continuously em-
bedded intoX. Let F : D → X be a continuously differentiable function and let
f : [0,T] → X be an integrable function. In this section we study the regularity of
solutions of the abstract differential equation

u̇+F(u) = f . (9.2)

Theorem 9.1 (Time regularity). Let p∈ [1,∞) and 0 < T < T ′. Assume that,
for some k≥ 1, the composition operatorF : W1,p(0,T;X) ∩ Lp(0,T;D) →
Lp(0,T;X), u 7→ F(u) = F ◦ u is k times continuously differentiable. Let f∈
Wk,p(0,T ′;X), and let u∈W1,p(0,T ′;X)∩Lp(0,T ′;D) be a solution of(9.2) in the
sense that the equality holds almost everywhere on(0,T ′). Assume that the linear
problem

{
v̇+F ′(u)v = g

v(0) = 0,
(9.3)

admits for every g∈ Lp(0,T;X) a unique solution v∈W1,p(0,T;X)∩Lp(0,T;D).
Then

u∈Wk+1,p
loc ((0,T];X)∩Wk,p

loc ((0,T];D)∩Ck((0,T];Trp(X,D)) and

t 7→ t ju( j)(t) ∈W1,p(0,T;X)∩Lp(0,T;D) for every j= 0, . . . ,k.

If F and f are of class C∞, then u∈C∞((0,T];D).

Observe that we assume no higher regularity of the functionF, but we rather
assume higher regularity of the composition operatorF . Of course, one then pre-
sumes higher regularity of the functionF , but note carefully thatF ∈Ck alone does
in general not implyF ∈Ck. The implication “F ∈Ck ⇒ F ∈Ck” is true in special
situations, for example if one assumes additional growth conditions on the deriva-
tives ofF; see also Theorem 4.3. Here are two natural cases in which theregularity
assumption onF is satisfied (see Exercises).

a) The functionF : D → X is continuous and linear.

b) The functionF : D → X extends to ak times continuously differentiable func-
tion from Trp(X,D) into X.

c) The functionF : D → X is the sum of two functions as in (a) or (b).

Maximal regularity plays an important role in Theorem 9.1, in fact in two ways.
On the one hand, there is the maximal regularity assumption on the linear, nonau-
tonomous problem (9.3) (the linear operatorF ′(u) = F ′ ◦u depends in fact on time):
for every given right-hand sideg ∈ Lp(0,T;X) of (9.3) there exists a unique solu-
tion v such that the two terms on the left-hand side have the same regularity asg.
On the other hand, the existence of the solutionu of the problem (9.2), which is as-
sumed in Theorem 9.1, is in concrete applications obtained by some existence and
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maximal regularity result for which onlyf ∈ Lp(0,T;X) was assumed: two such
results are our Theorems 6.1 and 8.1 which are existence and maximal regularity
results for gradient systems. The maximal regularity assumptions in Theorem 9.1
are the optimal assumptions from the point of view of the proof in which we apply
the following classical theorem from calculus (see TheoremC.6 for the proof).

Theorem 9.2 (Implicit function theorem). Let X1, X2 and Y be three Banach
spaces, and let U⊆ X1 ×X2 be an open set. Let G: U → Y be continuously dif-
ferentiable. Letx̄ = (x̄1, x̄2) ∈ U be such that∂G

∂x2
(x̄) : X2 → Y is an isomorphism.

Then there exist neighbourhoodsU1 ⊆ X1 of x̄1 and U2 ⊆ X2 of x̄2, U1×U2 ⊆U, and
a continuously differentiable function g: U1 →U2 such that

{(x1,x2) ∈U1×U2 : G(x1,x2) = G(x̄1, x̄2)} = {(x1,g(x1)) : x1 ∈U1}.

If, in addition, G is k times continuously differentiable, then the implicit function g
is k times continuously differentiable, too.

Lemma 9.3.Let A: W1,p(0,T;X)∩Lp(0,T;D) → Lp(0,T;X) be a continuous, lin-
ear operator. Assume that the problem

{
v̇+Av= g

v(0) = 0,
(9.4)

admits for every g∈ Lp(0,T;X) a unique solution v∈W1,p(0,T;X)∩Lp(0,T;D).
Then, for every g∈ Lp(0,T;X) and every v0 ∈ Trp(X,D) the problem

{
v̇+Av= g

v(0) = v0,
(9.5)

admits a unique solution v∈W1,p(0,T;X)∩Lp(0,T;D).

Proof. Uniqueness of solutions of (9.5) follows from linearity anduniqueness of
solutions of (9.4). In order to show existence, letg∈ Lp(0,T;X) andv0 ∈ Trp(X,D).
By definition of the trace space (we use in fact the definition and a dilation of the
interval (0,1) onto (0,T)), there existsw ∈ W1,p(0,T;X)∩ Lp(0,T;D) such that
w(0) = v0. For this functionw one has ˙w+Aw∈ Lp(0,T;X). By assumption, there
exists a uniquez∈W1,p(0,T;X)∩Lp(0,T;D) which is solution of

{
ż+Az= g− ẇ−Aw,

z(0) = 0.

Settingv = w+z, we obtain a solution of (9.5).

Proof (Proof of Theorem 9.1).It is useful to set

MRp(0,T;X,D) := W1,p(0,T;X)∩Lp(0,T;D).
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Let ε ∈ (0, T ′−T
T ). For everyλ ∈ (−ε,ε) and everyt ∈ (0,T) we define

uλ (t) := u(t + λ t).

Then, for everyλ ∈ (−ε,ε) the functionuλ belongs to MRp(0,T;X,D) and it solves
the nonlinear problem

{
u̇λ +(1+ λ )F(uλ ) = (1+ λ ) f ((1+ λ )·),
uλ (0) = u(0).

(9.6)

Starting from this observation, we consider the nonlinear operator

G :(−ε,ε)×MRp(0,T;X,D) → Lp(0,T;X)×Trp(X,D),

(λ ,v) 7→ (v̇+(1+ λ )F(v)− (1+ λ ) f ((1+ λ )·),v(0)−u(0)).

It follows from the assumptions –F is k times continuously differentiable and
f ∈ Wk,p(0,T ′;X) –, that the operatorG is k times continuously differentiable.
Moreover, by definition of the operatorG, and since the functionsuλ are solutions
of (9.6), one has

G(λ ,uλ ) = (0,0) for everyλ ∈ (−ε,ε).

We show thatG satisfies the assumptions of the implicit function theorem at
(0,u) = (0,u0). For this, we have to consider the partial derivative∂G

∂v at(0,u) which
is the linear operator given by

∂G
∂v

(0,u) : MRp(0,T;X,D) → Lp(0,T;X)×Trp(X,D),

v 7→ (v̇+F ′(u)v,v(0)).

Observe at this point that, by our assumption on the linear problem (9.3) and by
Lemma 9.3, the problem

{
v̇+F ′(u)v = g

v(0) = v0,

admits for everyg ∈ Lp(0,T;X) and everyv0 ∈ Trp(X,D) a unique solution
v ∈ MRp(0,T;X,D). In other words, the operator∂G

∂v (0,u) is bijective. By the

bounded inverse theorem, the linear operator∂G
∂v (0,u) is continuously invertible.

Hence, by the implicit function theorem, there existsε ′ ∈ (0,ε), a neighbourhood
U ⊆ MRp(0,T;X,D) of u, and ak times continuously differentiable implicit func-
tion g : (−ε ′,ε ′) →U such that

G(λ ,g(λ )) = G(0,u0) = (0,0).

Moreover,all solutions in(−ε ′,ε ′)×U of the equationG(λ ,v) = (0,0) are of the
form (λ ,g(λ )). Since, for everyλ ∈ (−ε ′,ε ′), the elements(λ ,uλ ) are solutions
of this equation, we obtain thatuλ = g(λ ). In particular, we have obtained that the
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function

g : (−ε ′,ε ′) → MRp(0,T;X,D),

λ 7→ uλ = u((1+ λ )·),

is k times continuously differentiable. This is the desired information. Since the
point evaluation MRp(0,T;X,D)→X, v 7→ v(t) is linear, we obtain that the function
λ → u(t + λ t) is k times continuously differentiable with values inX. In particular,

u is k times continuously differentiable with values inX and d j

dλ j u(t + λ t)|λ=0 =

t ju( j)(t) for everyt ∈ (0,T) and everyj ∈ {0, . . . , k}. Coming back to the function
g, we see that the consecutive derivatives ofg at λ = 0 are given by

t 7→ tu̇(t) ∈ MRp(0,T;X,D),

...

t 7→ tku(k)(t) ∈ MRp(0,T;X,D).

This is the stated regularity of the solutionu.

9.3 Exercises

In order to formulate the exercises, consider first the following definition and the
extension of the implicit function theorem (see [Zeidler (1990), Corollary 4.23]).
Let X andY be two Banach spaces, and letU ⊆ X be an open set. We say that a
functionF : U →Y is analytic if it is infinitely many times differentiable, and if for
everyx∈U there existsr > 0 such that

∞

∑
k=0

1
k!

‖F(k)(x)‖ rk < ∞ and

F(x+h) =
∞

∑
k=0

1
k!

F(k)(x)hk for everyh∈ X with ‖h‖ ≤ r andx+h∈U.

In this definition,F (k)(x) is thek-th derivative ofF at the pointx. It is identified with
a k-linear operatorX×·· ·×X →Y, andF(k)(x)hk stands forF (k)(x)(h, . . . ,h) (the
k-th derivative applied to the vector withk identical entriesh). For everyx∈U the
supremum over allr > 0 such that the above relations are true is called theradius
of convergence ofF at x.

Theorem 9.4 (Addendum to the implicit function theorem, ).If, in the implicit
function theorem 9.2 the function G is analytic, then the implicit function g is ana-
lytic, too.
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9.1. a) By analyzing the proof of Theorem 9.1, by using the addendum to the Im-
plicit function theorem, and by using the embedding (9.1), prove the following
result.

Theorem 9.5 (Addendum to Theorem 9.1).If, in Theorem 9.1, the function
F is analytic and f= 0, then the solution u: (0,T)→ Trp(X,D) is analytic (u
is even analytic with values in D). Morever, if r(t) is the radius of convergence
of u at t∈ (0,T), then r(t) ≥ ct for some constant c> 0 independent of t.

b) Every continuous linear operator is analytic. Starting from this observation,
prove the following: Assume thatA : D → X is a continuous, linear operator,
and that the linear problem

{
u̇+Au= f ,

u(0) = 0
(9.7)

hasLp-maximal regularity in the sense that for everyf ∈ Lp(0,T;X) it ad-
mits a unique solutionu∈W1,p(0,T;X)∩Lp(0,T;D). Show that then for ev-
ery u0 ∈ Trp the initial value problem

{
u̇+Au= 0,

u(0) = u0

(9.8)

admits a unique solutionu∈W1,p(0,T;X)∩Lp(0,T;D). This solution is ana-
lytic on (0,T) with values in Trp and there existsc > 0 such that the radius of
convergencer(t) of u at t satisfiesr(t) ≥ ct.

Remark for the reader who is familiar with the theory of linearC0-semigroups. It
has been shown in [Dore (1993)] that if the problem (9.7) hasLp-maximal regularity,
then−A with domainD generates an analyticC0-semigroup. Theorem 9.5 may be
seen as a nonlinear variant of this result.

9.2 (Nemytski operators).Let F : R → R be continuously differentiable.

a) Show that for every compactK ⊆ R one has

lim
h→0

F(s+h)−F(s)−F ′(s)h
h

= 0 uniformly in s∈ K.

b) LetΩ ⊆Rd be an open set. Show that the composition operatorF : L∞(Ω)→
L∞(Ω), u 7→ F(u) = F ◦u is continuously differentiable and that for everyu,
h∈ L∞(Ω)

F
′(u)h = F ′(u(·))h(·) almost everywhere onΩ .

Remark. The operator, which maps every functionm∈ L∞(Ω) to the multi-
plication operatorM ∈ L (L∞(Ω)) given byMu(x) := m(x)u(x) (u∈ L∞(Ω),
x∈ Ω ), is isometric. We may therefore identify its range withL∞(Ω). In this
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sense, we may identify the derivativeF ′(u) ∈ L (L∞(Ω)) with the function
F ′(u) ∈ L∞(Ω). With this identification,F ′ is again a Nemytski operator.

c) Show that ifF is k times continuously differentiable, thenF is k times con-
tinuously differentiable.

d) Show that ifF is analytic, thenF is analytic, too.

9.3.Prove statements (a)-(c) on page 101.

9.4. It may be instructive to consider the problem of regularity of solutions of the
ordinary differential equation

u̇+F(u) = 0,

whereF : Rd →Rd is a continuous functions. Show by induction that if the function
F is k times continuously differentiable (k≥ 0), then every solution of this differen-
tial equation isk+1 times continuously differentiable (solution is meant here in the
sense of Lectures 1 and 2. Compare your proof to the proof of Theorem 9.1. What
about the case of analyticF?



Lecture 10
Existence of local solutions

In many textbooks on differential calculus, one can find the implicit function the-
orem and the local inverse theorem nearby. Depending on the particular textbook,
one theorem is deduced from the other, and perhaps it is justified to call them
brother and sister. Lecture 9 and the present lecture are somehow a copy of this
reality in textbooks, because implicit function theorem and local inverse theorem
appear nearby; we apply them both, in fact, to the same evolution equation.

Once again, in this lecture we turn our attention to the abstract differential equa-
tion

u̇+F(u) = f .

While in the preceding lecture we applied the implicit function theorem in order to
prove regularity of solutions, in this lecture we prove existence of local solutions by
the help of the local inverse theorem. It turns out that we meet in the assumptions
of both theorems the same linear problem for which one has to prove existence,
uniqueness and maximal regularity. Once one has existence,uniqueness and
maximal regularity for the linear problem,existenceof solutions is an immediate
consequence of the local inverse theorem (Theorem 10.1 below).

In the second part of this lecture, we show how Theorems 9.1 and 10.1 may be
applied to a semilinear diffusion equation, or, more precisely, to a gradient system
associated with a semilinear diffusion equation. Due to theimportance of an exis-
tence, uniqueness and maximal regularity result for a linear problem, Theorem 6.1
on the existence and uniqueness of global solutions of gradient systems becomes
in this example an essential ingredient, although its application in the example of
the semilinear diffusion equation is a little bit hidden. Find the two places where
Theorem 6.1 is applied.

107
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10.1 The local inverse theorem and existence of local solutions of
abstract differential equations

Let D andX be two Banach spaces such thatD is densely and continuously embed-
ded intoX. Let F : D → X be a continuously differentiable function,p≥ 1, T > 0,
f ∈ Lp(0,T;X), andu0 ∈ Trp(X,D). We study existence of local solutions of the
abstract differential equation

{
u̇+F(u) = f ,

u(0) = u0.
(10.1)

As in the previous lecture, for simplicity of notation, we let

MRp(0,T;X,D) := W1,p(0,T;X)∩Lp(0,T;D),

and we call a functionu ∈ MRp(0,T ′;X,D) (0 < T ′ ≤ T) a (local) solution if it
satisfies the initial conditionu(0) = u0 and the differential equation ˙u+ F(u) = f
almost everywhere on(0,T ′).

Theorem 10.1 (Existence of local solutions).Assume that the composition oper-
ator MRp(0,T;X,D) → Lp(0,T;X), u 7→ F(u) = F ◦ u is everywhere defined and
continuously differentiable. Assume further that there exists ū ∈ MRp(0,T;X,D)
such thatū(0) = u0 and for every g∈ Lp(0,T;X) the linear problem

{
v̇+F ′(ū)v = g

v(0) = 0,
(10.2)

admits a unique solution v∈ MRp(0,T;X,D). Then the problem(10.1)admits a
local solution.

The proof of this theorem is almost an immediate consequenceof the local in-
verse theorem (see Theorem C.5).

Theorem 10.2 (Local inverse theorem).Let X and Y be two Banach spaces and
let U ⊆ X be open. Let G: U → Y be a continuously differentiable function and
let x̄∈U be such that G′(x̄) : X →Y is an isomorphism, that is, continuous, linear,
bijective and the inverse is also continuous. Then there exist neighbourhoodsV⊆U
of x̄ and W⊆ Y of G(x̄) such that G: V →W is a C1 diffeomorphism, that is G is
continuously differentiable, bijective and the inverse G−1 : W →V is continuously
differentiable, too.

Proof (of Theorem 10.1).Consider the operator

G : MRp(0,T;X,D) → Lp(0,T;X)×Trp(X,D),

u 7→ (u̇+F(u),u(0)).
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By the assumption onF , and since the mappingsu 7→ u̇ andu 7→ u(0) are continuous
and linear, the operatorG is continuously differentiable. Its derivative at a point
u∈ MRp(0,T;X,D) is the linear operator given by

G′(u) : MRp(0,T;X,D) → Lp(0,T;X)×Trp(X,D),

v 7→ (v̇+F ′(u)v,v(0)).

Observe that the assumption on the linear problem (10.2), together with Lemma
9.3, just translates the fact thatG′(ū) is bijective. Therefore, by the bounded in-
verse theorem,G′(ū) is an isomorphism. By the local inverse theorem (Theorem
10.2), there exists a neighbourhoodV ⊆ MRp(0,T;X,D) of ū and a neighbourhood
W ⊆ Lp(0,T;X)×Trp(X,D) of G(ū) = ( ˙̄u+F(ū),u0) such thatG : V →W is aC1

diffeomorphism. In particular, for every(h,z0) ∈W there exists a uniquez∈V such
that {

ż+F(z) = h,

z(0) = z0.
(10.3)

ForT ′ ∈ (0,T], consider the functionh∈ Lp(0,T;X) given by

h(t) =

{
f (t) if t ∈ (0,T ′),

˙̄u+F(ū) if t ∈ (T ′,T).

Let T ′ > 0 be small enough, so that(h,u0) ∈W. Let z∈V be the solution of (10.3)
and letu∈ MRp(0,T ′;X,D) be the restriction ofz to the interval(0,T ′). Thenu is
a solution of (10.1).

10.2 Gradients of quadratic forms and identification of the trace
space

Let V andH be two separable Hilbert spaces with inner products〈·, ·〉V and〈·, ·〉H ,
respectively, and assume thatV is continuously and densely embedded intoH. Con-
sider the quadratic formE : V → R, E (u) = 1

2 ‖u‖2
V , and let∇HE be the gradient of

E with respect to the inner product〈·, ·〉H . We recall from Exercise 8.2 that∇HE is
a linear operator and that the domainD := D(∇HE ) is a Hilbert space for the inner
product

〈u,v〉D := 〈∇HE (u),∇HE (v)〉H + 〈u,v〉H (u, v∈ D).

One has
D ⊆V ⊆ H

with continuous embeddings. Moreover, the space

MR2(0,T;H,D) := W1,2(0,T;H)∩L2(0,T;D)
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is a Hilbert space for the inner product

〈u,v〉MR2 :=
∫ T

0
〈u(t),v(t)〉D dt+

∫ T

0
〈u̇(t), v̇(t)〉H dt.

We omit the proof of the following lemma. It is very similar tothe proof that
C1([0,T]) is dense inW1,p(0,T) (compare with Corollary G.13).

Lemma 10.3.The space C1([0,T];D) is dense inMR2(0,T;H,D).

Lemma 10.4.For every u∈ MR2(0,T;H,D) one has‖u‖2
V ∈W1,1(0,T) and

1
2

d
dt
‖u‖2

V = 〈∇HE (u), u̇〉H ,

the derivative on the left-hand side of this inequality being the weak derivative.

Proof. If u ∈ C1([0,T];D), then the function‖u‖2
V is continuously differentiable

and, by definition of the gradient∇HE ,

d
dt
‖u‖2

V =
d
dt
〈u,u〉V = 2〈u, u̇〉V = 2〈∇HE (u), u̇〉H .

Let u ∈ MR2(0,T;H,D). By Lemma 10.3, there exists a sequence(un) ⊆
C1([0,T];D) such that

un → u in L2(0,T;D),

∇HE (un) → ∇HE (u) in L2(0,T;H), and (10.4)

u̇n → u̇ in L2(0,T;H).

By the above calculation and by the rule of integration by parts, for everyϕ ∈
C1

c(0,T) and everyn,

∫ T

0
‖un‖2

V ϕ̇ = −2
∫ T

0
〈∇HE (un), u̇n〉H ϕ .

The convergences in (10.4) allow us to pass to the limit on both sides of this equa-
tion. We thus obtain that for everyu∈ MR2(0,T;H,D) and everyϕ ∈C1

c(0,T)

∫ T

0
‖u‖2

V ϕ̇ = −2
∫ T

0
〈∇HE (u), u̇〉H ϕ .

The claim follows from this equality, the definition of the Sobolev spaceW1,1(0,1)
and the fact that, by the Cauchy-Schwarz inequality,〈∇HEω(u), u̇〉H ∈ L1(0,T).

Lemma 10.5.One has

MR2(0,T;H,D) ⊆C([0,T];V),

with continuous embedding.
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Proof. For everyu ∈ C1([0,T];D) we have, by Lemma 10.4, and by continuity of
the Sobolev embeddingW1,1(0,T) ⊆C([0,T]) (applied to the function‖u‖2

V)

‖u‖2
C([0,T];V) = sup

t∈[0,T ]

‖u(t)‖2
V = ‖‖u‖2

V ‖∞

≤C
(
∫ T

0
‖u(t)‖2

V dt+
∫ T

0

∣
∣

d
dt
‖u(t)‖2

V

∣
∣ dt
)

≤C
(
∫ T

0
‖u(t)‖2

D dt+2
∫ T

0
‖∇HE (u(t))‖H ‖u̇(t)‖H dt

)

≤C‖u‖2
MR2(0,T;H,D).

The constantsC here may change from line to line, they depend on the Sobolev
embedding constant and on the constant of the embeddingD →֒V, but they do not
depend onu. The claim thus follows from this estimate and Lemma 10.3.

Lemma 10.6.One hasTr2(H,D) = V.

Proof. The inclusion Tr2(H,D)⊆V is a direct consequence of Lemma 10.5. For the
other inclusion, recall that, by Theorem 6.1, for everyu0 ∈V the gradient system

{
u̇+ ∇HE (u) = 0,
u(0) = u0,

admits a (unique) solutionu ∈ W1,2(0,1;H) ∩ L∞(0,1;V). Since ∇HE (u) =
−u̇ ∈ L2(0,T;H), this solution belongs also toL2(0,1;D), and consequently to
MR2(0,1;H,D). Thus, by solving the gradient system, we have proved that for ev-
ery u0 ∈ V there existsu∈ MR2(0,1;H,D) such thatu(0) = u0. Sinceu0 ∈ V was
arbitrary, this proves the inclusionV ⊆ Tr2(H,D).

Example 10.7.Let V = H1
0(0,1) and H = L2(0,1). We equipL2(0,1) with the

usual L2 inner product, andH1
0(0,1) with the inner product〈u,v〉H1

0
=
∫ 1

0 u′v′.
By Poincaré’s inequality, this inner product is equivalent to the usual inner prod-
uct which is induced fromH1(0,1) (Exercise 4.7). The gradient of energyE :
H1

0(0,1) → R, E (u) = 1
2 ‖u‖2

H1
0

with respect to the usualL2 inner product is the

negative Dirichlet-Laplace operator onL2(0,1), that is

D(∇L2E ) = H2(0,1)∩H1
0(0,1),

∇L2E (u) = −u′′ = − D
(0,1)∆u;

see Lecture 3. By Lemma 10.6, we therefore find

Tr2(L
2(0,1),H2(0,1)∩H1

0(0,1)) = H1
0(0,1). (10.5)

Remark 10.8. a) More generally, ifΩ ⊆Rd is a bounded, open set, and ifD
Ω ∆ is

the Dirichlet-Laplace operator onL2(Ω) (see Lecture 4), then

Tr2(L
2(Ω),D(D

Ω ∆)) = H1
0(Ω).
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One may argue as in the preceding example, by noting that the Poincaré
inequality holds for every bounded openΩ ⊆ Rd ([Adams (1975)],
[Brézis (1992)]).

b) It is actually not necessary to appeal to Poincaré’s inequality, for Lemma 10.6
remains true in a slightly more general setting. Assume thatE : V → R is
a continuous,H-elliptic, quadratic form. Still, by Exercise 8.2, the gradient
∇HE is a linear operator and the domainD := D(∇HE ) is a Hilbert space.
The equality

Tr2(H,D) = V

is still true in this situation (Exercise).

c) In particular, ifH = L2(0,1) andD = {u∈ H2(0,1) : u′(0) = u′(1) = 0}, then

Tr2(H,D) = H1(0,1).

This can be seen by considering the Neumann-Laplace operator on L2(0,1),
for D is just the domain of this operator, andH1(0,1) is the domain of the
associated energy (see Exercise 4.3).

10.3 A semilinear diffusion equation

Let f : R → R bek times continuously differentiable for somek ≥ 1, and consider
the semilinear diffusion equation







ut −uxx+ f (u) = 0 in (0,∞)× (0,1),

u(t,0) = u(t,1) = 0 for t ∈ (0,∞),

u(0,x) = u0(x) for x∈ (0,1).

(10.6)

We rewrite the equation (10.6) as an abstract gradient system and we prove
existence and regularity of a solution for that problem. We consider the energy
E : H1

0(0,1) → R given by

E (u) =
1
2

∫ 1

0
u2

x +

∫ 1

0
F(u),

whereF(s) =
∫ s

0(r) dr. By Exercise 4.6, the energyE is continuously differentiable.
Moreover, if∇L2E is the gradient with respect to the usualL2 inner product, then

D(∇L2E ) = H2(0,1)∩H1
0(0,1),

∇L2E (u) = − D
(0,1)∆u+ f (u).
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Here D
(0,1)∆ is the Dirichlet-Laplace operator onL2(0,1) as it was defined in Lec-

ture 3, andf is the composition operatorH1
0(0,1)→ L2(0,1), u 7→ f (u) = f ◦u; we

use the same letter for the original functionf and any composition operator asso-
ciated with this function since we think that there is no danger of confusion. In the
following, we denote

H := L2(0,1),

V := H1
0(0,1), and

D := D(∇L2E ) = H2(0,1)∩H1
0(0,1).

Recall from Example 10.7 that

Tr2(L
2(0,1),H2(0,1)∩H1

0(0,1)) = H1
0(0,1).

Moreover, by Lemma 10.5, and by the Sobolev embeddingH1
0(0,1) ⊆ C([0,1])

(Theorem 5.11), we have the continuous embeddings

MR2(0,T;H,D) ⊆C([0,T];H1
0(0,1)) ⊆C([0,T];C([0,1])). (10.7)

Throughout this section, we deliberately use the identifications

C([0,T];C([0,1])) = C([0,T]× [0,1]) and

C((0,T];C([0,1])) = C((0,T]× [0,1])

and their consequences. It follows from these identifications that we may identify
a solutionu of the gradient system (10.8) below with a real-valued function of two
variables (time and space variable), or, vice versa, we may identify a solution of
the semilinear diffusion equation (10.6) with an element ofa Bochner or Bochner-
Sobolev space. The aim is of course to show that every solution of the gradient sys-
tem (10.8) below gives rise to a solution of the semilinear diffusion equation (10.6),
and vice versa. However, here we concentrate on the abstractgradient system.

Theorem 10.9.For every u0 ∈ H1
0(0,1) the problem

{

u̇− D
(0,1)∆u+ f (u) = 0,

u(0) = u0,
(10.8)

admits a unique local solution

u∈ MR2(0,T;H,D) satisfying in addition

u∈Wk+1,2
loc ((0,T];L2(0,1))∩Wk,2

loc ((0,T];H2(0,1))∩Ck((0,T];H1
0(0,1)).

This theorem is an application of the Theorems 10.1 and 9.1. In order to be able
to apply both theorems, we need the following lemmas.

Lemma 10.10. a) The gradient∇L2E : D → H is of class Ck.
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b) The composition operatorMR2(0,T;H,D) → L2(0,T;H), u 7→ ∇L2E (u)
is everywhere defined and of class Ck. The derivative (∇L2E )′(u) :
MR2(0,T;H,D) → L2(0,T;H) at a point u is given by

(∇L2E )′(u)v = − D
(0,1)∆v+ f ′(u)v,

where f′(u)v stands for the pointwise multplication of the composite function
f ′(u) = f ′ ◦u and the function v.

Proof. The Dirichlet-Laplace operator is continuous and linear from D into H.
Hence, by Exercise 9.3, it suffices to study only the composition operator (Nemytski
operator) associated with the functionf .
(a) We may factorize the composition operator associated with f in the following
way:

D
f−−−−→ H

i



y

x

i

C([0,1]) −−−−→
f

C([0,1])

,

where i stands for the natural embeddings. The natural embeddingD ⊆ C([0,1])
is continuous by the Sobolev embedding theorem (Theorem 5.11), and the natural
embeddingC([0,1]) ⊆ H is continuous as a consequence of Hölder’s inequality.
With this factorization, since the embeddingsi are linear (and therefore of classC∞),
and since the composition operator associated withf leaves theC([0,1]) invariant,
the claim follows from Exercise 9.2.
(b) We may factorize the composition operator associated with f in the following
way:

MR2(0,T;H,D)
f−−−−→ L2(0,T;H)

i



y

x

i

C([0,T];C([0,1])) C([0,T];C([0,1]))

b



y

x

b

C([0,T]× [0,1]) −−−−→
f

C([0,T]× [0,1])

,

wherei stands for the natural embeddings andb for the natural bijections. In the
first embedding on the left, we used (10.7). With the above factorization, since the
operatorsi andb are linear, and since the composition operator associated with f
leaves theC([0,1]) invariant, the claim follows from Exercise 9.2.

Lemma 10.11.For every T> 0, every c∈ L2(0,T;L2(0,1)), every v0 ∈ H1
0(0,1)

and every g∈ L2(0,T;L2(0,1)) the problem

{

v̇− D
(0,1)∆v+cv= g,

v(0) = v0

(10.9)
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admits a unique solution v∈ MR2(0,T;H,D).

The first line in (10.9) means ˙v(t)− D
(0,1)∆v(t)+ c(t)v(t) = g(t) for almost ev-

ery t ∈ (0,T) (equality in L2(0,1)), and the termc(t)v(t) stands for the point-
wise multiplication of the functionsc(t) ∈ L2(0,1) andv(t) ∈ H1

0(0,1) ⊆C([0,1]).
Note that, by the embedding (10.7), for everyv ∈ MR2(0,T;H,D) and every
c∈ L2(0,T;L2(0,1)) one hascv∈ L2(0,T;L2(0,1)). In the proof of Lemma 10.11
we need the following variant of Gronwall’s lemma.

Lemma 10.12 (Gronwall).Letλ : [a,b]→R be integrable, and letϕ : [a,b]→R be
a continuous functions on the bounded interval[a,b]. Assume that, for some C≥ 0
and every t∈ [a,b],

ϕ(t) ≤C+

∫ t

a
λ (s)ϕ(s) ds.

Then, for every t∈ [a,b],
ϕ(t) ≤CeΛ(t),

whereΛ(t) =
∫ t

0 λ (s) ds.

Proof (of Lemma 10.11).Fix T > 0. It suffices to show that for everyc ∈
L2(0,T;L2(0,1)) the linear operator

Gc : MR2(0,T;H,D) → L2(0,T;L2(0,1))×H1
0(0,1),

v 7→ (v̇− D
(0,1)∆v+cv,v(0))

is an isomorphism. Consider the set

C := {c∈ L2(0,T;L2(0,1)) : Gc is an isomorphism}.

For everyc1, c2 ∈ L2(0,T;L2(0,1)) one has

‖Gc1 −Gc2‖L = sup
‖u‖MR2

≤1
‖Gc1u−Gc2u‖L2(0,T;L2)×H1

0

= sup
‖u‖MR2

≤1
‖(c1−c2)u‖L2(0,T;L2)

≤ sup
‖u‖MR2

≤1
‖c1−c2‖L2(0,T;L2) ‖u‖L∞(0,T;L∞)

≤C‖c1−c2‖L2(0,T;L2),

whereC is the constant of the embedding (10.7). Hence, the mappingc 7→ Gc is
continuous from the spaceL2(0,T;L2(0,1)) into the space of continuous linear op-
erators from MR2(0,T;H,D) into L2(0,T;L2(0,1))×H1

0(0,1). Since the isomor-
phisms form an open subset in the set of all continuous, linear operators, we see that
C is open.

Next, we remark that forc≡ 0, the problem (10.9) is nothing else than equation
(7.11). By Theorem 7.1, for everyg ∈ L2(0,T;L2(0,1)) and everyu0 ∈ H1

0(0,1)
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the problem (10.9) (withc≡ 0) admits a unique solutionv∈W1,2(0,T;L2(0,1))∩
L∞(0,T;H1

0(0,1)). It follows from equation (10.9) that this solution satisfies
D

(0,1)∆v ∈ L2(0,T;H), and hencev ∈ MR2(0,T;H,D). Hence,G0 is continuous,
linear and bijective. By the bounded inverse theorem, the operatorG0 is an iso-
morphism. Hence, the setC is nonempty.

Finally, let c ∈ C. Let g ∈ L2(0,T;L2(0,1)), v0 ∈ H1
0(0,1), and let v ∈

MR2(0,T;H,D) be the unique solution of the problem (10.9). By Lemma 10.4,
the functiont 7→ ‖v(t)‖2

H1
0

belongs toW1,1(0,T) and

1
2

d
dt
‖v‖2

H1
0

= −〈 D
(0,1)∆v, v̇〉L2.

Hence, if we multiply equation (10.9) by ˙v with respect to theL2 inner product and
integrate the result over(0, t) (with t ∈ (0,T)), then we obtain

∫ t

0
‖v̇‖2

L2 +
1
2
‖v(t)‖2

H1
0

=
1
2
‖v0‖2

H1
0
+

∫ t

0
〈g−cv, v̇〉L2

≤ 1
2
‖v0‖2

H1
0
+

∫ t

0
‖g‖2

L2 +

∫ t

0
‖c‖2

L2 ‖v‖2
L∞ +

1
2

∫ t

0
‖v̇‖2

L2,

or

1
2

∫ t

0
‖v̇‖2

L2 +
1
2
‖v(t)‖2

H1
0
≤ 1

2
‖v0‖2

H1
0
+

∫ T

0
‖g‖2

L2 +

∫ t

0
‖c‖2

L2 ‖v‖2
H1

0
. (10.10)

Here, we have also applied the Sobolev embedding theorem (Theorem 5.11). By the
variant of Gronwall’s lemma (Lemma 10.12), the preceding inequality implies that

1
2
‖v(t)‖2

H1
0
≤ (

1
2
‖v0‖2

H1
0
+

∫ T

0
‖g‖2

L2)e2
∫ t
0 ‖c‖2

L2 for everyt ∈ (0,T).

When we insert this estimate into (10.10), we obtain that foreveryt ∈ (0,T)

1
2

∫ t

0
‖v̇‖2

L2 +
1
2
‖v(t)‖2

H1
0
≤ (

1
2
‖v0‖2

H1
0
+
∫ T

0
‖g‖2

L2)e2
∫ t
0 ‖c‖2

L2 .

Hence,

‖v̇‖2
L2(0,T;L2) +

1
2
‖v‖2

L∞(0,T;H1
0 )
≤ 2e

2‖c‖2
L2(0,T;L2) (

1
2
‖v0‖2

H1
0
+
∫ T

0
‖g‖2

L2).

From equation (10.9) and the Sobolev embeddingH1
0(0,1) ⊆C([0,1]) we obtain

‖ D
(0,1)∆v‖L2(0,T;L2) ≤ ‖v̇‖L2(0,T;L2) +‖c‖L2(0,T;L2) ‖v‖L∞(0,T;H1

0 ) +‖g‖L2(0,T;L2).

This inequality and the preceding estimate finally imply that for everyR≥ 0 there
existsKR ≥ 0 such that whenever‖c‖L2(0,T;L2) ≤ R, then
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‖v‖2
MR2

= ‖G−1
c (g,v0)‖2

MR2
≤ KR(‖g‖2

L2(0,T;L2) +‖v0‖2
H1

0
).

In other words,G−1
c is uniformly bounded wheneverc varies in bounded subsets of

C. This implies thatC must be closed.
SinceC ⊆ L2(0,T;L2(0,1)) is open, closed and nonempty, and since the space

L2(0,T;L2(0,1)) is connected, we obtain thatC = L2(0,T;L2(0,1)). The claim fol-
lows from the definition ofC and sinceT > 0 was arbitrary.

Proof (of Theorem 10.9).Existence.Let u0 ∈H1
0(0,1). Since, by Lemma 10.6,V =

H1
0(0,1) = Tr2(H,D), we can choose ¯u∈ MR2(0,1;H,D) such that ¯u(0) = u0. By

(10.7),ū∈C([0,1];C([0,1])), and therefore

f ′(ū) ∈C([0,1];C([0,1])) ⊆ L2(0,1;L2(0,1)),

since f ′ is continuous. By Lemma 10.11, for everyg∈ L2(0,1;L2(0,1)) and every
v0 ∈ H1

0(0,1), the problem

{

v̇− D
(0,1)∆v+ f ′(ū)v = g,

v(0) = v0

admits a unique solutionv ∈ MR2(0,1;H,D). Since, by Lemma 10.10,
(∇L2E )′(ū)v = − D

(0,1)∆v+ f ′(ū)v, we may therefore apply Theorem 10.1 and we
obtain a local solutionu∈ MR2(0,T ′;H,D) of the problem (10.8). Again, for this
solution we have

f ′(u) ∈C([0,T];C([0,1])) ⊆ L2(0,T;L2(0,1)) (T ∈ (0,T ′)),

since f ′ is continuous. By Lemma 10.11, for everyg∈ L2(0,T;L2(0,1)) and every
v0 ∈ H1

0(0,1), the problem

{

v̇− D
(0,1)∆v+ f ′(u)v = g,

v(0) = v0

admits a unique solutionv∈ MR2(0,T;H,D). By Theorem 9.1 and Lemma 10.10,
we obtain that the solution satisfies the stated regularity.
Uniqueness.See Exercises.

10.4 Exercises

10.1.Let V andH be two Hilbert spaces such thatV is densely and continuously
embedded intoH. Let E : V → R be a continuous,H-elliptic, quadratic form. By
Exercise 8.2, the gradient∇HE is a linear operator and the domainD := D(∇HE )
is a Hilbert space. Show the equality
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Tr2(H,D) = V.

10.2 (Gronwall’s lemma).Prove the Lemma 10.12.

10.3.Prove the uniqueness of local solutions in Theorem 10.9.
Hint: Assume thatu∈ MR2(0,T;H,D) andv∈ MR2(0,T ′;H,D) are two local so-
lutions. By using the embedding (10.7) and the fact that the function f is locally Lip-
schitz continuous, establish a differential inequality for the function‖u(·)−v(·)‖2

L2

(0≤ t ≤ min{T,T ′}).

10.4.Consider the semilinear diffusion equation






ut −uxx−u3 = 0 in (0,∞)× (0,1),

u(t,0) = u(t,1) = 0 for t ∈ (0,∞),

u(0,x) = u0(x) for x∈ (0,1).

(10.11)

This equation can be rewritten as an abstract gradient system for the energyE :
H1

0(0,1) → R given by

E (u) =
1
2

∫ 1

0
u2

x −
1
4

∫ 1

0
u4.

a) Show that the energyE is notL2(0,1)-elliptic.

b) Show that for everyu0 ∈ H1(0,1) satisfyingE (u0) < 0 the unique local solu-
tion of (10.8) (which exists by Theorem 10.9) can not be extended to a global
solution defined on(0,∞).
Hint. Multiply the gradient system (10.8) byu with respect to the usual
L2 inner product. By using thatE (u) is decreasing with respect to the time
variable, establish a differential inequality for‖u‖2

L2 and deduce that there
must be blow-up in finite time, that is, that there existsT < ∞ such that
limt→T− ‖u(t)‖2

L2 = ∞.



Lecture 11
Asymptotic behaviour of solutions of gradient
systems

The gradient system
u̇+ ∇gE (u) = 0 (11.1)

is a prototype example of a dissipative system, that is, by our loose definition from
Lecture 1, a system which admits an energy function. An energy function is, by def-
inition, a function which is decreasing along every solution. In the case of a gradient
system in finite-dimensional space, by Lemma 2.5, the functionE itself is an energy,
and it satsfies the stronger property that if it is constant along a solution then that so-
lution must already be constant. For gradient systems in infinite-dimensional spaces
we did not prove an analogous statement, but the energy inequalities in Theorems
6.1 and 8.1 and the energy equality in Lemma 10.5 indicate that some gradient sys-
tems in infinite-dimensional spaces are dissipative, too. Actually, we are not aware
of a gradient system which is not dissipative. Concerning the meaning of “dissipa-
tive” or “to dissipate”, let us recall the footnote from page11:

to dissipate (lat.: dissipare): to cause to lose energy (such as heat) irreversibly. Or: to
spend or expend intemperately or wastefully. Or: to attenuate to or almost to the point of
disappearing.

In this explanation, the last point is of particular interest in connection with
this lecture in which we study the asymptotic behaviour of solutions of gradient
systems. What does it mean, “to attenuate to or almost to the point of disappearing”?

First, it should be noted that, by Lemma 1.6, every limit point of a global solution
of a Euclidean gradient system is anequilibrium point , that is, a point in which the
gradient vanishes. It is not too difficult to see that this result is also true for general
gradient systems in finite-dimensional spaces, and for gradient systems in infinite-
dimensional spaces if some energy inequality is true along the solution (Lemma
11.3). A basic problem, however, is to know whether every global “bounded” solu-
tions has only one limit point, that is, whether it convergesto a single equilibrium
point = “ thepoint of disappearing”. Moreover, if a global, bounded solution con-
verges to a single equilibrium point, can we determine the rate of convergence? Such
questions are studied in this and the following lecture. Theproblem of convergence

119
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to equilibrium admits a sort of dichotomy: there is a relatively simple convergence
result which applies in situations where we know something about the topology of
the set of equilibrium points, in particular, that the set ofequilibrium points is dis-
crete (Theorem 11.4). However, if we know nothing about the set of equilibrium
points, or if we know that there is a continuum of equilibriumpoints, then the prob-
lem of convergence becomes very quickly quite involved. In general, we must say
that the above description of dissipativity does not coincide with the reality of gra-
dient systems: there exists an example of a bounded solutionof a gradient system
which does not converge! The existence of such an example wasalready suggested
in words by Curry in 1944; a concrete example was then given in1982 by Palis and
de Melo. We describe this example of a nonconvergent soltuion at the end of this
lecture.

11.1 Theω-limit set of a continuous function onR+

Let (M,d) be a metric space, and letu : R+ → M be a continuous function. The set

ω(u) = {ϕ ∈ M : there exists an unbounded(tn) ⊆ R+ such that lim
n→∞

u(tn) = ϕ}.

is called theω-limit set1 of u. Clearly, in this definition, by passing to appropriate
subsequences, one may replace “unbounded(tn)” by “unbounded and increasing
(tn)”. Alternatively, one may define theω-limit set in the following way.

Lemma 11.1.One has
ω(u) =

⋂

t≥0

{u(s) : s≥ t}.

Proof. Let ϕ ∈ ω(u). By definition, there exists an unbounded sequence(tn) ⊆ R+

such that limn→∞ u(tn) = ϕ . Since the sequence(tn) is unbounded, this impliesϕ ∈
{u(s) : s≥ t} for everyt ≥ 0, and henceϕ ∈⋂t≥0{u(s) : s≥ t}.

Conversely, letϕ ∈⋂t≥0{u(s) : s≥ t}. Then, for everyn∈N, ϕ ∈ {u(s) : s≥ n}.
In particular, for everyn ∈ N, there existstn ≥ n such thatd(u(tn),ϕ) ≤ 1

n. We
obtain therefore an unbounded sequence(tn) ⊆ R+ such that limn→∞ u(tn) = ϕ . By
definition,ϕ ∈ ω(u).

Lemma 11.2.Assume that u: R+ → M has relatively compact range. Then:

a) Theω-limit set is non-empty, compact and connected.

b) If one denotesdist(u(t),ω(u)) := inf{d(u(t),ϕ) : ϕ ∈ ω(u)}, then one has
limt→∞ dist(u(t),ω(u)) = 0.

1 The lettersα andω are the first and the last letter, respectively, of the greek alphabet. While the
“ω-limit set” gives information about the behaviour of a continuous function near+∞, the “α-limit
set” is defined analogously for a continuous function definedon R− and gives information about
the behaviour near−∞.
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c) The limit limt→∞ u(t) exists if and only ifω(u) contains exactly one element.

Proof. (a) Sinceu is continuous and has relatively compact range, for everyt ≥ 0
the setKt := {u(s) : s≥ t} is non-empty, compact and connected. Moreover, the
family (Kt ) is decreasing, that is,Kt ⊆ Ks for t ≥ s. Then the characterization from
Lemma 11.1 implies thatω(u) is non-empty, compact and connected, too.

(b) Assume that the claim is not true. Then there exists an unbounded se-
quence(tn) ⊆ R+ such that inf{dist(u(tn),ω(u)) : n ≥ 1} > 0. Sinceu has rela-
tively compact range, we can extract an unbounded subsequence (tnk) of (tn), and
find ϕ ∈ V such that limk→∞ u(tnk) = ϕ . By definition, ϕ ∈ ω(u). This implies
limk→∞ dist(u(tnk),ω(u)) = 0, a contradiction.

(c) If the limit limt→∞ u(t) =: ϕ exists, thenω(u) = {ϕ}; this follows from the
definition of theω-limit set. On the other hand, ifω(u) = {ϕ}, then (b) implies that
limt→∞ u(t) = ϕ .

11.2 A stabilisation result for global solutions of gradient systems

Let U be an open subset of a Banach spaceV which embeds densely and continu-
ously into a Hilbert spaceH. Let E : U → R be a continuously differentiable func-
tion, and letg : U → Inner(H) be a metric. We assume that there exists a constant
c≥ 0 such that

‖v‖H ≤ c‖v‖g(u) for everyv∈ H, u∈U. (11.2)

Lemma 11.3.Let u∈W1,2
loc (R+;H)∩C(R+;V) be a global solution of the gradient

system(11.1). Assume that u has relatively compact range in U, and that theenergy
inequality

∫ t

0
‖u̇(s)‖2

g(u(s)) ds+E (u(t)) ≤ E (u(0)) (11.3)

holds for every t∈ R+. Then everyω-limit point of u is anequilibrium point of E ,
that is, every elementϕ ∈ ω(u) satisfiesϕ ∈ D(∇gE ) and∇gE (ϕ) = 0.

Proof. Sinceu has relatively compact range inU , and sinceE is continuous on
U , the composite functionE (u) is necessarily bounded. Then the energy inequality
(11.3) implies that the integral

∫ ∞
0 ‖u̇(s)‖2

g(u(s)) ds is finite. By assumption (11.2),

the integral
∫ ∞

0 ‖u̇(s)‖2
H is thus finite, too.

Let ϕ ∈ ω(u). Then there exists an unbounded increasing sequence(tn) ⊆ R+

such that limn→∞ ‖u(tn)−ϕ‖V = 0. SinceV is continuously embedded intoH, and
by Hölder’s inequality, we obtain for everys∈ [0,1]

limsup
n→∞

‖u(tn +s)−ϕ‖H ≤ limsup
n→∞

(
‖u(tn)−ϕ‖H +

∫ tn+s

tn
‖u̇(r)‖H dr

)

≤ limsup
n→∞

(
∫ tn+s

tn
‖u̇(r)‖2

H dr
) 1

2 = 0.



122 11 Asymptotic behaviour of solutions of gradient systems

Using again the relative compactness of the range ofu and a sub-subsequence argu-
ment, this implies that

lim
n→∞

‖u(tn+s)−ϕ‖V = 0 for everys∈ [0,1].

By continuity ofE ′,

lim
n→∞

‖E ′(u(tn +s))−E
′(ϕ)‖V′ = 0 for everys∈ [0,1].

Therefore, by the dominated convergence theorem, by definition of the gradient, and
sinceu is a solution of the gradient system (11.1), for everyv∈V,

|〈E ′(ϕ),v〉| =
∣
∣

∫ 1

0
〈E ′(ϕ),v〉 ds

∣
∣

= lim
n→∞

∣
∣

∫ 1

0
〈E ′(u(tn +s)),v〉 ds

∣
∣

= lim
n→∞

∣
∣

∫ 1

0
〈u̇(tn +s),v〉g(u(tn+s)) ds

∣
∣.

By continuity of the metricg, and sinceu has relatively compact range inU , for
everyv, w∈ H the set{|〈v,w〉g(u(t))| : t ∈ R+} is bounded. Hence, by the uniform
boundedness principle, there exists a constantC ≥ 0 such that for everyv∈ H and
everyt ∈ R+ one has‖v‖2

g(u(t)) ≤C‖v‖2
H . Hence, for everyv∈V,

|〈E ′(ϕ),v〉| ≤ lim
n→∞

(
∫ 1

0
‖u̇(tn +s)‖2

g(u(tn+s)) ds
) 1

2
(
∫ 1

0
‖v‖2

g(u(tn+s))

) 1
2

≤ lim
n→∞

(
∫ 1

0
‖u̇(tn +s)‖2

g(u(tn+s)) ds
) 1

2
√

C‖v‖H

= 0.

This yieldsE ′(ϕ) = 0 and the claim.

A topological Hausdorff spaceS is discrete if the topology onS is the discrete
topology, that is, every subset ofS is open and closed. In a discrete space the only
connected subsets are the subsets which contain at most one element. This observa-
tion leads to the following stabilisation result for globalsolutions of gradient sys-
tems.

Theorem 11.4.Assume that the set of equilibrium points S:= {ϕ ∈ D(∇gE ) :
∇gE (ϕ) = 0} ⊆ U is discrete. Then every global solution u of(11.1) with rela-
tively compact range in U and satisfying the energy inequality (11.3)converges to
an equilibrium, that is, there existsϕ ∈ S such thatlimt→∞ u(t) = ϕ in V .

Proof. By Lemma 11.3, theω-limit set of every continuous, global solution hav-
ing relatively compact range inU is contained in the set of equilibrium points. By
Lemma 11.2 (a), theω-limit set is non-empty and connected. Since, by assumption,
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the set of equilibrium points is discrete, we deduce that theω-limit set contains
exactly one point. The claim now follows from Lemma 11.2 (c).

11.3 Nonstabilisation results for global solutions of gradient
systems

Theorem 11.4 provides a very useful criterion for stabilization of global solutions
having relatively compact range. Exercise 11.3 contains a nontrivial example of a
semilinear diffusion equation where the set of equilibriumpoints is discrete. How-
ever, one can easily imagine situations where the set of equilibrium points is non-
discrete: think of an energy which is constant on a nonempty open set or look at
Exercise 11.4. In those situations, can we still expect convergence to a single equi-
librium point? Is convergence a consequence of the gradientstructure and/or dissi-
pativity? The following suggests that the answer is no, although there is no explicit
example.

The following example shows that we cannot expect a better result without further restric-
tions onE . Let E (x,y) = 0 on the unit circle andE (x,y) > 0 elsewhere. Outside the unit
circle let the surface have a spiral gully making infinitely many turns about the circle. Then
the path C will evidently follow the gully and have all pointsof the unit circle as limit
points.2

Haskell B. Curry

It is not clear whether Curry had a concrete energyE in mind. In fact, it took quite
a while until in [Palis and de Melo (1982), page 14] the following C∞ “Mexican-
hat” function

E (r cosθ , r sinθ ) =







exp( 1
r2−1

) if r < 1,

0 if r = 1,

exp(− 1
r2−1

) sin( 1
r−1 −θ ) if r > 1,

appeared. Palis and de Melo showed by some abstract arguments that the Euclidean
gradient system associated with this energy possesses a global, bounded solution
which has the whole unit circle asω-limit set. For curiosity we note that in their
example the solution stays outside the unit circle and the particular shape ofE inside
the unit circle is not important. In fact, there are many wayshow to extendE to a
globalC∞ function inside the unit disk, and the particular definitionof Palis and de
Melo is perhaps only motivated by the desire to obtain a “Mexican hat”.

We do not repeat the analysis of Palis and de Melo, but rather consider the fol-
lowing energy

2 The citation is taken from H. B. Curry,The method of steepest descent for non-linear minimiza-
tion problems, Quart. Appl. Math.2 (1944). We have changed the notation for the energyE which
was denoted byG in the original.



124 11 Asymptotic behaviour of solutions of gradient systems

Fig. 11.1 The graph of the “mexican hat” of Palis & de Melo

E (r cosθ , r sinθ ) =







exp( 1
r2−1

) if r < 1,

0 if r = 1,

exp( −1
r2−1

)
[
1+ 4r4

4r4+(1−r2)4 sin( 1
r2−1

−θ )
]

if r > 1,

which was essentially proposed by Absil, Mahony and Andrewsin
[Absil et al. (2005)]. It looks more complicated than the energy of Palis and
de Melo, but it is easier to show that this energy gives an example of nonstabiliza-
tion. Note that the Euclidean gradient system ˙u+∇eucE (u) = 0 in polar coordinates
becomes

ṙ +
∂ Ẽ

∂ r
(r,θ ) = 0,

θ̇ +
1
r2

∂ Ẽ

∂θ
(r,θ ) = 0.

Here,Ẽ (r,θ ) = E (r cosθ , r sinθ ). Let r : R+ → (0,∞) be a global solution of
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Fig. 11.2 The level curves of the “mexican hat” of Palis & de Melo near the unit circle

ṙ +exp(
−1

r2−1
)

2r (r2−1)2

4r4 +(r2−1)4 = 0 (11.4)

with r(0) > 1. Then limt→∞ r(t) = 1 (exercise!). Moreover, if we put in addition

θ (t) :=
1

r(t)2−1
,

then a straightforward calculation shows that the pair(r,θ ) is a solution of the gra-
dient system above (in polar coordinates). However, for this solution one has

lim
t→∞

r(t) = 1 and lim
t→∞

θ (t) = ∞.

Hence, the functionu : R+ → R2 given by

u(t) = (r(t)cosθ (t), r(t)sinθ (t)) (t ∈ R+)

is a global solution of the euclidean gradient system associated withE , and has the
whole unit circle asω-limit set. It “follows the gully”, as described by Curry. Thus,
in general, global and bounded solutions of gradient systems need not converge.
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11.4 Exercises

11.1.Show that every global and bounded solution of a scalar ordinary differential
equation converges to an equilibrium point.

11.2.Show that every maximal solutionr of (11.4) with r(0) > 1 is global and
satisfies limt→∞ r(t) = 1

11.3 (Shooting method).Let p > 1 and consider the set

S:= {ϕ ∈ H2(0,1)∩H1
0(0,1) : −ϕ ′′−|ϕ |p−1ϕ = 0}

of all equilibrium points of the problem
{

ut −uxx−|u|p−1u = 0 in (0,∞)× (0,1),

u(t,0) = u(t,1) = 0 for everyt ∈ (0,∞).

a) By recalling an existence and uniqueness result for ordinary differential equa-
tions, show that for everyc∈ R the initial-value problem







−ϕ ′′−|ϕ |p−1ϕ = 0 onR,

ϕ(0) = 0,

ϕ ′(0) = c,

(11.5)

admits a unique maximal solutionϕ : [0,xmax) → R.

b) Show that the for every solutionϕ of (11.5) the quantityE(ϕ(x),ϕ ′(x)) :=
1
2ϕ ′(x)2 + 1

p+1|ϕ(x)|p+1 does not depend onx, that is,

1
2

ϕ ′(x)2 +
1

p+1
|ϕ(x)|p+1 = const=: d for everyx≥ 0. (11.6)

Deduce from this that the maximal solution of (11.5) is global, that is, exists
onR+. Moreover, express the constantd in terms ofc.

c) Let ϕ be a solution of (11.5) and assume thatϕ ′(0) = c > 0. Then, by conti-
nuity,

x0 := inf{x≥ 0 : ϕ ′(x) ≥ 0} > 0.

Expressx0 as a function ofc.
Hint. On the interval[0,x0), one hasϕ ′ > 0. Equation (11.6) can thus be
rewritten in the form

ϕ ′(x) =

√

2d− 2
p+1

|ϕ(x)|p+1.

Integrate this ordinary differential equation with separated variables.
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d) Let ϕ and x0 be as in the previous item. Show thatϕ(2nx0) = 0 for every
integern ≥ 1. Show thatx0 = 1

2n for some integern ≥ 1 if and only if ϕ
(restricted to the interval[0,1]) is an equilibrium point.

e) Show that the mappingS→ R, ϕ 7→ ϕ ′(0) is continuous and injective.

f) Show that the setS is discrete.

11.4.Let f : R → R be a continuously differentiable function, and consider the
semilinear diffusion equation

{
ut −uxx+ f (u) = 0 in (0,∞)×R,

limx→−∞ u(t,x) = limx→+∞ u(t,x) = 0.

DefineF(ζ ) =
∫ ζ

0 f (s) ds, let ζ0 := inf{ζ > 0 : F(ζ ) ≤ 0}, and assume that

f (0) = 0 and f ′(0) > 0,

0 < ζ0 < ∞ and f (ζ0) < 0.

a) Show that the problem
{
−ϕ ′′+ f (ϕ) = 0 in R,

limx→−∞ ϕ(x) = limx→+∞ ϕ(x) = 0,

admits a strictly positive solution (calledground state).
Hint. Similarly as in the previous exercise, one may employ a shooting
method. Show that the initial value problem







−ϕ ′′ + f (ϕ) = 0 in R,

ϕ(0) = ζ ,

ϕ ′(0) = 0,

admits for appropriateζ > 0 a global solution which is positive, symmetric
with respect to the origin, and which satisfies limx→±∞ ϕ(x) = 0. In order to
study solutions of this initial value problem, it is convenient to note that the
quantity 1

2ϕ ′(x)2 −F(ϕ(x)) does not depend onx, and to study a scalar first
order ordinary differential equation instead.

b) Show that the solution found in (a) belongs toH1(R).

c) Show that the semilinear diffusion equation above admitsa continuum of equi-
librium points inH1(R).
Hint. Consider translates ofϕ .





Lecture 12
Asymptotic behaviour of solutions of gradient
systems II

In the years 1963 and 1965 appeared the following result of S.Łojasiewicz
[Łojasiewicz (1963)], [Łojasiewicz (1965)].

Theorem 12.1 (Łojasiewicz).Let E : U → R be an analytic function defined on
an open set U⊆ Rd, and letϕ ∈ U be an equilibrium point ofE . Then there exist
constantsθ ∈ (0, 1

2], σ > 0 and C≥ 0 such that for every u∈U with ‖u−ϕ‖ ≤ σ
one has

|E (u)−E (ϕ)|1−θ ≤C‖E ′(u)‖(Rd)′ . (12.1)

The inequality (12.1), which may also be written in the form

‖((E (u)−E (ϕ))θ )′‖(Rd)′ ≥
θ
C

> 0,

is usually calledŁojasiewicz inequality or, more precisely,Łojasiewicz gradient
inequality. Theorem 12.1 expresses a particular, regular behaviour ofanalytic
functions of several variables near equilibrium points, a behaviour which is in
general not shared byC∞ functions. Its proof, however, is quite involved from the
point of view of this lecture course, and we therefore omit it.

We start this lecture by stating the above theorem, because the Łojasiewicz
inequality is a (or ratherthe?) fundamental tool in order to show convergence to
equilibrium of global and bounded solutions of gradient systems. The discovery
that the inequality may be applied in the context of gradientsystems is due to
Łojasiewicz himself. In his articles he proved that every global and bounded
solution of a gradient system inRd and with analytic energy converges to a single
equilibrium. This result is in contrast to the mexican hat example of Palis and de
Melo where the energy isC∞ (!) and the associated gradient system admits a global
and bounded solution which does not converge.

We emphasize that one should really distinguish two independent problems
in the context of the Łojasiewicz inequality and the convergence to equilibrium,

129



130 12 Asymptotic behaviour of solutions of gradient systems II

although Łojasiewicz’ name is connected to both of them: thefirst problem is the
problem of convergence to equilibrium of global solutions of gradient systems
under the assumptionthat the Łojasiewicz inequality holds – this problem is
basically solved with Theorem 12.2 below, be repeating essentially Łojasiewicz’
idea. The second and more difficult problem is to know whethera concrete energy
does satisfy the Łojasiewicz inequality near some particular equilibrium point.
This problem is independent of the first one and independent of the formulation
of a particular gradient system. A positive answer to the second question, that is,
a proof of the Łojasiewicz inequality for a particular energy function, may have
consequences for many different gradient systems, since out of one energy function
one can generate a variety of gradient systems through the choice of the metric.

In this lecture we discuss both problems in two independent sections. In the first
section we show that the infinite-dimensional variant of theŁojasiewicz inequal-
ity implies convergence to equilibrium of global and bounded solutions of abstract
gradient systems. In the second section we prove the Łojasiewicz inequality in two
comparatively simple situations.

12.1 The Łojasiewicz-Simon inequality and stabilisation of
global solutions of gradient systems

Let V be a Banach space, and letH be a Hilbert space such thatV is densely and
continuously embedded intoH. LetU ⊆V be open, and letE : U → R be a contin-
uously differentiable function. Letg : U → Inner(H) be a metric onU . We assume
that there exist constantsc1, c2 > 0 such that, for everyv∈ H and everyu∈U ,

c1‖v‖H ≤ ‖v‖g(u) ≤ c2‖v‖H . (12.2)

Theorem 12.2.Let u∈ W1,2
loc (R+;H)∩C(R+;V) be a solution of the gradient sys-

tem
u̇+ ∇gE (u) = 0. (12.3)

Assume that u has relatively compact range in U, and assume that for every t∈ R+

the energy equality

∫ t

0
‖u̇(s)‖2

g(u(s)) ds+E (u(t)) = E (u(0)) (12.4)

holds. Assume further that there existsϕ ∈ ω(u), θ ∈ (0, 1
2], σ > 0 and C≥ 0 such

that for every v∈U with ‖v−ϕ‖V ≤ σ one has

|E (v)−E (ϕ)|1−θ ≤C‖E ′(v)‖V′ . (12.5)

Thenlimt→∞ ‖u(t)−ϕ‖V = 0. Moreover, as t→ ∞,
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‖u(t)−ϕ‖H =

{
O(e−ct) for some c> 0, if θ = 1

2,

O(t−θ/(1−2θ)) if θ ∈ (0, 1
2).

(12.6)

In the following, the inequality (12.5) is calledŁojasiewicz-Simon inequality,
in order to honour also the work of L. Simon who generalized Łojasiewicz’ ideas
to energies and gradient systems on infinite-dimensional spaces. For example,
Simon applied the Łojasiewicz-Simon inequality in order toprove convergence
to equilibrium of solutions of semilinear diffusion equations with analytic energy
[Simon (1983)].

Note that the energy equality (12.4) implies that the composite functionE (u)

belongs toW1,1
loc (R+), by Lemma 5.9. In the following, derivatives of the composite

function are to be understood as weak derivatives. By (12.3), the energy equality
may also be written in the form

∫ t

0
‖∇gE (u(s))‖2

g(u(s)) ds+E (u(t)) = E (u(0)) or
∫ t

0
‖∇gE (u(s))‖g(u(s)) ‖u̇(s)‖g(u(s)) ds+E (u(t)) = E (u(0)).

Proof (of Theorem 12.2).By the energy equality (12.4), the functionE is nonin-
creasing alongu, and if E (u) is constant, then the functionu is constant. Since
ϕ ∈ ω(u) by assumption, there exists an unbounded sequence(tn) ⊆ R+ such that
limn→∞ u(tn) = ϕ . SinceE is continuous, we obtain limn→∞ E (u(tn)) = E (ϕ). Since
E is nonincreasing alongu, it follows thatE (u(t)) ≥ E (ϕ) and limt→∞ E (u(t)) =
E (ϕ).

If E (u(t0)) = E (ϕ) for somet0 ≥ 0, thenE (u(t)) = E (ϕ) for everyt ≥ t0, and
therefore, by the energy equality (12.4), ˙u(t) = 0 for t ≥ t0. In this case, the function
u is constant fort ≥ t0, and the assertions about convergence and decay estimate
hold trivially.

So we can assume thatE (u(t)) > E (ϕ) for everyt ≥ 0. Let, for everyt ≥ 0,

H (t) := (E (u(t))−E (ϕ))θ .

ThenH is nonincreasing,H (t) > 0 for everyt ≥ 0, and limt→∞ H (t) = 0. Let
t0 ≥ 0 be such that‖u(t0)−ϕ‖V < σ , and define

t1 := inf{t ≥ t0 : ‖u(t)−ϕ‖V = σ}.

By continuity of the functionu, we havet1 > t0. By using successively the chain
rule, the energy equality (12.4) and the fact thatu is a solution of (12.3), and the
assumption (12.2), we obtain for almost everyt ∈ [t0,t1),
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− d
dt

H (t) = θ (E (u(t))−E (ϕ))θ−1(− d
dt

E (u(t))
)

= θ (E (u(t))−E (ϕ))θ−1‖∇gE (u(t))‖g(u(t)) ‖u̇(t)‖g(u(t))

≥ θ c1 (E (u(t))−E (ϕ))θ−1‖∇gE (u(t))‖g(u(t))‖u̇(t)‖H .

By using the assumption (12.2) again, we obtain that for every t ∈ R+ the estimate

‖∇gE (u(t))‖g(u(t)) = sup
‖v‖g(u(t))≤1

〈∇gE (u(t)),v〉g(u(t))

= sup
‖v‖g(u(t))≤1

〈E ′(u(t)),v〉V′,V

≥ sup
c2‖v‖H≤1

〈E ′(u(t)),v〉V ′,V

≥ sup
c3 c2‖v‖V≤1

〈E ′(u(t)),v〉V ′,V

=
1

c3c2
‖E ′(u(t))‖V′ ,

where c3 > 0 is the constant of the embeddingV →֒ H. This estimate and the
Łojasiewicz-Simon inequality (12.5) imply that, for almost everyt ∈ [t0,t1),

− d
dt

H (t) ≥ θ c1

c2c3
(E (u(t))−E (ϕ))θ−1‖E ′(u(t))‖V′ ‖u̇(t)‖H (12.7)

≥ θ c1

Cc2c3
‖u̇(t)‖H .

Hence, for almost everyt ∈ [t0,t1),

‖u(t)−ϕ‖H ≤ ‖u(t)−u(t0)‖H +‖u(t0)−ϕ‖H (12.8)

≤
∫ t

t0
‖u̇(s)‖H ds+‖u(t0)−ϕ‖H

≤ Cc2 c3

θ c1
H (t0)+‖u(t0)−ϕ‖H.

Now let (tn
0) ⊆ R+ be an unbounded, increasing sequence such thatσ > ‖u(tn

0)−
ϕ‖V → 0, and define the correspondingtn

1 as above. Assume thattn
1 was finite for

everyn. Then, by definition oftn
1 and by continuity ofu, ‖u(tn

1)−ϕ‖V = σ for every
n. Sinceu has relatively compact range inU ⊆V, we can extract a subsequence of
(tn

1) (which we denote for simplicity again by(tn
1)) such that limn→∞ u(tn

1) =: ψ . By
continuity of the norm,‖ψ −ϕ‖V = σ > 0. On the other hand, from the inequality
(12.8) we obtain‖ψ −ϕ‖H = limn→∞ ‖u(tn

1)−ϕ‖H = 0, which is a contradiction.
Hence, for somen large enough,tn

1 = +∞. By (12.7), this implies ˙u∈ L1(R+;H).
By Cauchy’s criterion, limt→∞ u(t) exists inH. By using the relative compactness
of the range ofu in V, a subsubsequence argument, and sinceϕ ∈ ω(u), this implies
limt→∞ u(t) = ϕ in V.
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In order to prove the decay estimate, lett0 ≥ 0 be large enough such that‖u(t)−
ϕ‖V ≤ σ for everyt ≥ t0. By the inequality (12.7), for everyt ≥ t0,

‖u(t)−ϕ‖H ≤
∫ ∞

t
‖u̇(s)‖H ds (12.9)

≤ Cc2c3

θ c1
H (t).

Moreover, by the energy equality (12.4), for almost everyt ≥ t0,

− d
dt

H (t) = θ (E (u(t))−E (ϕ))θ−1 (− d
dt

E (u(t)))

= θ (E (u(t))−E (ϕ))θ−1‖∇gE (u(t))‖2
g(u(t))

=
θ

c2
2c2

3

(E (u(t))−E (ϕ))θ−1‖E ′(u(t))‖2
V

≥ θ
C2c2

2c2
3

(E (u(t))−E (ϕ))1−θ

=
θ

C2c2
2c2

3

H (t)
1−θ

θ .

Now, if we integrate the resulting inequality

− d
dt

H (t)H (t)−
1−θ

θ =







− d
dt (logH (t)) if θ = 1

2

θ
1−2θ

d
dtH (t)−

1−2θ
θ if θ ∈ (0, 1

2)






≥ θ

C2c2
2c2

3

over the interval(t0, t), then we obtain the estimate

H (t) =

{
O(e−ct) if θ = 1

2,

O(t−θ/(1−2θ)) if θ ∈ (0, 1
2).

Combining this estimate with (12.9), the decay estimate for‖u−ϕ‖H follows.

12.2 The Łojasiewicz-Simon inequality in Hilbert spaces

Let V be a Hilbert space and letU ⊆V be an open subset. LetE ∈C2(U), and let
ϕ ∈ U be an equilibrium point ofE , that is,E ′(ϕ) = 0. We formulate conditions
which imply thatE satisfies the Łojasiewicz-Simon inequality nearϕ , that is, that
there existsθ ∈ (0, 1

2], σ > 0 andC≥ 0 such that for everyu∈U with ‖u−ϕ‖V ≤ σ
one has

|E (u)−E (ϕ)|1−θ ≤C‖E ′(u)‖V′ . (12.10)
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Although in this inequality only the first derivative ofE appears, the conditions
and arguments in this section involve the second derivative, too. Recall that the
Fréchet derivativeE ′ mapsV intoV ′, and that the second derivative at a pointu∈U
is thus a linear operator fromV into V ′.

Theorem 12.3.Assume thatE ′′(ϕ) is continuously invertible. ThenE satisfies the
Łojasiewicz-Simon inequality nearϕ with θ = 1

2.

Proof. Consider the Taylor expansions ofE andE ′,

E (u) = E (ϕ)+E
′(ϕ)(u−ϕ)+O(‖u−ϕ‖2

V) and

E
′(u) = E

′(ϕ)+E
′′(ϕ)(u−ϕ)+o(‖u−ϕ‖V).

SinceE ′(ϕ) = 0, the first one yields

|E (u)−E (ϕ)| ≤C‖u−ϕ‖2
V

in a neighbourhood ofϕ . SinceE ′′(ϕ) is invertible, one has‖E ′′(ϕ)(u−ϕ)‖V′ ≥
c‖u− ϕ‖V for every u ∈ U and some constantc > 0. Hence, the second Taylor
expansion yields

‖E ′(u)‖V′ ≥ c
2
‖u−ϕ‖V

in a neighbourhood ofϕ . Combining the preceding two inequalities yields

|E (u)−E (ϕ)| 1
2 ≤C‖E ′(u)‖V′

in a neighbourhood ofϕ , and this is the claim.

The short proof of Theorem 12.3 relies only on Taylor expansion and the
definition of the Fréchet derivative. This idea can be generalized to situations in
which E ′′(ϕ) is not necessarily invertible, but in which, by means of the implicit
function theorem and a nonlinear decomposition of the spaceV, one can reduce the
arguments to the invertible case. In the rest of this section, we assume thatE ′′(ϕ)
is a Fredholm operator, that is, the kernel kerE ′′(ϕ) = {u∈ V : E ′′(ϕ)u = 0} is
finite dimensional and the range rgE ′′(ϕ) = {E ′′(ϕ)u : u∈V} is closed inV ′ and
has finite codimension.

Let P∈L (V) be any projection onto kerE ′′(ϕ). ThenV is the direct topological
sum

V = V0⊕V1

= rgP⊕kerP

= kerE ′′(ϕ)⊕kerP.

Moreover, the spaces rgP′, kerP′ ⊆V ′, whereP′ ∈ L (V ′) is the adjoint projection,
may be naturally identified with the dual spacesV ′

0 andV ′
1, respectively, and we
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simply writeV ′
1 = kerP′.

Symmetry of the second derivative of real-valued functionsis a well known
property of twice continuously differentiable functions defined on Rd; see
[Cartan (1967), Théorème 5.1.1] for the analogous resultfor functions defined on a
Banach space.

Theorem 12.4 (Schwarz).For every u∈ U the linear operatorE ′′(u) : V → V ′ is
symmetric, that is, for every v, w∈V one has

〈E ′′(u)v,w〉V′,V = 〈E ′′(u)w,v〉V ′,V .

By Schwarz’ theorem, for everyu, v∈V,

〈P′
E

′′(ϕ)u,v〉V′,V = 〈E ′′(ϕ)u,Pv〉V′,V

= 〈E ′′(ϕ)Pv,u〉V′,V

= 0,

where in the last inequality we have used thatP projects onto the kernel ofE ′′(ϕ).
This equality implies that

rgE
′′(ϕ) ⊆ kerP′ = V ′

1 (12.11)

Lemma 12.5.The linear operatorE ′′(ϕ) : V1 →V ′
1 is continuously invertible.

Proof. SinceV1∩V0 =V1∩kerE ′′(ϕ) = {0}, the operatorE ′′(ϕ) is injectiveonV1.
We next prove thatE ′′(ϕ) has dense rangein V ′

1. Note thatE ′′(ϕ)(V1) =
E ′′(ϕ)(V). Hence, in order to show thatE ′′(ϕ) has dense range inV ′

1, it suffices
show that

u∈V1 and
〈E ′′(ϕ)v,u〉V′,V = 0 for everyv∈V

}

⇒ u = 0.

This implication, however, follows immediately from Schwarz’ theorem and injec-
tivity of E ′′(ϕ) onV1.

By assumption,E ′′(ϕ) has closed range inV ′, so thatE ′′(ϕ) is surjective, hence
bijectivefromV1 ontoV ′

1. The assertion of the lemma follows now from the bounded
inverse theorem.

Lemma 12.6.Let P∈ L (V) be a projection ontokerE ′′(ϕ), and define the set

S:= {u∈U : (I −P′)E ′(u) = 0},

Then, locally nearϕ , S a differentiable manifold, calledcritical manifold , satisfy-
ing

dimS= dimkerE ′′(ϕ).

If E ∈Ck(U) for some k≥ 2, then S is a Ck−1-manifold. IfE is analytic, then S is
analytic.
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Proof. Consider the function

G : V = V0⊕V1 ⊇U → V ′
1,

u = u0 +u1 7→ (I −P′)E ′(u).

SinceE ′ is continuously differentiable, the functionG is continuously differen-
tiable, too. Moreover,G(ϕ) = G(ϕ0+ϕ1) = 0 andG′(ϕ) = (I −P′)E ′′(ϕ) = E ′′(ϕ)
(see (12.11) for the last equality). By Lemma 12.5, the partial derivative ∂G

∂u1
(ϕ) =

E ′′(ϕ)|V1 : V1 →V ′
1 is an isomorphism (continuously invertible). Hence, by theim-

plicit function theorem (Theorem 9.2), there exists a neighbourhoodU0 ⊆V0 of ϕ0,
a neighbourhoodU1 ⊆ V1 of ϕ1, U0 +U1 ⊆ U , and a functiong∈C1(U0;U1) such
thatg(ϕ0) = ϕ1 and

{u∈U0 +U1 : G(u) = 0} = {(u0,g(u0)) : u0 ∈U0}.

By definition of the functionG and the setS, the set on the left-hand side of this
equality is just the intersection ofSwith the neighbourhoodU0+U1 of ϕ . So, locally
nearϕ , S is the graph of the differentiable functiong, that is,S is a differentiable
manifold. Higher regularity of the manifoldS in the case of higher regularity ofE
follows immediately from the implicit function theorem. The lemma is proved.

Note that the critical manifold may not be a submanifold ofV, but by Lemma
12.6 it is locally nearϕ a submanifold (it is the graph of the implicit functiong). The
critical manifold depends on the choice of the projectionP, but it always contains
the set of all equilibrium pointsS0:

S0 := {u∈U : E
′(u) = 0} ⊆ S.

Theorem 12.7.Define the critical manifold as in Lemma 12.6, and assume that
the restrictionE |S satisfies the Łojasiewicz-Simon inequality nearϕ , that is, there
exist constantsθ ∈ (0, 1

2], σ > 0 and C≥ 0 such that for every u∈ U ∩S (!) with
‖u−ϕ‖V ≤ σ one has

|E (u)−E (ϕ)|1−θ ≤C‖E ′(u)‖V′ .

ThenE itself satisfies the Łojasiewicz-Simon inequality nearϕ with the same expo-
nentθ .

Proof. Choose the neighbourhoodU := U0 +U1 of ϕ and the implicit functiong :
U0 →U1 as in the proof of Lemma 12.6. Suppose thatU is sufficiently small so that
the restrictionE |S satisfies the Łojasiewicz-Simon inequality inU ∩S.

We define a nonlinear projectionQ : U →U by

Qu= Q(u0 +u1) := u0 +g(u0).

Note that, for everyu∈U ,
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Qu∈ S and

u−Qu∈V1.

Moreover,Qϕ = ϕ . For everyu∈U , the Taylor expansion ofE atQu is

E (u)−E (Qu) =

= 〈E ′(Qu),u−Qu〉V′,V +
1
2
〈E ′′(Qu)(u−Qu),u−Qu〉V′,V +o(‖u−Qu‖2).

By definition ofV1, and by definition of the manifoldS,

〈E ′(Qu),u−Qu〉V′,V = 〈E ′(Qu),(I −P)(u−Qu)〉V′,V

= 〈(I −P′)E ′(Qu),u−Qu〉V′,V

= 0,

that is, the first term on the right-hand side of the Taylor expansion ofE is zero.
Therefore, and sinceE ′′ is uniformly bounded onU by continuity, if we chooseU
small enough, we have for everyu∈U

|E (u)−E (Qu)| ≤C‖u−Qu‖2
V. (12.12)

From now on, the constantC may vary from line to line. By the definition of differ-
entiability,

E
′(u)−E

′(Qu) = E
′′(Qu)(u−Qu)+o(‖u−Qu‖). (12.13)

We apply the projectionI −P′ to this equality and use thatQu∈ S in order to obtain

(I −P′)E ′(u) = (I −P′)E ′′(Qu)(u−Qu)+o(‖u−Qu‖). (12.14)

By Lemma 12.5, the operator(I − P′)E ′′(ϕ) = E ′′(ϕ) : V1 → V ′
1 is continu-

ously invertible. Hence, by continuity and if we chooseU small enough, then
(I −P′)E ′′(Qu) : V1 →V ′

1 is continuously invertible for allu∈ U and the inverses
are uniformly bounded inU . Hence, by (12.14), there exists a constantC ≥ 0 such
that for everyu∈U

‖u−Qu‖V ≤C‖(I −P′)E ′(u)‖V′ ≤C‖E ′(u)‖V′ . (12.15)

By (12.13) and (12.15),

‖E ′(Qu)‖V′ ≤ ‖E ′(u)‖V′ +C‖u−Qu‖V ≤C‖E ′(u)‖V′ . (12.16)

Combining the estimates (12.12) and (12.15) with the assumption thatE |S satisfies
the Łojasiewicz-Simon inequality inU ∩S, and using also the estimate (12.16), we
obtain that for everyu∈U
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|E (u)−E (ϕ)| ≤ |E (u)−E (Qu)|+ |E (Qu)−E (ϕ)|
≤C‖E ′(u)‖2

V′ +C‖E ′(Qu)‖1/(1−θ)
V′

≤C
(
‖E ′(u)‖2

V′ +‖E ′(u)‖1/(1−θ)
V′

ChoosingU sufficiently small, we can by continuity assume that‖E ′(u)‖V′ ≤ 1 for
everyu∈U . Sinceθ ∈ (0, 1

2], we then obtain

|E (u)−E (ϕ)| ≤C‖E ′(u)‖1/(1−θ)
V′ for everyu∈U,

and this is the claim of Theorem 12.7.

Corollary 12.8. LetE ∈C2(U), let ϕ ∈V be an equilibrium point, and assume that
E ′′(ϕ) is a Fredholm operator. Define the critical manifold S as in Lemma 12.6.
Assume that the set of all equilibrium points,

S0 := {u∈V : E
′(u) = 0},

forms a neighbourhood ofϕ in S. ThenE satisfies the Łojasiewicz-Simon inequality
with exponentθ = 1

2.

Proof. By assumption, the derivativeE ′ is zero in a neighbourhood ofϕ in S. This
implies that the restrictionE |S is constant in the same neighbourhood. A constant
function trivially satisfies the Łojasiewicz-Simon inequality for the Łojasiewicz ex-
ponentθ = 1

2. The claim follows from Theorem 12.7.

12.3 Exercises

12.1. a) LetF : R → R be ak times continuously differentiable function (k≥ 2)
such thatF(0) = F ′(0) = · · · = F (k−1)(0) = 0 andF (k)(0) 6= 0. Show thatF
satisfies the Łojasiewicz inequality near 0 with exponentθ = 1

k . Deduce that
every analytic functionF : R → R satisfies the Łojasiewicz inequality near
every equilibrium point.

b) Let F(u) = uk for somek ≥ 2. Solve the differential equation ˙u+ F ′(u) =
0, show that every solution satisfies limt→∞ u(t) = 0, and compare the actual
decay rate ofu with the decay rate obtained by Theorem 12.2 and (a).

Remark. The proofs in (a) rely on Taylor expansions and should be elementary.
However, the proofs in the one-dimensional case consideredhere do not give a real
hint how to prove the corresponding result in higher dimensions like, for example,
Theorem 12.1.

12.2. a) Let V be a Hilbert space andE : V → R be a continuous, coercive,
quadratic form. Show thatE ′′(0) is invertible.
Hint. Use the Riesz-Fréchet theorem (Theorem D.53).
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b) Letc : R→ R be a continuous function such that limx→±∞ c(x) = 0. Show that
the (linear) multiplication operator

H1(R) → L2(R),

u 7→ cu

is compact.
Hint. One may use that for every bounded interval(a,b), the embedding
H1(a,b) →֒ L2(a,b) is compact (see Exercise 7.1).

c) Letc : R → R be a continuous function such that limx→±∞ c(x) = c0 > 0, and
consider the quadratic form

E : H1(R) → R,

u 7→ 1
2

∫

R

(u2
x +cu2).

Show thatE ′′(0) is a Fredholm operator.
Hint. By the Riesz-Schauder Theorem, every operator of the formI +K with
K compact, is a Fredholm operator.

12.3.We recall the setting of Exercise 11.4. Letf : R → R be a continuously differ-

entiable function, defineF(ζ ) :=
∫ ζ

0 f (s) ds, let ζ0 := inf{ζ > 0 : F(ζ ) ≤ 0}, and
assume that

f (0) = 0 and f ′(0) > 0,

0 < ζ0 < ∞ and f (ζ0) < 0.

Consider the energy

E : H1(R) → R,

u 7→ 1
2

∫

R

u2
x +

∫

R

F(u).

a) Show thatE ′′(0) is invertible. Conclude thatE satisfies the Łojasiewicz-
Simon inequality near 0 with exponentθ = 1

2.

b) Let ϕ be the ground state found in Exercise 11.4 (a), that is, a solution ϕ ≥ 0,
ϕ 6= 0 of the problem

{
−ϕ ′′ + f (ϕ) = 0 in R,

limx→±∞ ϕ(x) = 0.

Show thatE ′′(ϕ) is a Fredholm operator.

c) In addition to (b), show that the kernel ofE ′′(ϕ) is one-dimensional.
Hint. Show thatψ ∈ C2(R)∩H1(R) belongs to the kernel ofE ′′(ϕ) if and
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only if
{
−ψ ′′ + f ′(ϕ)ψ = 0 in R,

limx→±∞ ψ(x) = 0.

One solution isψ = ϕ ′. A second solutionψ may be found by substitution
z := ( ψ

ϕ ′ )′ which leads to a first order differential equation.

d) Show that, locally nearϕ , the set of all equilibrium pointsS0 = {u∈ H1(R) :
E ′(u) = 0} and the critical manifoldSdefined in Lemma 12.6 coincide. Con-
clude thatE satisfies the Łojasiewicz-Simon inequality near 0 with exponent
θ = 1

2.



Lecture 13
The universe, soap bubbles and curve shortening

I do not suppose that there is any one in this room who has not occasionally blown a
common soap-bubble, and while admiring the perfection of its form, and the marvellous
brilliancy of its colours, wondered how it is that such a magnificent object can be so easily
produced. I hope that none of you are yet tired of playing withbubbles, ...

C. V. Boys, author ofSoap-bubbles and the Forces which Mould Them, 1896

My grandfather talked continuously about soap bubbles, andof course in mathematical
terms. I did not understand a word of what he said.

Bernhard Caesar Einstein, the grandson of Albert Einstein

To be clear from the very beginning of this last ISEM lecture:there will be no
mathematical discussion of any models describing the evolution of the universe or
of soap bubbles in the air. However, the title shall suggest that there is an important
class of evolution problems in physics, chemistry or engineering dealing with
moving curves and surfaces. Some of these models are gradient systems.

Moving curves and surfaces can be

Soap bubbles, Jean Siméon Chardin,

mid-18th century

observed in everyday’s life, for example in
the form of soap bubbles blown into the air
and moving away by wind or gravitational
forces. However, these soap bubbles are
not only moving as a whole through the
air, but they exhibit also inner deformations
due to various surface forces acting in the
soap film. Especially for large bubbles such
deformations can be observed with the eye;
smaller bubbles seem to exist only as round
spheres. Everybody who is notyet tired
of playing with bubbles, can repeat this

experiment, and everybody who is curious to understand thismodel in a deeper way
may formulate the evolution equations behind it and analyzeit from a mathematical
point of view. Besides soap bubbles, vibrating strings or plates, the water surface
on a lake or in a glass of water, the sharp interface separating two chemical

141
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phases, or the interface between a piece of ice and surrounding water are further
examples of surfaces which change their shape with time and which may be easily
observed in our daily life. The description of the physical and chemical forces or
processes acting on / in these surfaces leads to partial differential equations, and the
mathematical analysis of these partial differential equations may allow us to obtain
a deeper understanding of the various models.

In the theory of relativity or gravitational physics, one deals with a surface at a
much different scale at which our human intuition is of no bighelp. If we believe
the experts, then the universe is a 3-dimensional manifold which changes its shape
and size with time due to the existence of matter, and it is a challenge to understand
this evolution, too. Perhaps this evolution is driven by an energy which is, from
the mathematical point of view, very similar to the elastic energy inside a surface,
for example, a football. Perhaps this elastic energy is exactly the energy which is
nowadays also used in image processing where moving surfaces also appear.

For esthetical reasons we would very much like to discuss theevolution of soap
bubbles, believing that this model is relatively accessible. However, in order to sim-
plify the presentation, we considers the evolution of curves instead of surfaces.

Curves and curvature vector

A smoothcurve is a subsetΓ ⊆ Rd which is the image of a continuously differ-
entiable functionu : I → Rd (I ⊆ R an interval) with never vanishing derivative.
The function u is called parametrization of the curveΓ . One curve admits
infinitely many parametrizations, since for everyC1 diffeomorphismθ : J → I
between two intervalsJ, I ⊆R the composite functionu◦θ is also a parametrization.

Let Γ be a curve with aC2 parametrizationu : I → Rd. Then, for everyx∈ I the
vectoru′(x) is thetangent to Γ at u(x). Thecurvature vector at u(x) is defined by

κ(u(x)) :=
1

|u′(x)|
( u′(x)
|u′(x)|

)′
,

where| · | denotes the euclidean norm inRd. The curvature vectorκ measures, by
its length, how much the curveΓ is curved (see Lemma 13.1 below). Moreover, for
planar curves it points into the direction where the curve isconvex. The curvature
vector depends only on the pointu(x) ∈ Γ and shape of the curveΓ , but it does not
depend on the particular parametrization ofΓ . In fact, if v : J → Rd is anotherC2

parametrization ofΓ , v = u◦θ for someC2 diffeomorphismθ : J → I , then, at the
pointv(x) = u(θ (x)) ∈ Γ ,
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( 1
|v′|
( v′

|v′|
)′)

(x) =
1

|(u◦θ )′(x)|
( (u◦θ )′(x)
|(u◦θ )′(x)|

)′

=
1

|u′(θ (x))| |θ ′(x)|
( u′(θ (x))
|u′(θ (x))| sgnθ ′(x)

)′

=
1

|u′(θ (x))| |θ ′(x)|
( u′

|u′|
)′

(θ (x))θ ′(x) sgnθ ′(x)

=
( 1
|u′|
( u′

|u′|
)′)

(θ (x)).

Given aC2 parametrizationu : I → Rd of a curveΓ , ds= |u′(x)| dx is the in-
finitesimal arclength of the curve atu(x),

∫ x+h
x |u′(ξ )| dξ is the length of the

arc segment running fromu(x) to u(x+ h) (respecting the orientation ofu), and
E (u) =

∫

I |u′(x)| dx is thetotal length of the curveΓ .

Lemma 13.1.Fix x ∈ I. For h ∈ R small, letθ (h) be the angle between u′(x+ h)
and u′(x), let s(h) be the length of the arc segment running from u(x) to u(x+ h).
Then

|κ(u(x))| = lim
h→0

∣
∣
θ (h)

s(h)

∣
∣.

Proof. Consider the triangle with vortices 0,u
′(x)

|u′(x)| and u′(x+h)
|u′(x+h)| . By definition,θ (h)

is the angle at the vortex 0, and the two sides forming this angle have length equal
to 1. By bisecting the angleθ (h), one easily sees that

sin
θ (h)

2
=

1
2

∣
∣

u′(x+h)

|u′(x+h)| −
u′(x)
|u′(x)|

∣
∣.

Then

lim
h→0

∣
∣
θ (h)

s(h)

∣
∣= lim

h→0

∣
∣

θ (h)/2
sin(θ (h)/2)

2 sin(θ (h)/2)

s(h)

∣
∣

= lim
h→0

∣
∣
∣

( u′(x+h)

|u′(x+h)| −
u′(x)
|u′(x)|

)(
h

1
h

∫ x+h

x
|u′(ξ )| dξ

)−1
∣
∣
∣

=
∣
∣
∣

( u′(x)
|u′(x)|

)′ 1
|u′(x)|

∣
∣
∣

= |κ(u(x))|.

Given aC2 parametrizationu : [a,b] → Rd of a curveΓ , we defines(x) :=
∫ x

a |u′(ξ )| dξ . Thens : [a,b]→ [0,L] (L the length of the curveΓ ) is strictly increas-
ing, surjective and twice continuously differentiable. Moreover,γ(x) := u(s−1(x))
defines anotherC2 parametrization ofΓ , called thearclength parametrization.
The arclength parametrization has unit speed, that is, the first derivative has unit
length, and the second derivative coincides with the curvature vector. Moreover,
with the help of the arclength parametrization one easily sees that the curvature vec-
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tor is always orthogonal to the tangent vector. These properties are summarized in
the following lemma.

Lemma 13.2.For every x∈ [0,L], the arclength parametrizationγ satisfies

a) |γ ′(x)| = 1,

b) κ(γ(x)) = γ ′′(x), and

c) γ ′(x)γ ′′(x) = 0.

Proof. One has,

(a) |γ ′(x)| = |u′(s−1(x))(s−1)′(x)| = |u′(s−1(x))|
|s′(s−1(x))| = 1,

(b) κ(γ(x)) =
1

|γ ′(x)|
( γ ′(x)
|γ ′(x)|

)′
= γ ′′(x) (by part (a)), and

(c) γ ′(x)γ ′′(x) =
d
dx

1
2
|γ ′(x)|2 = 0 (by part (a)).

Example 13.3.Let Γ be the circle with radiusr > 0 and center 0. The function
u : R → R2, u(x) = (r cosx, r sinx) is a parametrization. For everyx∈ R,

κ(u(x)) = −1
r
(cosx,sinx)

is the curvature vector atu(x)∈Γ . The curvature vector points into the disk enclosed
by Γ and has length= 1/r.

The curve shortening flow

The curve shortening problem arises in several contexts andapplications. Consider
first the following problem: given two points inRd, find the shortest curve con-
necting the two points. If one gently ignores the well-knownsolution, that is, the
straight line between the two points, then this problem – as it is posed – is exactly
the problem of finding a minimizer of a real-valued function defined on a certain
set of curves. This function assigns to each curve its lengthand is called thelength
functional in the following.

Similarly, one may consider the analogous problem of findingcurves with
minimal length for curves in Riemannian manifolds. A solution is then not so easy
to imagine. By finding curves with minimal length, G. D. Birkhoff solved in 1917
a problem about the existence of periodic solutions of the Lagrange equations
from classical mechanics; for this he was awarded the Bôcher Memorial Prize by
the American Mathematical Society in 1923. Periodic solutions of the Lagrange
equations correspond to closed curves of minimal length, that is, closed geodesics,
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in certain Riemannian surfaces determined by the Lagrangian. Starting from
appropriate closed curves, Birkhoff proposed a discrete curve shortening algorithm
which, step by step, constructed closed curves of shorter and shorter length and he
showed that the algorithm converges to a desired solution.

In R2, Birkhoff’s idea of curve shorten-

Fig. 13.1 Curve shortening by movingB
into the direction of the curvature vector

ing can be described as follows. LetΓ0 be
an initial curve, and take three pointsA, B,
C ∈ Γ0 sufficiently close together and such
that B lies inside the arc segment AC

⌢
. Then

we may construct a shorter curveΓ1 by sim-
ply taking the curveΓ0 outside the arc seg-
ment AC

⌢
, and by replacing the arc segment

AC
⌢

by the straight lineAC. This shortens the
curveΓ0 but the new curveΓ1 is in general
no longer parametrized by aC1 function;Γ1

is actually not really a curve in the sense of
our definition. Intuitively, instead of replac-
ing the arc segment AC

⌢
by the line segment

AC, we may say that the pointB on the arc segment AC
⌢

should be slightly moved
into the direction of the curvature vectorκ(B). This should also shorten the curve
since the curvature vector points into the direction where the straight lineAC lies.
Similarly, if A0, A1, . . . , An is a finite family of points onΓ0 such that the open arc

segments
⌢

A jA j+1 are mutually disjoint, we may shorten the curveΓ0, by taking for

every j = 0, . . . , n−1 some pointB j ∈
⌢

A jA j+1 and by moving the curve slightly into
the direction of the curvature vectorκ(B j). By taking finer and finer partitions of the
curveΓ0, and by making shorter and shorter steps into the direction of the curvature
vector, one may arrive at a continuous version of curve shortening. Without making
a formal limiting process, it is conceivable that we are looking for a family of curves
(Γt)t∈[0,T] parametrized by a functionu = u(t,x) (that is,u(t, ·) is a parametrization
of Γt) such that

ut(t,x) = κ(u(t,x)). (13.1)

Indeed, this equation expresses the idea that, at every timet, points of the curve
Γt moves into the direction of the curvature vector. In (13.1),the velocityut with
which the points move is equal to the curvature vector. Equation (13.1) is called the
curve shortening flow equation. Depending on the particular context, it has to be
equipped with boundary conditions and an initial condition.

Let us approach the curve shortening problem in a different way. Although the
objects of interest are curves and although the length functional is defined on a set of
curves, we think of it being defined on the corresponding set of all parametrizations.
In this way, the length functional is defined on a subset of a linear space, and it
is possible to study its continuity or differentiability, to consider gradients of the
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length functional and to search for a minimizer by a steepestdescent method, that
is, by a gradient system. Ifu is a solution of a gradient system associated with the
length functional, then, for each “time”t, u(t) is a parametrization of a curveΓt and
we expect that the length ofΓt is decreasing with time.

Instead of considering curves connecting two given points,let us consider in the
following only closed curves, that is, by definition, curves which admit a periodic
parametrization defined onR. Without loss of generality, it suffices to consider 2π-
periodic parametrizations, and we define accordingly

P2π := {u∈C1(R;Rd) : u(x) = u(x+2π) andu′(x) 6= 0 for everyx∈ R}.

This set is an open subset of the Banach space

C1
2π := {u∈C1(R;Rd) : u(x) = u(x+2π) for everyx∈ R}.

Every elementu ∈ P2π is a parametrization of some closed curveΓ with finite
length. In fact,ds= |u′(x)| dx is the infinitesimal arclength of the curve atu(x),
∫ b

a |u′(x)| dx is the length of the arc segment running fromu(a) to u(b) (respecting
the orientation ofu), and

E (u) =

∫ 2π

0
|u′(x)| dx

is the total length ofΓ . The functionE : P2π → R thus defined is the length func-
tional on the set of closed curves. Ifu, v∈P2π are two parametrizations of the same
curveΓ , v = u◦θ for some diffeomorphismθ : [0,2π ] → [0,2π ], then a change of
variables implies

E (v) =

∫ 2π

0
|(u◦θ )′(x)| dx

=
∫ 2π

0
|u′(θ (x))| |θ ′(x)| dx

=

∫ 2π

0
|u′(y)|dy

= E (u).

Hence, the length functionalE depends only on the curveΓ and not on the particular
parametrizationu∈P2π . Since the euclidean norm| · | is continuously differentiable
in Rd \{0}, and since the derivative of elements inP2π is bounded away from 0, it
is straightforward to show thatE is continuously differentiable on the setP2π (the
C1 topology is also crucial here), and that

E
′(u)ϕ =

∫ 2π

0

u′(x)ϕ ′(x)
|u′(x)| dx;
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compare with Exercise 7.2. Given a parametrizationu∈P2π of a curveΓ , it seems
natural to consider the following inner product on

L2
2π = {u∈ L2

loc(R;Rd) : u(x) = u(x+2π) for almost everyx∈ R},

namely theL2 inner product with respect to arclength:

〈v,w〉g(u) :=
∫ 2π

0
v(x)w(x) |u′(x)| dx (v, w∈ L2

2π).

In this way, we obtain a metricg : P2π → Inner(L2
2π). We calculate the gradient of

E with respect to this metricg. First, letu ∈ D(∇gE ). By definition, there exists
v∈ L2

2π , v = ∇gE (u), such that, for everyϕ ∈C1
2π ,

∫ 2π

0

u′(x)ϕ ′(x)
|u′(x)| dx= E

′(u)ϕ = 〈v,ϕ〉g(u) =
∫ 2π

0
v(x)ϕ(x) |u′(x)| dx. (13.2)

By definition of the Sobolev spaceH1
2π , this implies

u′

|u′| ∈ H1
2π and

( u′

|u′|
)′

= −v|u′|.

Conversely, letu∈P2π be such thatu
′

|u′| ∈ H1
2π . Then 1

|u′| (
u′
|u′|)

′ ∈ L2
2π , and the equa-

tion (13.2) holds withv = 1
|u′| (

u′
|u′| )

′. Hence,u ∈ D(∇gE ), by the definition of the
domain of the gradient. We have thus proved that

D(∇gE ) = {u∈ P2π :
u′

|u′| ∈ H1
2π},

∇gE (u) = − 1
|u′|
( u′

|u′|
)′

= −κ(u),

whereκ(u) is the curvature vector defined in the previous section.

The gradient system associated with the length functional and the metricg is thus
exactly thecurve shortening flow equationfor closed curves:







ut − 1
|ux|
( ux
|ux|
)

x = 0 in [0,T]×R,

u(t,x) = u(t,x+2π) for (t,x) ∈ [0,T]×R,

u(0,x) = u0(x) for x∈ R.

(13.3)

Let us repeat thatu(t, ·) ∈ P2π is a parametrization of a curveΓt , and a solution of
this geometric evolution equation corresponds to a family(Γt)t∈[0,T ] of curves. In
particular, if u andv are solutions of the partial differential equation (13.3) such
that, for every timet, u(t, ·) andv(t, ·) are parametrizations of the same curveΓt ,
then the two solutions are identified. We call a family(Γt)t∈[0,T) of curves acurve
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shortening flow if it admits a parametrizationu = u(t,x) which is a maximal
solution to the curve shortening flow equation (we skip the precise definition of
solution, so one may think of classical solution).

Several questions arise in the context of problem (13.3): does one have existence
and uniqueness of local or maximal solutions? For which initial curves? May we
expect smooth, that is,C∞ soluions? What is the maximal existence time of a
curve shortening flow? What is the behaviour near the maximalexistence time? Do
singularities develop, and if yes, which kind of singularities?

In order to get a first idea how answers may look like, the following example is
helpful.

Example 13.4 (of a solution of the curve shortening flow equation). Let Γ0 be the
circle of radiusr0 > 0 and center 0. We are looking for a solution family(Γt) of the
curve shortening flow equation. By reasons of symmetry, we make the ansatz thatΓt

is a circle of radiusr(t) and center 0. We look for a solution of the form

u(t,x) := (r(t)cosx, r(t)sinx).

Inserting this function into (13.3) and recalling Example 13.3, we see thatu is a
solution of (13.3) if and only if the functionr is a solution of the ordinary differential
equation

ṙ +
1
r

= 0, r(0) = r0.

Hence,

u(t,x) :=
√

r2
0−2t (cosx,sinx) for (t,x) ∈ [0,

1
2

r2
0)×R

is indeed a solution of the curve shortening flow equation. This solution is maximal
but not global. The maximal existence timeTmax = 1

2r2
0 is finite, and the solution

shrinks to a point as time approaches the maximal existence time.

By using maximal regularity results in the Sobolev spaceH2
2π , by using fixed

point theorems or the local inverse theorem, and by using regularity results for gra-
dient systems, it is possible to prove the following local / maximal existence and
uniqueness result. It is, however, not a straightforward consequence of Theorems
6.1 or 8.1 for abstract gradient systems.

Theorem 13.5.For every initial curve in H2
2π , the problem(13.3)admits a unique

maximal solution u∈C([0,Tmax);H2
2π)∩C∞((0,Tmax);C∞

2π).

More difficult is the question about the maximal existence time and the be-
haviour of the curve shortening flow near the maximal existence time. In order to
give some short outlook, let us cite a few results in this context.
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A closed, planar curveΓ ⊆ R2 is called aJordan curve if it has no self-
intersections, that is, if every parametrizationu∈ P2π of the curve is injective on
[0,2π). By the Jordan curve theorem, every Jordan curve divides theplane into two
connected components having the curve as boundary. One component is bounded,
the other one is unbounded. We say that a Jordan curve isconvex if the enclosed
bounded component is convex. For convex initial curves and the curve shortening
flow, the following can be said [Gage and Hamilton (1986)].

Theorem 13.6 (Gage & Hamilton).Let (Γt) be a curve shortening flow. IfΓ0 is
a convex Jordan curve, then theΓt are convex Jordan curves for every t and they
shrink to a point as time approaches the maximal existence time.

This result has been strengthened to general Jordan curves [Grayson (1987)].

Theorem 13.7 (Grayson).Let (Γt) be a curve shortening flow. IfΓ0 is a Jordan
curve, then theΓt are Jordan curves for every t. Moreover,Γt0 is convex for some t0

andΓt shrinks to a point as time approaches the maximal existence time.

Variants of the length functional may be considered on Riemannian manifolds,
for example on the spaceRd equipped with a metricg. The length of a closed curve
is in this case

E (u) =

∫ 2π

0
|u′(x)|g(u(x)) dx.

Clearly, minimizers of this functional, defined on the set ofall curves connecting
two given points, need no longer be straight lines. For closed curves, solutions
of the associated curve shortening equation (the associated L2

2π gradient system)
need no longer shrink to points. In the Lagrange equations from classical mechan-
ics, the above more general situation appears very naturally, and we refer back to
[Birkhoff (1917)] or [Cartan (1967), pp. 287-].
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Appendix A
Primer on topology

It is the purpose of this introductory chapter to recall somebasic facts about metric
spaces, sequences in metric spaces, compact metric spaces,and continuous func-
tions between metric spaces. Most of the material should be known, and if it is
not known in the context of metric spaces, it has certainly been introduced onRd.
The generalization to metric spaces should be straightforward, but it is nevertheless
worthwhile to spend some time on the examples.

We also introduce some further notions from topology which may be new; see
for example the definitions of density or of completion of a metric space.

A.1 Metric spaces

Definition A.1. Let M be a set. We call a functiond : M×M → R+ a metricor a
distanceonM if for everyx, y, z∈ M

(i) d(x,y) = 0 if and only ifx = y,

(ii) d(x,y) = d(y,x) (symmetry), and

(iii) d(x,y) ≤ d(x,z)+d(z,y) (triangle inequality).

A pair (M,d) of a setM and a metricd onM is called ametric space.

It will be convenient to write onlyM instead of(M,d) if the metricd on M is
known from the context, and to speak of a metric spaceM.

Example A.2. 1. LetM ⊆ Rd and

d(x,y) :=
d

∑
i=1

|xi −yi|

or

1001
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d(x,y) :=

(

d

∑
i=1

|xi −yi|2
) 1

2

.

Then(M,d) is a metric space. The second metric is called theeuclidean metric.
Often, if the metric onRd is not explicitly given, we mean the euclidean metric.

2. LetM ⊆C([0,1]), the space of all continuous functions on the interval[0,1], and

d( f ,g) := sup
x∈[0,1]

| f (x)−g(x)|.

Then(M,d) is a metric space.
3. LetM be any set and

d(x,y) :=

{

0 if x = y,

1 otherwise.

Then(M,d) is a metric space. The metricd is called thediscrete metric.
4. Let(M,d) be a metric space. Then

d1(x,y) :=
d(x,y)

1+d(x,y)

and
d2(x,y) := min{d(x,y),1}

define also metrics onM.
5. LetM = C(R), the space of all continuous functions onR, and let

dn( f ,g) := sup
x∈[−n,n]

| f (x)−g(x)| (n∈ N)

and

d( f ,g) := ∑
n∈N

2−n dn( f ,g)

1+dn( f ,g)
.

Then(M,d) is a metric space. Note that the functionsdn are not metrics for any
n∈ N!

6. Let (M,d) be a metric space. Then any subsetM̃ ⊆ M is a metric space for the
induced metric

d̃(x,y) = d(x,y), x, y∈ M̃.

We may sometimes say thatM̃ is asubspaceof M, that is, a subset and a metric
space, but certainly this is not to be understood in the senseof linear subspaces
of vector spaces (M need not be a vector space).

7. Let(Mn,dn) be metric spaces (n∈ N). Then the cartesian productM :=
⊗

n∈N Mn

is a metric space for the metric

d(x,y) := ∑
n∈N

2−n min{dn(xn,yn),1}.



A.1 Metric spaces 1003

Clearly, in a similar way, every finite cartesian product of metric spaces is a
metric space.

Definition A.3. Let (M,d) be a metric space.

a) For everyx ∈ M and everyr > 0 we define theopen ball B(x, r) := {y∈ M :
d(x,y) < r} with centerx and radiusr.

b) A setO⊆ M is calledopenif for everyx∈ O there exists somer > 0 such that
B(x, r) ⊆ O.

c) A setA⊆ M is calledclosedif its complementAc = M \A is open.

d) A setU ⊆ M is called a neighbourhood ofx∈ M if there existsr > 0 such that
B(x, r) ⊆U .

Remark A.4. (a) The notionsopen, closed, neighbourhooddepend on the setM!!
For example,M is always closed and open inM. The setQ is not closed inR (for
the euclidean metric), but it is closed inQ for the induced metric! Therefore, one
should always say in which metric space some given set is openor closed.
(b) Clearly, a setO⊆ M is open (inM) if and only if it is a neighbourhood of every
of its elements.

Lemma A.5. Let (M,d) be a metric space. The following are true:

a) Arbitrary unions of open sets are open. That means: if(Oi)i∈I is an arbitrary
family of open sets (no restrictions on the index set I), then

⋃

i∈I Oi is open.

b) Arbitrary intersections of closed sets are closed. That means: if (Ai)i∈I is an
arbitrary family of closed sets, then

⋂

i∈I Ai is closed.

c) Finite intersections of open sets are open.

d) Finite unions of closed sets are closed.

Proof. (a) Let (Oi)i∈I be an arbitrary family of open sets and letO :=
⋃

i∈I Oi . If
x∈ O, thenx∈ Oi for somei ∈ I , and sinceOi is open,B(x, r) ⊆ Oi for somer > 0.
This implies thatB(x, r) ⊆ O, and thereforeO is open.

(c) Next let(Oi)i∈I be a finite family of open sets and letO :=
⋂

i∈I Oi . If x∈ O,
thenx∈Oi for everyi ∈ I . Since theOi are open, there existr i such thatB(x, r i)⊆Oi .
Let r := mini∈I r i which is positive sinceI is finite. By construction,B(x, r)⊆ Oi for
everyi ∈ I , and thereforeB(x, r) ⊆ O, that is,O is open.

The proofs for closed sets are similar or follow just from thedefinition of closed
sets and the above two assertions.

Exercise A.6 Determine all open sets (respectively, all closed sets) of ametric
space(M,d), where d is the discrete metric.

Exercise A.7 Show that a ball B(x, r) in a metric space M is always open. Show
also that

B̄(x, r) := {y∈ M : d(x,y) ≤ r}
is always closed.
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Definition A.8 (Closure, interior, boundary). Let (M,d) be a metric space and let
S⊆ M be a subset. Then the setS̄:=

⋂{A : A⊆ M is closed andS⊆ A} is called the
closureof S. The setS◦ :=

⋃{O : O⊆ M is open andO⊆ S} is called theinterior
of S. Finally, we call∂S:= {x∈ M : ∀ε > 0B(x,ε)∩S 6= /0 andB(x,ε)∩Sc 6= /0} the
boundaryof S.

By Lemma A.5, the closure of a setS is always closed (arbitrary intersections
of closed sets are closed). By definition,S̄ is the smallest closed set which contains
S. Similarly, the interior of a setS is always open, and by definition it is the largest
open set which is contained inS. Note that the interior might be empty.

Exercise A.9 Give an example of a metric space M and some x∈ M, r > 0, to show
that B̄(x, r) need not coincide with the closure of B(x, r).

Exercise A.10 Let (M,d) be a metric space and consider the metrics d1 and d2

from Example A.2(4). Show that the set of all open subsets, closed subsets or neigh-
bourhoods of M is the same for the three given metrics.

The set of all open subsets is also called thetopologyof M. The three metrics d,
d1 and d2 thus induce the same topology. Sometimes it is good to know that one can
pass from a given metric d to a finite metric (d1 and d2 take only values between0
and1) without changing the topology.

A.2 Sequences, convergence

Throughout the following, sequences will be denoted by(xn). Only when it is nec-
essary, we make precise the indexn; usually,n≥ 0 orn≥ 1, but sometimes we will
also consider finite sequences or sequences indexed byZ.

Definition A.11. Let (M,d) be a metric space.

a) We call a sequence(xn)⊆ M aCauchy sequenceif for everyε > 0 there exists
n0 such that for everyn, m≥ n0 one hasd(xn,xm) < ε.

b) We say that a sequence(xn)⊆M convergesto some elementx∈M if for every
ε > 0 there existsn0 such that for everyn ≥ n0 one hasd(xn,x) < ε. If (xn)
converges tox, we also write limn→∞ xn = x or xn → x asn→ ∞.

Exercise A.12 Let C([0,1]) be the metric space from Example A.2(2). Show that
a sequence( fn) ⊆ C([0,1]) converges to some f for the metric d if and only if
it converges uniformly. We say that the metric d induces the topology ofuniform
convergence.

Show also that a sequence( fn) ⊆ C(R) (Example A.2(5)) converges to some
f for the metric d if and only if it converges uniformly on compact subsets ofR.
In this example, we say that the metric d induces the topologyof local uniform
convergence.
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Exercise A.13 Determine all Cauchy sequences and all convergent sequences in a
discrete metric space.

Lemma A.14.Let M be a metric space and(xn) ⊆ M be a sequence. Then:

a) limn→∞ xn = x for some element x∈ M if and only if for every neighbourhood
U of x there exists n0 such that for every n≥ n0 one has xn ∈U.

b) (Uniqueness of the limit)If limn→∞ xn = x andlimn→∞ xn = y, then x= y.

Lemma A.15.A set A⊆M is closed if and only if for every sequence(xn)⊆A which
converges to some x∈ M one has x∈ A.

Proof. Assume first thatA is closed and let(xn) ⊆ A be convergent tox ∈ M. If x
does not belong toA, then it belongs toAc which is open. By definition, there exists
ε > 0 such thatB(x,ε) ⊆ Ac. Given thisε, there existsn0 such thatxn ∈ B(x,ε) for
everyn≥ n0, a contradiction to the assumption thatxn ∈ A. Hence,x∈ A.

On the other hand, assume that limn→∞ xn = x∈ A for every convergent(xn) ⊆ A
and assume in addition thatA is not closed or, equivalently, thatAc is not open.
Then there existsx∈ Ac such that for everyn∈ N the setB(x, 1

n)∩A is nonempty.
From this one can construct a sequence(xn) ⊆ A which converges tox, which is a
contradiction becausex∈ Ac.

Lemma A.16.Let (M,d) be a metric space, and let S⊆ M be a subset. Then

S̄= {x∈ M : ∃(xn) ⊆ S s.t. lim
n→∞

xn = x}
= {x∈ M : d(x,S) := inf

y∈S
d(x,y) = 0}.

Proof. Let
A := {x∈ M : ∃(xn) ⊆ Ss.t. lim

n→∞
xn = x}

and
B := {x∈ M : d(x,S) := inf

y∈S
d(x,y) = 0}.

These two sets are clearly equal by the definition of the inf and the definition of
convergence. Moreover, the setB is closed by the following argument. Assume that
(xn) ⊆ B is convergent tox ∈ M. By definition ofB, for everyn there existsy∈ S
such thatd(xn,yn) ≤ 1/n. Hence,

limsup
n→∞

d(x,yn) ≤ limsup
n→∞

d(x,xn)+ limsup
n→∞

d(xn,yn) = 0,

so thatx∈ B.
Clearly, B containsS, and sinceB is closed,B containsS̄. It remains to show

thatB ⊆ S̄. If this is not true, then there existsx ∈ B\ S̄. Since the complement of
S̄ is open inM, there existsr > 0 such thatB(x, r)∩ S̄= /0, a contradiction to the
definition ofB.

Definition A.17. A metric space(M,d) is calledcompleteif every Cauchy sequence
converges.
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Exercise A.18 Show that the spacesRd, C([0,1]) and C(R) are complete. Show
also that any discrete metric space is complete.

Lemma A.19.A subspace N⊆ M of a complete metric space is complete if and
only if it is closed in M.

Proof. Assume thatN ⊆ M is closed, and let(xn) be a Cauchy sequence inN. By
the assumption thatM is complete,(xn) is convergent to some elementx∈ M. Since
N is closed,x∈ N.

Assume on the other hand thatN is complete, and let(xn) ⊆ N be convergent to
some elementx∈M. Clearly, every convergent sequence is also a Cauchy sequence,
and sinceN is complete,(xn) converges to some elementy ∈ N. By uniqueness of
the limit, x = y∈ N. Hence,N is closed.

A.3 Compactness

Definition A.20. We say that a metric space(M,d) is compactif for every open
covering there exists a finite subcovering, that is, whenever (Oi)i∈I is a family of
open sets (no restrictions on the index setI ) such thatM =

⋃

i∈I Oi , then there exists
a finitesubsetI0 ⊆ I such thatM =

⋃

i∈I0 Oi .

Lemma A.21.A metric space(M,d) is compact if and only if it issequentially com-
pact, that is, if and only if every sequence(xn) ⊆ M has a convergent subsequence.

Proof. Assume thatM is compact and let(xn) ⊆ M. Assume that(xn) does not
have a convergent subsequence. Then for everyx∈ M there existsεx > 0 such that
B(x,εx) contains only finitely many elements of{xn}. Note that(B(x,εx))x∈M is an
open covering ofM so that by the compactness ofM there exists a finite subsetN ⊆
M such thatM =

⋃

x∈N B(x,εx). But this means that(xn) takes only finitely many
values, and hence there exists even a constant subsequence which is in particular
also convergent; a contradiction to the assumption on(xn).

On the other hand, assume thatM is sequentially compact and let(Oi)i∈I be an
open covering ofM. We first show that there existsε > 0 such that for everyx∈ M
there existsix ∈ I with B(x,ε) ⊆ Oix. If this were not true, then for everyn ∈ N

there existsxn such thatB(xn,
1
n) 6⊆ Oi for everyi ∈ I . Passing to a subsequence, we

may assume that(xn) is convergent to somex ∈ M. There exists somei0 ∈ I such
that x ∈ Oi0, and sinceOi0 is open, we find someε > 0 such thatB(x,ε) ⊆ Oi0.
Let n0 be such that1n0

< ε
2. By the triangle inequality, for everyn ≥ n0 we have

B(xn,
1
n) ⊆ B(x,ε) ⊆ Oi0, a contradiction to the construction of the sequence(xn).

Next we show thatM =
⋃n

j=1B(x j ,ε) for a finite family ofx j ∈ M. Choose any
x1 ∈ M. If B(x1,ε) = M, then we are already done. Otherwise we findx2 ∈ M \
B(x1,ε). If B(x1,ε)∪B(x2,ε) 6= M, then we even findx3 ∈M which does not belong
to B(x1,ε)∪B(x2,ε), and so on. If

⋃n
j=1B(x j ,ε) is never all ofM, then we find

actually a sequence(x j) such thatd(x j ,xk) ≥ ε for all j 6= k. This sequence can not
have a convergent subsequence, a contradiction to sequential compactness.
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Since every of theB(x j ,ε) is a subset ofOixj
for someixj ∈ I , we have proved that

M =
⋃n

j=1Oixj
, i.e. the open covering(Oi) admits a finite subcovering. The proof is

complete.

Lemma A.22.Any compact metric space is complete.

Proof. Let (xn) be a Cauchy sequence inM. By the preceeding lemma, there ex-
ists a subsequence which converges to somex∈ M. If a subsequence of a Cauchy
sequence converges, then the sequence itself converges, too.

A.4 Continuity

Definition A.23. Let (M1,d1), (M2,d2) be two metric spaces, and letf : M1 → M2

be a function.

a) We say thatf is continuous at some point x∈ M1 if

∀ε > 0∃δ > 0∀y∈ B(x,δ ) : d2( f (x), f (y)) < ε.

b) We say thatf is continuousif it is continuous at every point.

c) We say thatf is uniformly continuousif

∀ε > 0∃δ > 0∀x, y∈ M1 : d1(x,y) < δ ⇒ d2( f (x), f (y)) < ε.

d) We say thatf is Lipschitz continuousif

∃L ≥ 0∀x, y∈ M : d2( f (x), f (y)) ≤ Ld1(x,y).

Lemma A.24.A function f : M1 → M2 between two metric spaces is continuous at
some point x∈ M1 if and only if it issequentially continuousat x, that is, if and only
if for every sequence(xn) ⊆ M1 which converges to x one haslimn→∞ f (xn) = f (x).

Proof. Assume thatf is continuous atx ∈ M1 and let(xn) be convergent tox. Let
ε > 0. There existsδ > 0 such that for everyy∈ B(x,δ ) one hasf (y) ∈ B( f (x),ε).
By definition of convergence, there existsn0 such that for everyn ≥ n0 one has
xn ∈ B(x,δ ). For this n0 and everyn ≥ n0 one hasf (xn) ∈ B( f (x),ε). Hence,
limn→∞ f (xn) = f (x).

Assume on the other hand thatf is sequentially continuous atx. If f was not con-
tinuous inx then there existsε > 0 such that for everyn∈N there existsxn ∈B(x, 1

n)
with f (xn) 6∈B( f (x),ε). By construction, limn→∞ xn = x. Sincef is sequentially con-
tinuous, limn→∞ f (xn) = f (x). But this is a contradiction tof (xn) 6∈ B( f (x),ε), and
thereforef is continuous.

Lemma A.25.A function f : M1 → M2 between two metric spaces is continuous if
and only if preimages of open sets are open, that is, if and only if for every open set
O⊆ M2 the preimage f−1(O) is open in M1.
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Proof. Let f : M1 → M2 be continuous and letO ⊆ M2 be open. Letx ∈ f−1(O).
SinceO is open, there existsε > 0 such thatB( f (x),ε) ⊆ O. Sincef is continuous,
there existsδ > 0 such that for everyy∈ B(x,δ ) one hasf (y) ∈ B( f (x),ε). Hence,
B(x,δ ) ⊆ f−1(O) so thatf−1(O) is open.

On the other hand, if the preimage of every open set is open, then for every
x∈ M1 and everyε > 0 the preimagef−1(B( f (x),ε)) is open. Clearly,x belongs to
this preimage, and therefore there existsδ > 0 such thatB(x,δ ) ⊆ f−1(B( f (x),ε)).
This proves continuity.

Lemma A.26.Let f : K →M be a continuous function from a compact metric space
K into a metric space M. Then:

a) The image f(K) is compact.

b) The function f is uniformly continuous.

Proof. (a) Let(Oi)i∈I be an open covering off (K). Sincef is continuous,f−1(Oi)
is open inK. Moreover,( f−1(Oi))i∈I is an open covering ofK. SinceK is compact,
there exists a finite subcovering:K =

⋃

i∈I0 f−1(Oi) for some finiteI0 ⊆ I . Hence,
(Oi)i∈I0 is a finite subcovering off (K).

(b) Letε > 0. Sincef is continuous, for everyx∈ K there existsδx > 0 such that
for all y∈ B(x,δx) one hasf (y) ∈ B( f (x),ε). By compactness, there exists a finite
family (xi)1≤i≤n ⊆K such thatK =

⋃n
i=1B(xi ,δxi /2). Letδ = min{δxi /2 : 1≤ i ≤ n}

and letx, y∈ K such thatd(x,y) < δ . Sincex∈ B(xi ,δxi /2) for some 1≤ i ≤ n, we
find thaty∈ B(xi ,δxi ). By construction,f (x), f (y) ∈ B( f (xi),ε) so that the triangle
inequality impliesd( f (x), f (y)) < 2ε.

Lemma A.27.Any Lipschitz continuous function f: M1 → M2 between two metric
spaces is uniformly continuous.

Proof. Let L > 0 be a Lipschitz constant forf and letε > 0. Defineδ := ε/L. Then,
for everyx, y∈ M such thatd1(x,y) ≤ δ one has

d2( f (x), f (y)) ≤ Ld1(x,y) ≤ ε,

and thereforef is uniformly continuous.

A.5 Completion of a metric space

Definition A.28. We say that a subsetD ⊆ M of a metric space(M,d) is dense in
M if D̄ = M. Equivalently,D is dense inM if for everyx∈ M there exists(xn) ⊆ D
such that limn→∞ xn = x.

Lemma A.29 (Completion).Let(M,d) be a metric space. Then there exists a com-
plete metric space(M̂, d̂) and a continuous, injective j: M → M̂ such that

d(x,y) = d̂( j(x), j(y)), x, y∈ M,
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and such that the image j(M) is dense inM̂.

Definition A.30. Let (M,d) be a metric space. A complete metric space(M̂, d̂) ful-
filling the properties from Lemma A.29 is called acompletionof M.

Proof (Proof of Lemma A.29).Let

M̄ := {(xn) ⊆ M : (xn) is a Cauchy sequence}.

We say that two Cauchy sequences(xn), (yn) ⊆ M̄ are equivalent (and we write
(xn) ∼ (yn)) if lim n→∞ d(xn,yn) = 0. Clearly,∼ is an equivalence relation on̄M.

We denote by[(xn)] the equivalence class in̄M of a Cauchy sequence(xn), and
we let

M̂ := M̄/ ∼= {[(xn)] : (xn) ∈ M̄}
be the set of all equivalence classes. If we define

d̂([(xn)], [(yn)]) := lim
n→∞

d(xn,yn),

thend̂ is well defined (the definition is independent of the choice ofrepresentatives)
and it is a metric onM̂. The fact thatd̂ is a metric and also that(M̂, d̂) is a complete
metric space are left as exercises.

One also easily verifies thatj : M → M̂ defined byj(x) = [(x)] (the equivalence
class of the constant sequence(x)) is continuous, injective and in fact isometric, i.e.

d(x,y) = d̂( j(x), j(y))

for everyx, y∈ M. The proof is here complete.

Lemma A.31.Let (M̂i , d̂i) (i = 1, 2) be two completions of a metric space(M,d).
Then there exists a bijection b: M̂1 → M̂2 such that for every x, y∈ M̂1

d̂1(x,y) = d̂2(b(x),b(y)).

Lemma A.31 shows that up to isometric bijections there exists only one comple-
tion of a given metric space and it allows us to speak ofthecompletion of a metric
space.

Lemma A.32.Let f : M1 → M2 be a uniformly (!) continuous function between two
metric spaces. Let̂M1 andM̂2 be the completions of M1 and M2, respectively. Then
there exists a unique continuous extensionf̂ : M̂1 → M̂2 of f .

Proof. Since f is uniformly continuous, it maps equivalent Cauchy sequences into
equivalent Cauchy sequences (equivalence of Cauchy sequences is defined as in the
proof of Lemma A.29). Hence, the function̂f ([(xn)]) := [( f (xn))] is well defined. It
is easy to check that̂f is an extension off and thatf̂ is continuous (even uniformly
continuous).
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The assumption of uniform continuity in Lemma A.32 is necessary in general.
The functionsf (x) = sin(1/x) and f (x) = 1/x on the open interval(0,1) do not
admit continuous extensions to the closed interval[0,1] (which is the completion of
(0,1)).



Appendix B
Banach spaces and bounded linear operators

Throughout, letK ∈ {R,C}.

B.1 Normed spaces

Definition B.1. Let X be a vector space overK. A function‖ · ‖ : X → R+ is called
a norm if for everyx, y∈ X and everyλ ∈ K

(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖λx‖ = |λ |‖x‖, and

(iii) ‖x+y‖ ≤ ‖x‖+‖y‖ (triangle inequality).

A pair (X,‖ · ‖) of a vector spaceX and a norm‖ · ‖ is called anormed space.

Often, we will speak of a normed spaceX if it is clear which norm is given onX.

Example B.2. 1. (Finite dimensional spaces) LetX = Kd. Then

‖x‖p :=

(

d

∑
i=1

|xi |p
)1/p

, 1≤ p < ∞,

and
‖x‖∞ := sup

1≤i≤d
|xi |

are norms onX.
2. (Sequence spaces) Let 1≤ p < ∞, and let

l p := {(xn) ⊂ K : ∑
n
|xn|p < ∞}

with norm

1011
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‖x‖p :=

(

∑
n
|xn|p

)1/p

.

Then(l p,‖ · ‖p) is a normed space.
3. (Sequence spaces) LetX be one of the spaces

l∞ := {(xn) ⊂ K : sup
n
|xn| < ∞},

c := {(xn) ⊂ K : lim
n→∞

xn exists}, or

c0 := {(xn) ⊂ K : lim
n→∞

xn = 0}, or

c00 := {(xn) ⊂ K : the set{n : xn 6= 0} is finite},

and let
‖x‖∞ := sup

n
|xn|.

Then(X,‖ · ‖∞) is a normed space.
4. (Function spaces: continuous functions) LetC([a,b]) be the space of all continu-

ous,K-valued functions on a compact interval[a,b] ⊂ R. Then

‖ f‖p :=

(

∫ b

a
| f (x)|p dx

)1/p

, 1≤ p < ∞,

and
‖ f‖∞ := sup

x∈[a,b]

| f (x)|

are norms onC([a,b]).
5. (Function spaces: continuous functions) LetK be a compact metric space and let

C(K) be the space of all continuous,K-valued functions onK. Then

‖ f‖∞ := sup
x∈K

| f (x)|

is a norm onC(K).
6. (Function spaces: integrable functions) Let(Ω ,A ,µ) be a measure space and let

Xp = Lp(Ω) (1≤ p≤ ∞). Let

‖ f‖p :=

(

∫

Ω
| f |p dµ

)1/p

, 1≤ p < ∞,

or
‖ f‖∞ := ess sup| f (x)| := inf{c∈ R+ : µ({| f | > c}) = 0}.

Then(Xp,‖ · ‖p) is a normed space.
7. (Function spaces: differentiable functions) Let

C1([a,b]) := { f ∈C([a,b]) : f is continuously differentiable}.
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Then‖ · ‖∞ and
‖ f‖C1 := ‖ f‖∞ +‖ f ′‖∞

are norms onC1([a,b]).

We will see more examples in the sequel.

Lemma B.3.Every normed space is a metric space for the metric

d(x,y) := ‖x−y‖, x, y∈ X.

By the above lemma, also every subset of a normed space becomes a metric space
in a natural way. Moreover, it is natural to speak of closed oropen subsets (or linear
subspaces!) of normed spaces, or of closures and interiors of subsets.

Exercise B.4 Show that in a normed space X, for every x∈ X and every r> 0 the
closed ballB̄(x, r) coincides with closureB(x, r) of the open ball.

Also the notion of continuity of functions between normed spaces (or between a
metric space and a normed space) makes sense. The following is a first example of
a continuous function.

Lemma B.5.Given a normed space, the norm is a continuous function.

This lemma is a consequence of the following lemma.

Lemma B.6 (Triangle inequality from below). Let X be a normed space. Then,
for every x, y∈ X,

‖x−y‖ ≥
∣

∣‖x‖−‖y‖
∣

∣.

Proof. The triangle inequality implies

‖x‖ = ‖x−y+y‖
≤ ‖x−y‖+‖y‖,

so that
‖x‖−‖y‖≤ ‖x−y‖.

Changing the role ofx andy implies

‖y‖−‖x‖≤ ‖y−x‖= ‖x−y‖,

and the claim follows.

A notion which can not really be defined in metric spaces but innormed spaces
is the following.

Definition B.7. A subsetB of a normed spaceX is calledboundedif

sup{‖x‖ : x∈ B} < ∞.
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It is easy to check that ifX is a normed space, andM is a metric space, then
the setC(M;X) of all continuous functions fromM into X is a vector space for
the obvious addition and scalar multiplication. IfM is in addition compact, then
f (M) ⊂ X is also compact for every such function, and hencef (M) is necessarily
bounded (every compact subset of a normed space is bounded!). So we can give a
new example of a normed space.

Example B.8. 8. (Function spaces: vector-valued continuous functions)Let (X,‖ ·
‖) be a normed space and letK be a compact metric space. LetE = C(K;X) be
the space of allX-valued continuous functions onK. Then

‖ f‖∞ := sup
x∈K

‖ f (x)‖

is a norm onC(K;X).

Also the notions of Cauchy sequences and convergent sequences make sense in
normed spaces. In particular, one can speak of a complete normed space, that is, a
normed space in which every Cauchy sequence converges.

Definition B.9. A complete normed space is called aBanach space.

Example B.10.The finite dimensional spaces, the sequence spacesl p (1≤ p≤ ∞),
c, and c0, and the function spaces(C([a,b]),‖ · ‖∞), (Lp(Ω),‖ · ‖p) are Banach
spaces.

The spaces(c00,‖ · ‖∞), (C([a,b]),‖ · ‖p) (1≤ p < ∞) are not Banach spaces.
If X is a Banach space, then also(C(K;X),‖ · ‖∞) is a Banach space.

Definition B.11. We say that two norms‖ ·‖1 and‖ ·‖2 on a real or complex vector
spaceX are equivalent if there exist two constantsc, C > 0 such that for everyx∈ X

c‖x‖1 ≤ ‖x‖2 ≤C‖x‖1.

Lemma B.12.Let ‖ · ‖1, ‖ · ‖2 be two norms on a vector space X (overK). The
following are equivalent:

(i) The norms‖ · ‖1, ‖ · ‖2 are equivalent.

(ii) A set O⊂ X is open for the norm‖ · ‖1 if and only if it is open for the norm
‖ · ‖2 (and similarly for closed sets).

(iii) A sequence(xn) ⊂ X converges to0 for the norm‖ · ‖1 if and only if it con-
verges to0 for the norm‖ · ‖2.

In other words, if two norms‖ ·‖1, ‖ ·‖2 on a vector spaceX are equivalent, then
the open sets, the closed sets and the null sequences are the same. We also say that
the two norms define the sametopology. In particular, ifX is a Banach space for
one norm then it is also a Banach space for the other (equivalent) norm.

Exercise B.13The norms‖ · ‖∞ and‖ · ‖p are not equivalent on C([0,1]).
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Theorem B.14.Any two norms on a finite dimensional real or complex vector space
are equivalent.

Proof. We may without loss of generality considerKd. Let ‖ · ‖ be a norm onKd

and let(ei)1≤i≤d be the canonical basis ofKd. For everyx∈ Kd

‖x‖ = ‖
d

∑
i=1

xiei‖

≤
d

∑
i=1

|xi |‖ei‖

≤ C‖x‖1,

whereC := sup1≤i≤d ‖ei‖ < ∞ and‖ · ‖1 is the norm from Example B.2.1. By the
triangle inequality from below, for everyx, y∈ Kd,

|‖x‖−‖y‖| ≤ ‖x−y‖ ≤C‖x−y‖1.

Hence, the norm‖ · ‖ : (Kd,‖ · ‖1) → R+ is continuous (onKd equipped with the
norm‖ ·‖1). If S:= {x∈ Kd : ‖x‖1 = 1} denotes the unit sphere for the norm‖ ·‖1,
thenS is compact. As a consequence

c := inf{‖x‖ : x∈ S} > 0,

since the infimum is attained by the continuity of‖ · ‖. This implies

c‖x‖1 ≤ ‖x‖ for everyx∈ Kd.

We have proved that every norm onKd is equivalent to the norm‖ · ‖1. Hence, any
two norms onKd are equivalent.

Corollary B.15. Any finite dimensional normed space is complete. Any finite dimen-
sional subspace of a normed space is closed.

Proof. The space(Kd,‖ ·‖1) is complete (exercise!). If‖ ·‖ is a second norm onKd

and if (xn) is a Cauchy sequence for that norm, then it is also a Cauchy sequence
in (Kd,‖ · ‖1) (use that the norms‖ · ‖1 and‖ · ‖ are equivalent), and therefore con-
vergent in(Kd,‖ · ‖1). By equivalence of norms again, the sequence(xn) is also
convergent in(Kd,‖ · ‖), and therefore(Kd,‖ · ‖) is complete.

LetY be a finite dimensional subspace of a normed spaceX, and let(xn)⊂Y be a
convergent sequence withx= limn→∞ xn ∈ X. Since(xn) is also a Cauchy sequence,
and sinceY is complete, we find (by uniqueness of the limit) thatx∈Y, and therefore
Y is closed (Lemma A.15).

Definition B.16. Let (xn) be a sequence in a normed spaceX. We say that the series
∑nxn is convergentif the sequence(∑ j≤nx j) of partial sums is convergent. We say
that the series∑nxn is absolutely convergentif ∑n‖xn‖ < ∞.
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Lemma B.17.Let (xn) be a sequence in a normed space X. If the series∑nxn is
convergent, then necessarilylimn→∞ xn = 0.

Note that in a normed space not every absolutely convergent series is convergent.
In fact, the following is true.

Lemma B.18.A normed space X is a Banach space if and only if every absolutely
convergent series converges.

Proof. Assume thatX is a Banach space, and let∑nxn be absolutely convergent. It
follows easily from the triangle inequality that the corresponding sequence of partial
sums is a Cauchy sequence, and sinceX is complete, the series∑nxn is convergent.

On the other hand, assume that every absolutely convergent series is convergent.
Let (xn)n≥1 ⊂ X be a Cauchy sequence. From this Cauchy sequence, one can ex-
tract a subsequence(xnk)k≥1 such that‖xnk+1 −xnk‖ ≤ 2−k, k ≥ 1. Lety0 = xn1 and
yk = xnk+1 − xnk, k ≥ 1. Then the series∑k≥0 yk is absolutely convergent. By as-
sumption, it is also convergent. But by construction,(∑k

l=0yl ) = (xnk), so that(xnk)
is convergent. Hence, we have extracted a subsequence of theCauchy sequence
(xn) which converges. As a consequence,(xn) is convergent, and since(xn) was an
arbitrary Cauchy sequence,X is complete.

Lemma B.19 (Riesz).Let X be a normed space and let Y⊂ X be a closed linear
subspace. If Y6= X, then for everyδ > 0 there exists x∈ X \Y such that‖x‖= 1 and

dist(x,Y) = inf{‖x−y‖ : y∈Y} ≥ 1− δ .

Proof. Let z∈ X \Y. SinceY is closed,

d := dist(z,Y) > 0.

Let δ > 0. By definition of the infimum, there existsy∈Y such that

‖z−y‖ ≤ d
1− δ

.

Let x := z−y
‖z−y‖ . Thenx∈ X \Y, ‖x‖ = 1, and for everyu∈Y

‖x−u‖ = ‖z−y‖−1‖z− (y+‖z−y‖u)‖
≥ ‖z−y‖−1d ≥ 1− δ ,

since(y+‖z−y‖u)∈Y.

Theorem B.20.A normed space is finite dimensional if and only if every closed
bounded set is compact.

Proof. If the normed space is finite dimensional, then every closed bounded set
is compact by the Theorem of Heine-Borel. Note that by Theorem B.14 it is not
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important which norm on the finite dimensional space is considered. By Lemma
B.12, the closed and bounded sets do not change.

On the other hand, if the normed space is infinite dimensional, then, by the
Lemma of Riesz, one can construct inductively a sequence(xn) ⊂ X such that
‖xn‖ = 1 and dist(xn+1,Xn) ≥ 1

2 for everyn∈ N, whereXn = span{xi : 1≤ i ≤ n}
(note thatXn is closed by Corollary B.15). By construction,(xn) belongs to the
closed unit ball, but it can not have a convergent subsequence (even not a Cauchy
subsequence). Hence, the closed unit ball is not compact. Westate this result sepa-
rately.

Theorem B.21.In an infinite dimensional Banach space the closed unit ball is not
compact.

Lemma B.22 (Completion of a normed space).For every normed space X there
exists a Banach spacêX and a linear injective j: X → X̂ such that‖ j(x)‖ = ‖x‖
(x∈ X) and j(X) is dense inX̂. Up to isometry, the Banach spacêX is unique (up
to isomorphism). It is called thecompletionof X.

Proof. It suffices to repeat the proof of Lemma A.29 and to note that the completion
X̂ of X (considered as a metric space) carries in a natural way a linear structure:
addition of - equivalence classes of - Cauchy sequences is their componentwise
addition, and also multiplication of - an equivalence class- of a Cauchy sequence
and a scalar is done componentwise. Moreover, for every[(xn)], one defines the
norm

‖[(xn)]‖ := lim
n→∞

‖xn‖.

Uniqueness of̂X follows from Lemma A.31.

B.2 Product spaces and quotient spaces

Lemma B.23 (Product spaces).Let (Xi)i∈I be a finite (!) family of normed spaces,
and letX :=

⊗

i∈I Xi be the cartesian product. Then

‖x‖p :=

(

∑
i∈I

‖xi‖p
Xi

)1/p

(1≤ p < ∞),

and
‖x‖∞ := sup

i∈I
‖xi‖Xi

define equivalent norms onX . In particular, the cartesian product is a normed
space.

Proof. The easy proof is left to the reader.
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Lemma B.24.Let(Xi)i∈I be a finite family of normed spaces, and letX :=
⊗

i∈I Xi

be the cartesian product equipped with one of the equivalentnorms‖ · ‖p from
Lemma B.23. Then a sequence(xn) = ((xn

i )i) ⊂ X converges (is a Cauchy se-
quence) if and only if(xn

i ) ⊂ Xi is convergent (is a Cauchy sequence) for every
i ∈ I.

As a consequence,X is a Banach space if and only if all the Xi are Banach
spaces.

Proposition B.25 (Quotient space).Let X be a vector space (!) overK, and let
Y ⊂ X be a linear subspace. Define, for every x∈ X, the affine subspace

x+Y := {x+y : y∈Y},

and define thequotient spaceor factor space

X/Y := {x+Y : x∈ X}.

Then X/Y is a vector space for the addition

(x+Y)+ (z+Y) := (x+z+Y),

and the scalar multiplication

λ (x+Y) := (λx+Y).

The neutral element is Y.

For the definition of quotient spaces, it is not important that we consider real or
complex vector spaces.

Examples of quotient spaces are already known. In fact,Lp is such an example.
Usually, one defines

L
p(Ω ,A ,µ)

to be the space ofall mesurable functionsf : Ω → K such that
∫

Ω | f |p dµ < ∞.
Moreover,

N := { f ∈ L
p(Ω ,A ,µ) :

∫

Ω
| f |p = 0}.

Note thatN is a linear subspace ofL p(Ω ,A ,µ), and thatN is the space of all
functions f ∈ L p which vanish almost everywhere. Then

Lp(Ω ,A ,µ) := L
p(Ω ,A ,µ)/N.

Proposition B.26.Let X be a normed space and let Y⊂ X be a linear subspace.
Then

‖x+Y‖ := inf{‖x−y‖ : y∈Y}
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defines a norm on X/Y if and only if Y is closed in X. If X is a Banach space and
Y ⊂ X closed, then X/Y is also a Banach space.

Proof. We have to check that‖ · ‖ satisfies all properties of a norm. Recall that
0X/Y = Y, and that for allx∈ X

‖x+Y‖ = 0

⇔ inf{‖x−y‖ : y∈Y} = 0

⇔ ∃(yn) ⊂Y : lim
n→∞

yn = x

⇔ (⇒ if Y closed) : x∈Y

⇔ x+Y = Y.

Second, for everyx∈ X and everyλ ∈ K\ {0},

‖λ (x+Y)‖ = ‖λx+Y‖
= inf{‖λx−y‖ : y∈Y}
= inf{‖λ (x−y)‖ : y∈Y}
= |λ | inf{‖x−y‖ : y∈Y}
= |λ |‖x+Y‖.

Third, for everyx, z∈ X,

‖(x+Y)+ (z+Y)‖ = ‖(x+z)+Y‖
= inf{‖x+z−y‖ : y∈Y}
= inf{‖x+z−y1−y2‖ : y1, y2 ∈Y}
≤ inf{‖x−y1‖+‖z−y2‖ : y1, y2 ∈Y}
≤ inf{‖x−y‖ : y∈Y}+ inf{‖z−y‖ : y∈Y}
= ‖x+Y‖+‖z+Y‖.

Hence,X/Y is a normed space ifY is closed.
Assume next thatX is a Banach space. Let(xn) ⊂ X be such that the series

∑n≥1xn+Y converges absolutely, i.e.∑n≥1‖xn+Y‖< ∞. By definition of the norm
in X/Y, we find(yn) ⊂Y such that‖xn−yn‖ ≤ ‖xn +Y‖+2−n. Replacing(xn) by
(x̂n) = (xn−yn), we find thatxn+Y = x̂n+Y and that the series∑n≥0 x̂n is absolutely
convergent. SinceX is complete, by Lemma B.18, the limit∑n≥1 x̂n = x∈ X exists.
As a consequence,

‖(x+Y)−
n

∑
k=1

(x̂k +Y)‖ = ‖(x−
n

∑
k=1

x̂k)+Y‖

≤ ‖x−
n

∑
k=1

x̂k‖ → 0,

i.e. the series∑n≥1xn +Y converges. By Lemma B.18,X/Y is complete.



1020 B Banach spaces and bounded linear operators

B.3 Bounded linear operators

In the following a linear mapping between two normed spacesX andY will also be
called alinear operatoror justoperator. If Y = K, then we call linear operators also
linear functionals. If T : X → Y is a linear operator between two normed spaces,
then we denote by

kerT := {x∈ X : Tx= 0}
its kernelor null space, and by

ranT := {Tx : x∈ X}

its rangeor image. Observe that we simply writeTx instead ofT(x), meaning that
T is applied tox∈ X. The identity operatorX → X, x 7→ x is denoted byI .

Lemma B.27.Let T : X → Y be a linear operator between two normed spaces X
and Y. Then the following are equivalent

(i) T is continuous.

(ii) T is continuous at0.

(iii) TB is bounded in Y, where B= B(0,1) denotes the unit ball in X.

(iv) There exists a constant C≥ 0 such that for every x∈ X

‖Tx‖ ≤C‖x‖.

Proof. The implication (i)⇒(ii) is trivial.
(ii)⇒(iii). If T is continuous at 0, then there exists someδ > 0 such that for every

x ∈ B(0,δ ) one hasTx∈ B(0,1) (so theε from theε-δ definition of continuity is
chosen to be 1 here). By linearity, for everyx∈ B = B(0,1)

‖Tx‖ =
1
δ
‖T(δx)‖ ≤ 1

δ
,

and this means thatTB is bounded.
(iii)⇒(iv). The setTBbeing bounded inY means that there exists some constant

C≥ 0 such that for everyx∈B one has‖Tx‖≤C. By linearity, for everyx∈X\{0},

‖Tx‖ = ‖T
x

‖x‖‖‖x‖ ≤C‖x‖.

(iv)⇒(i). Let x∈ X, and assume that limn→∞ xn = x. Then

‖Txn−Tx‖ = ‖T(xn−x)‖ ≤C‖xn−x‖→ 0 asn→ ∞,

so that limn→∞ Txn = Tx.

Definition B.28. We call a continuous linear operatorT : X → Y between two
normed spacesX andY also abounded operator(since it maps the unit ball of
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X to a bounded subset ofY). The set of all bounded linear operators is denoted by
L (X,Y). Special cases: IfX = Y, then we writeL (X,X) =: L (X). If Y = K, then
we writeL (X,K) =: X′.

Lemma B.29.The setL (X,Y) is a vector space and

‖T‖ := inf{C≥ 0 : ‖Tx‖ ≤C‖x‖ for all x ∈ X} (B.1)

= sup{‖Tx‖ : ‖x‖ ≤ 1}
= sup{‖Tx‖ : ‖x‖ = 1}

is a norm onL (X,Y).

Proof. We first show that the three quantities on the right-hand sideof (B.1) are
equal. In fact, the equality

sup{‖Tx‖ : ‖x‖ ≤ 1} = sup{‖Tx‖ : ‖x‖ = 1}

is easy to check so that it remains only to show that

A := inf{C≥ 0 : ‖Tx‖ ≤C‖x‖ for all x∈ X} = sup{‖Tx‖ : ‖x‖ = 1} =: B.

If C > A, then for everyx ∈ X \ {0}, ‖Tx‖ ≤ C‖x‖ or ‖T x
‖x‖‖ ≤ C. Hence,C ≥ B

which implies thatA ≥ B. If C > B, then for everyx ∈ X \ {0}, ‖T x
‖x‖‖ ≤ C, and

therefore‖Tx‖ ≤C‖x‖. Hence,C≥ A which implies thatA≤ B.
Now we check that‖ · ‖ is a norm onL (X,Y). First, for everyT ∈ L (X,Y),

‖T‖ = 0 ⇔ sup{‖Tx‖ : ‖x‖ ≤ 1} = 0

⇔ ∀x∈ X, ‖x‖ ≤ 1 : ‖Tx‖ = 0

⇔ (‖ · ‖ is a norm onY)∀x∈ X, ‖x‖ ≤ 1 : Tx= 0

⇔ (⇒ linearity ofT)∀x∈ X : Tx= 0

⇔ T = 0.

Second, for everyT ∈ L (X,Y) and everyλ ∈ K

‖λT‖ = sup{‖(λT)x‖ : ‖x‖ ≤ 1}
= sup{|λ |‖Tx‖ : ‖x‖ ≤ 1}
= |λ |‖T‖.

Finally, for everyT, S∈ L (X,Y),

‖T +S‖ = sup{‖(T +S)x‖ : ‖x‖ ≤ 1}
≤ sup{‖Tx‖+‖Sx‖ : ‖x‖ ≤ 1}
≤ ‖T‖+‖S‖.

The proof is complete.
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Remark B.30. (a) Note that the infimum on the right-hand side of (B.1) in Lemma
B.29 is always attained. Thus, for every operatorT ∈ L (X,Y) and everyx∈ X,

‖Tx‖ ≤ ‖T‖‖x‖.

This inequality shall be frequently used in the sequel! Notethat on the other hand the
suprema on the right-hand side of (B.1) are not always attained. (b) From Lemma
B.29 we can learn how to show that some operatorT : X →Y is bounded and how
to calculate the norm‖T‖. Usually (in most cases), one should prove in thefirst step
some inequality of the form

‖Tx‖ ≤C‖x‖, x∈ X,

because this inequality shows on the one hand thatT is bounded, and on the other
hand it shows the estimate‖T‖ ≤ C. In thesecond stepone should prove that the
estimateC was optimal by finding somex∈ X of norm‖x‖= 1 such that‖Tx‖=C,
or by finding some sequence(xn)⊂ X of norms‖xn‖ ≤ 1 such that limn→∞ ‖Txn‖=
C, because this shows that‖T‖=C. Of course, the second step only works if one has
not lost anything in the estimate of the first step. There are in fact many examples
of bounded operators for which it is difficult to estimate their norm.

Example B.31. 1. (Shift-operator). Onl p(N) consider theleft-shift operator

Lx = L(xn) = (xn+1).

Then

‖L(xn)‖p =

(

∑
n
|xn+1|p

)1/p

≤
(

∑
n
|xn|p

)1/p

,

so thatL is bounded and‖L‖ ≤ 1. On the other hand, forx = (0,1,0,0, . . .) one
computes that‖x‖p = 1 and‖Lx‖p = ‖(1,0,0, . . .)‖p = 1, and one concludes that
‖L‖ = 1.

2. (Shift-operator). Similarly, one shows that theright-shift operator Ron l p(N)
defined by

Rx= R(xn) = (0,x0,x1, . . . )

is bounded and‖R‖ = 1. Note that actually‖Rx‖p = ‖x‖p for everyx∈ l p.
3. (Multiplication operator). Letm∈ l∞ and consider onl p themultiplication oper-

ator
Mx = M(xn) = (mnxn).

4. (Functionals onC). Consider the linear functionalϕ : C([0,1]) → K defined by

ϕ( f ) :=
∫ 1

2

0
f (x) dx.

Then

|ϕ( f )| ≤
∫ 1

2

0
| f (x)| dx≤ 1

2
‖ f‖∞,
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so thatϕ is bounded and‖ϕ‖ ≤ 1
2. On the other hand, for the constant function

f = 1 one has‖ f‖∞ = 1 and|ϕ( f )| = 1
2, so that‖ϕ‖ = 1

2.

Lemma B.32.Let X, Y, Z be three Banach spaces, and let T∈ L (X,Y) and S∈
L (Y,Z). Then ST∈ L (X,Z) and

‖ST‖ ≤ ‖S‖‖T‖.

Proof. The boundedness ofST is clear since compositions of continuous functions
are again continuous. To obtain the bound onST, we calculate

‖ST‖ = sup
‖x‖≤1

‖STx‖

≤ sup
‖x‖≤1

‖S‖‖Tx‖

≤ ‖S‖‖T‖.

Lemma B.33.If Y is a Banach space thenL (X,Y) is a Banach space.

Proof. Assume thatY is a Banach space and let(Tn) be a Cauchy sequence in
L (X,Y). By the estimate

‖Tnx−Tmx‖ = ‖(Tn−Tm)x‖ ≤ ‖Tn−Tm‖‖x‖,

the sequence(Tnx) is a Cauchy sequence inY for everyx∈ X. SinceY is complete,
the limit limn→∞ Tnx exists for everyx ∈ X. DefineTx := limn→∞ Tnx. Clearly,T :
X →Y is linear. Moreover, since any Cauchy sequence is bounded, we find that

‖Tx‖ ≤ sup
n
‖Tnx‖ ≤C‖x‖

for some constantC≥ 0, i.e.T is bounded. Moreover, for everyn∈ N we have the
estimate

‖T −Tn‖ = sup
‖x‖≤1

‖Tx−Tnx‖

≤ sup
‖x‖≤1

sup
m≥n

‖Tmx−Tnx‖

≤ sup
m≥n

‖Tm−Tn‖.

Since that right-hand side of this inequality becomes arbitrarily small for largen,
we see that limn→∞ Tn = T exists, and so we have proved thatL (X,Y) is a Banach
space.

Remark B.34.The converse of the statement in Lemma B.33 is also true, i.e if
L (X,Y) is a Banach space then necessarilyY is a Banach space. For the proof,
however, one has to know that there are nontrivial operatorsin L (X,Y) as soon as
Y is nontrivial (i.e.Y 6= {0}). For this, we need the Theorem of Hahn-Banach and
its consequences discussed in Chapter E.
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Corollary B.35. The space X′ = L (X,K) of all bounded linear functionals on X is
always a Banach space.

Definition B.36. Let X, Y be two normed spaces.

a) We callT ∈ L (X,Y) an isomorphismif T is bijective andT−1 ∈ L (Y,X).

b) We callT ∈ L (X,Y) an isometryif ‖Tx‖ = ‖x‖ for everyx∈ X.

c) We say thatX andY areisomorphic(and we writeX ∼= Y) if there exists an
isomorphismT ∈ L (X,Y).

d) We say thatX andY areisometrically isomorphicif there exists an isometric
isomorphismT ∈ L (X,Y).

Remark B.37. 1. Two norms‖ · ‖1, ‖ · ‖2 on aK vector spaceX are equivalent if
and only if the identity operatorI : (X,‖ · ‖1) → (X,‖ · ‖2) is an isomorphism.

2. Saying that twonormedspacesX andY are isomorphic means that they are not
only ’equal’ as vector spaces (in the sense that we find a bijective linear operator)
but also as normed spaces (i.e. the bijection is continuous as well as its inverse).

3. If T ∈ L (X,Y) andS∈ L (Y,Z) are isomorphisms, thenST∈ L (X,Z) is an
isomorphism and(ST)−1 = T−1S−1.

4. Every isometryT ∈ L (X,Y) is clearly injective. If it is also surjective, thenT is
an isometric isomorphism, i.e. the inverseT−1 is also bounded (even isometric).

5. Clearly, ifT ∈ L (X,Y) is isometric, then it is an isometric isomorphism fromX
onto ranT, and we may say thatX is isometrically embeddedinto Y (via T).

Example B.38.The right-shift operator from Example B.31 (2) is isometric, but not
surjective. In particular,l p is isometrically isomorphic to a proper subspace ofl p.

Exercise B.39Show that the spaces(c,‖ · ‖∞) of all convergent sequences and
(c0,‖ · ‖∞) of all null sequences are isomorphic.

Exercise B.40Show that(c0,‖ · ‖∞) is (isometrically) isomorphic to a linear sub-
space of(C([0,1]),‖ · ‖∞), i.e. find an isometry T: c0 →C([0,1]).

Lemma B.41 (Neumann series).Let X be a Banach space and let T∈ L (X) be
such that‖T‖ < 1. Then I−T is boundedly invertible, i.e. it is an isomorphism.
Moreover,(I −T)−1 = ∑n≥0Tn.

Proof. SinceX is a Banach space,L (X) is also a Banach space by Lemma B.33.
By assumption on‖T‖, the series∑n≥0Tn is absolutely convergent, and hence, by
Lemma B.18, it is convergent to some elementS∈ L (X). Moreover,

(I −T)S= lim
n→∞

(I −T)
n

∑
k=0

Tk = lim
n→∞

(I −Tk+1) = I ,

and similarly,S(I −T) = I .

Corollary B.42. Let X and Y be two Banach spaces. Then the setI (X,Y) of all
isomorphisms inL (X,Y) is open, and the mapping T7→ T−1 is continuous from
I (X,Y) ontoI (Y,X).
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Proof. Let I ⊂ L (X,Y) be the set of all isomorphisms, and assume thatI is not
empty (if it is empty, then it is also open). LetT ∈I . Then for everyS∈B(T, 1

‖T−1‖ )
we have

S= T +S−T = T(I +T−1(S−T)),

and since‖T−1(S−T)‖≤ ‖T−1‖‖S−T‖< 1, the operatorI +T−1(S−T)∈L (X)
is an isomorphism by Lemma B.41. As a composition of two isomorphisms,S∈I ,
and henceI is open. The continuity is also a direct consequence of the above
representation ofS(and thus of its inverse), using the Neumann series.

B.4 The Arzela-Ascoli theorem

It is a consequence of Riesz’ Lemma (Lemma B.19) that the unitball in an infinite
dimensional Banach space is not compact; see also Theorem B.21. But compact sets
play an important role in many theorems from analysis, in particular when one wants
to prove the existence of some fixed point, the existence of a solution to an algebraic
equation, the existence of a solution of a differential equation, the existence of a
solution of a partial differential equation etc. It is therefore important to identify
the compact sets in Banach spaces, in particular in the classical Banach spaces. The
Arzela-Ascoli theorem characterizes the compact subsets of C(K;X), where(K,d)
is a compact metric space andX is a Banach space.

We say that a subsetB ⊆ C(K;X) is equicontinuous at some pointx ∈ K if
for everyε > 0 there existsδ > 0 such that for everyy ∈ K and everyf ∈ B the
implication

d(x,y) < δ ⇒ ‖ f (x)− f (y)‖ < ε

holds.

Theorem B.43 (Arzela-Ascoli).Let (K,d) be a compact metric space, X be a Ba-
nach space and consider the Banach space C(K;X) of all continuous functions
K → X equipped with the supremum norm‖ f‖∞ = supx∈K ‖ f (x)‖. For a subset
B⊆C(K;X), the following assertions are equivalent:

(i) The set B is compact.

(ii) The set B is closed, equicontinuous at every x∈ K and pointwise compact in
the sense that for every x∈ K the set Bx = { f (x) : f ∈ B} is compact.

We point out that, by the Heine-Borel theorem, the conditionof pointwise com-
pactness ofB can be replaced by mere pointwise boundedness or boundedness as
soon as the spaceX is finite dimensional.

Corollary B.44 (Arzela-Ascoli). Let (K,d) be a compact metric space, and con-
sider the Banach space C(K;Rd) of all continuous functions K→Rd equipped with
the supremum norm‖ f‖∞ = supx∈K ‖ f (x)‖. For a subset B⊆C(K;Rd), the follow-
ing assertions are equivalent:
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(i) The set B is compact.

(ii) The set B is closed, equicontinuous at every x∈ K and pointwise bounded in
the sense that for every x∈ K the set Bx = { f (x) : f ∈ B} is bounded.

Proof (Proof of Theorem B.43).The proof of the Arzela-Ascoli theorem is a nice
application of Cantor’s diagonal sequence argument which we see here for the
first time, but which we will see again below when we prove thatevery bounded
sequence in a reflexive Banach space admits a weakly convergent subsequence.
Given a sequence, Cantor’s argument allows us to construct asubsequence which
satisfies a countable number of properties. It is instructive to learn the idea of
Cantor’s argument since it can be help in various situations.

We first assume thatB⊆ C(K;X) is compact. Any compact subset of a Banach
space is closed and bounded, and thereforeB is closed and bounded, too. For every
x∈ K, the point evaluationC(K;X) → X, f 7→ f (x) is linear and continuous. Since
continuous images of compact sets are compact, the image ofB under the point
evaluation, that is the setBx = { f (x) : f ∈ B}, is compact.

We show thatB is equicontinuous at everyx. Assume that this was not the case.
Then there existx ∈ K andε > 0 such that for everyn≥ 1 there existyn ∈ K and
fn ∈ B such thatd(x,yn) < 1

n and‖ fn(x)− fn(yn)‖ ≥ ε. SinceB is compact, there
exists a subsequence of( fn) (which we denote for simplicity again by( fn)) such
that limn→∞ fn = f in C(K;X). Then, by the triangle inequality from below,

liminf
n→∞

‖ f (x)− f (yn)‖ = lim inf
n→∞

‖ f (x)− fn(x)+ fn(x)− fn(yn)+ fn(yn)− f (yn)‖

≥ lim inf
n→∞

(

‖ fn(x)− fn(yn)‖−2‖ f − fn‖∞
)

≥ ε.

This inequality, however, contradicts to the continuity off (note that limn→∞ yn = x),
and therefore,B is equicontinuous at everyx∈ K.

Assume now thatB satisfies the properties from assertion (ii). In order to show
thatB is compact, it suffices to show that every sequence( fn) ⊆ B admits a conver-
gent subsequence, that is,B is sequentially compact. So let( fn) ⊆ B be an arbitrary
sequence.

Recall that every compact metric space is separable. Hence,there exists a se-
quence(xm)m≥1 ⊆ K which is dense inK.

Consider the sequence( fn(x1)) ⊆ Bx1 ⊆ X. SinceBx1 is compact by assumption,
there exists a subsequence( fϕ1(n)) of ( fn) such that limn→∞ fϕ1(n)(x1) exists.

Consider next the sequence( fϕ1(n)(x2)) ⊆ Bx2 ⊆ X. SinceBx2 is compact by as-
sumption, there exists a subsequence( fϕ2(n)) of ( fϕ1(n)) such that limn→∞ fϕ2(n)(x2)
exists. Note that we have also the existence of the limit limn→∞ fϕ2(n)(x1).

Iterating this argument, we obtain for everym≥ 2 a subsequence( fϕm(n)) of
( fϕm−1(n)) such that limn→∞ fϕm(n)(xi) exists for every 1≤ i ≤ m. These subse-
quences converge therefore pointwise at a finite number of elements ofK.

We now consider thediagonal subsequence( fϕ(n)) = ( fϕn(n)). This diagonal sub-
sequence has the property of being a subsequence of( fϕm(n)) for everym≥ 1, up
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to a finite number of initial elements perhaps. It enjoys therefore the property that
limn→∞ fϕ(n)(xm) exists for everym≥ 1, that is, it converges pointwise on a dense
subset ofK. We will show that( fϕ(n)) converges everywhere and uniformly onK.
SinceC(K;X) is complete, it suffices to show that( fϕ(n)) is a Cauchy sequence in
C(K;X).

Let ε > 0. SinceB is equicontinuous at everyx∈ K, for everyx∈ K there exists
δx > 0 such that for everyy∈ K and everyf ∈ B the implication

d(x,y) < δ ⇒ ‖ f (x)− f (y)‖ < ε (B.2)

is true. We clearly haveK =
⋃

x∈K B(x,δx), and sinceK is compact, we find finitely
many pointsx′1, . . . , x′k such thatK =

⋃k
i=1B(x′i ,δi) (with δi = δx′i

). Since the se-
quence(xm) is dense inK, for every 1≤ i ≤ k there existsmi ≥ 1 such that
xmi ∈ B(x′i ,δi). Since the sequence( fϕ(n)) converges pointwise on(xm), there ex-
istsn0 ≥ 0 such that

for everyn, n′ ≥ n0 and every 1≤ i ≤ k ‖ fϕ(n)(xmi )− fϕ(n′)(xmi )‖ < ε.

Let nowx∈ K be arbitrary. Thenx∈ B(xi ,δi) for some 1≤ i ≤ k. Hence, for every
n, n′ ≥ n0, by the preceding estimate and by the implication (B.2),

‖ fϕ(n)(x)− fϕ(n′)(x)‖ ≤ ‖ fϕ(n)(x)− fϕ(n)(x
′
i)‖+

+‖ fϕ(n)(x
′
i)− fϕ(n)(xmi )‖+

+‖ fϕ(n)(xmi )− fϕ(n′)(xmi )‖+

+‖ fϕ(n′)(xmi )− fϕ(n′)(x
′
i)‖+

+‖ fϕ(n′)(x
′
i)− fϕ(n′)(x)‖

≤ 5ε.

Sincen0 ≥ 0 did not depend onx ∈ K, and sinceε > 0 was arbitrary, this proves
that ( fϕ(n)) is a Cauchy sequence inC(K;X). We have therefore proved that every
sequence inB admits a convergent subsequence. SinceB is closed, we obtain thatB
is sequentially compact, and hence compact.





Appendix C
Calculus on Banach spaces

C.1 Differentiable functions between Banach spaces

Definition C.1. Let X, Y be two Banach spaces, and letU ⊂ X be open. A function
f : U →Y is

a) differentiableat x∈U if there exists a bounded linear operatorT ∈ L (X,Y)
such that

lim
‖h‖→0

f (x+h)− f (x)−Th
‖h‖ = 0, (C.1)

b) differentiableif it is differentiable at every pointx∈U .

If f is differentiable at a pointx∈U , thenT ∈L (X,Y) is uniquely determined. We
write D f (x) := f ′(x) := T and callD f (x) = f ′(x) thederivativeof f at x.

Lemma C.2. If a function f : U →Y is differentiable at x∈U, then it is continuous
at x. In particular, every differentiable function is continuous.

Proof. Let (xn) ⊂U be convergent tox. By definition (equation (C.1)) and continu-
ity of f ′(x),

‖ f (xn)− f (x)‖ ≤ ‖ f (xn)− f (x)− f ′(x)(x−xn)‖+‖ f ′(x)(x−xn)‖
→ 0,

asn→ ∞.

Definition C.3. Let X, Y be two Banach spaces, and letU ⊂ X be open. A function
f : U →Y is calledcontinuously differentiableif it is differentiable and iff ′ : U →
L (X,Y) is continuous. We denote by

C1(U ;Y) := { f : U →Y : f differentiable andf ′ ∈C(U ;L (X,Y))}

the space of all continuously differentiable functions. Moreover, fork ≥ 2, we de-
note by

1029
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Ck(U ;Y) := { f : U →Y : f differentiable andf ′ ∈Ck−1(U ;L (X,Y))}

the space of allk times continuously differentiable functions.

Definition C.4. Let Xi (1 ≤ i ≤ n) andY be Banach spaces. LetU ⊂⊗n
i=1Xi be

open. We say that a functionf : U → Y is ata = (ai)1≤i≤n ∈ U partially differen-
tiably with respect to thei-th coordinate if the function

fi : Ui ⊂ Xi →Y, xi 7→ f (a1, . . . ,xi , . . . ,an)

is differentiable inai . We write ∂ f
∂xi

(a) := f ′i (ai) ∈ L (Xi ,Y).

C.2 Local inverse theorem and implicit function theorem

Let X andY be two Banach spaces and letU ⊆ X be an open subset. The following
are two classical theorems in differential calculus.

Theorem C.5 (Local inverse theorem).Let f : U → Y be continuously differen-
tiable andx̄ ∈ U such that f′(x̄) : X → Y is an isomorphism, that is, bounded, bi-
jective and the inverse is also bounded. Then there exist neighbourhoods V⊂ U
of x̄ and W⊂ Y of f(x̄) such that f: V → W is a C1 diffeomorphism, that is f is
continuously differentiable, bijective and the inverse f−1 : W → V is continuously
differentiable, too.

Theorem C.6 (Implicit function theorem). Assume that X= X1×X2 for two Ba-
nach spaces X1, X2, and let f : X ⊃ U → Y be continuously differentiable. Let
x̄ = (x̄1, x̄2) ∈ U be such that∂ f

∂x2
(x̄) : X2 → Y is an isomorphism. Then there exist

neighbourhoods U1 ⊂ X1 of x̄1 and U2 ⊂ X2 of x̄2, U1×U2 ⊂U, and a continuously
differentiable function g: U1 →U2 such that

{x∈U1×U2 : f (x) = f (x̄)} = {(x1,g(x1)) : x1 ∈U1}.

For the proof of the local inverse theorem, we need the following lemma.

Lemma C.7.Let f :U →Y be continuously differentiable such that f:U → f (U) is
a homeomorphism, that is, continuous, bijective and with continuous inverse. Then
f is a C1 diffeomorphism if and only if for every x∈U the derivative f′(x) : X →Y
is an isomorphism.

Proof. Assume first thatf is aC1 diffeomorphism. When we differentiate the iden-
tities x = f−1( f (x)) andy = f ( f−1(y)), which are true for everyx ∈ U and every
y∈ f (U), then we find

IX = ( f−1)′( f (x)) f ′(x) for everyx∈U and

IY = f ′( f−1(y))( f−1)′(y)

= f ′(x)( f−1)′( f (x)) for everyx = f−1(y) ∈U.
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As a consequence,f ′(x) is an isomorphism for everyx∈U .
For the converse, assume thatf ′(x) is an isomorphism for everyx∈U . For every

x1, x2 ∈U one has, by differentiability,

f (x2) = f (x1)+ f ′(x1)(x2−x1)+o(x2−x1),

whereo depends onx1 and limx2→x1
o(x2−x1)
‖x2−x1‖ = 0. We havex1 = f−1(y1) andx2 =

f−1(y2) if we putyi := f (xi). Hence, the above identity becomes

y2 = y1 + f ′( f−1(y1))( f−1(y2)− f−1(y1))+o( f−1(y2)− f−1(y1)).

To this identity, we apply the inverse operator( f ′( f−1(y1)))
−1 and we obtain

f−1(y2)= f−1(y1)+( f ′( f−1(y1)))
−1(y2−y1)−( f ′( f−1(y1)))

−1o( f−1(y2)− f−1(y1)).

Since f−1 is continuous, the last term on the right-hand side of the last equality is
sublinear. Hence,f−1 is differentiable and

( f−1)′(y1) = ( f ′( f−1(y1)))
−1.

From this identity (using thatf−1 and f ′ are continuous) we obtain thatf−1 is
continuously differentiable. The claim is proved.

Proof (Proof of the local inverse theorem).Consider the function

g : U → X,

x 7→ f ′(x̄)−1 f (x).

It suffices to show thatg : V → W is aC1 diffeomorphism for appropriate neigh-
bourhoodsV of x̄ andW of g(x̄).

Consider also the function

ϕ : U → X,

x 7→ x−g(x).

This functionϕ is continuously differentiable andϕ ′(x) = I − f ′(x̄)−1 f ′(x) for every
x∈U . In particular,ϕ ′(x̄) = 0. By continuity ofϕ ′, there existsr > 0 andL < 1 such
that‖ϕ ′(x)‖ ≤ L for everyx∈ B̄(x̄, r) ⊂U . Hence,

‖ϕ(x1)−ϕ(x2)‖ ≤ L‖x1−x2‖ for everyx1, x2 ∈ B̄(x̄, r).

By the definition ofϕ , this implies

‖g(x1)−g(x2)‖ = ‖x1−x2− (ϕ(x1)−ϕ(x2))‖ (C.2)

≥ ‖x1−x2‖−L‖x1−x2‖
= (1−L)‖x1−x2‖.
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We claim that for everyy∈ B̄(g(x̄),(1−L)r) there exists a uniquex∈ B̄(x̄, r) such
thatg(x) = y.

The uniqueness follows from (C.2).
In order to prove existence, letx0 = x̄, and then define recursivelyxn+1 = y+

ϕ(xn) = y+xn− f ′(x̄)−1 f (xn) for everyn≥ 0. Then

‖xn− x̄‖ = ‖
n−1

∑
k=0

xk+1−xk‖

≤ ‖x1−x0‖+
n−1

∑
k=1

‖ϕ(xk)−ϕ(xk−1)‖

≤
n−1

∑
k=0

Lk‖x1−x0‖

=
1−Ln

1−L
‖y−g(x̄)‖

≤ (1−Ln) r ≤ r,

which impliesxn ∈ B̄(x̄, r) for everyn≥ 0. Similarly, for everyn≥ m≥ 0,

‖xn−xm‖ ≤
n−1

∑
k=m

Lk‖y−g(x̄)‖,

so that the sequence(xn) is a Cauchy sequence in̄B(x̄, r). SinceB̄(x̄, r) is complete,
there exists limn→∞ xn =: x∈ B̄(x̄, r). By continuity,

x = y+ ϕ(x) = y+x−g(x),

or
g(x) = y.

This proves the above claim, that is,g is locally invertible. It remains to show that
g−1 is continuous (theng is a homeomorphism, and therefore aC1 diffeomorphism
by Lemma C.7). Contiunity of the inverse function, however,is a direct consequence
of (C.2) (which even implies Lipschitz continuity).

Remark C.8. The iteration formula

xn+1 = y+xn− f ′(x̄)−1 f (xn)

used in the proof of the local inverse theorem in order to find asolution ofg(x) =
f ′(x̄)−1 f (x) = y should be compared to the discrete Newton iteration

xn+1 = y+xn− f ′(xn)
−1 f (xn);

see Theorem C.11 below.

Proof (Proof of the implicit function theorem).Consider the function
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F : U → X1×Y,

(x1,x2) 7→ (x1, f (x1,x2)).

ThenF is continuously differentiable and

F ′(x̄)(h1,h2) = (h1,
∂ f
∂x1

(x̄)h1 +
∂ f
∂x2

(x̄)h2).

In particular, by the assumption,F ′(x̄) is locally invertible with inverse

F ′(x̄)−1(y1,y2) = (y1,(
∂ f
∂x2

(x̄))−1(y2−
∂ f
∂x1

(x̄)y1)).

By the local inverse theorem (Theorem C.5), there exists a neighbourhoodU1 of x̄1,
a neighbourhoodU2 of x̄2 and a neighbourhoodV of (x̄1, f (x̄)) = F(x̄) such that
F : U1×U2 →V is aC1 diffeomorphism. The inverse is of the form

F−1(y1,y2) = (y1,h2(y1,y2)),

whereh2 is a function such thatf (y1,h2(y1,y2)) = y2. Let

Ũ1 := {x1 ∈U1 : (x1, f (x̄)) ∈V}.

ThenŨ1 is open by continuity of the functionx1 7→ (x1, f (x̄)), and x̄1 ∈ Ũ1. We
restrictF to Ũ1×U2, and we define

g : Ũ1 → X2, (C.3)

x1 7→ g(x1) = F−1(x1, f (x̄))2,

whereF−1(·)2 denotes the second component ofF−1(·). Theng is continuously dif-
ferentiable,g(Ũ1)⊂U2 andg satisfies the required property of the implicit function.

Lemma C.9 (Higher regularity of the local inverse).Let f ∈ Ck(U ;Y) for some
k ≥ 1 and assum that f: U → f (U) is a C1 diffeomorphism. Then f is a Ck diffeo-
morphism, that is, f−1 is k times continuously differentiable.

Proof. For everyy∈ f (U) we have

( f−1)′(y) = f ′( f−1(y))−1.

The proof therefore follows by induction onk.

Lemma C.10 (Higher regularity of the implicit function). If, in the implicit func-
tion theorem (Theorem C.6), the function f is k times continuously differentiable,
then the implicit function g is also k times continuously differentiable.

Proof. This follows from the previous lemma (Lemma C.9) and the definition of the
implicit function in the proof of the implicit function theorem.
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C.3 * Newton’s method

Theorem C.11 (Newton’s method).Let X and Y be two Banach spaces, U⊂ X an
open set. Let f∈C1(U ;Y) and assume that there existsx̄∈U such that (i) f(x̄) = 0
and (ii) f ′(x̄) ∈ L (X,Y) is an isomorphism. Then there exists a neighbourhood
V ⊂ U of x̄ such that for every x0 ∈ V the operator f′(x0) is an isomorphism, the
sequence(xn) defined iteratively by

xn+1 = xn− f ′(xn)
−1 f (xn), n≥ 0, (C.4)

remains in V andlimn→∞ xn = x̄.

Proof. By Corollary B.42 and continuity, there exists a neighbourhoodṼ ⊂ U of
x̄ such thatf ′(x) is isomorphic for allx ∈ Ṽ. Next, it will be useful to define the
auxiliary functionϕ : Ṽ → X by

ϕ(x) := x− f ′(x)−1 f (x), x∈ Ṽ.

Since f (x̄) = 0, we find that for everyx∈ Ṽ

ϕ(x)−ϕ(x̄) = x− f ′(x)−1( f (x)− f (x̄))− x̄

= x− x̄− f ′(x)−1( f ′(x̄)(x− x̄)+ r(x− x̄)),

so that by the continuity off ′(·)−1

lim
x→x̄

‖ϕ(x)−ϕ(x̄)‖
‖x− x̄‖ = 0.

Hence, there existsr > 0 such thatV := B(x̄, r) ⊂ Ṽ ⊂ U and such that for every
x∈V

‖ϕ(x)− x̄‖ = ‖ϕ(x)−ϕ(x̄)‖ ≤ 1
2
‖x− x̄‖.

This implies that for everyx0 ∈ V one hasϕ(x0) ∈ V and if we define iteratively
xn+1 = ϕ(xn) = ϕn+1(x0), then

‖xn− x̄‖ ≤
(1

2

)n‖x0− x̄‖→ 0 asn→ ∞.



Appendix D
Hilbert spaces

Let H be a vector space overK.

D.1 Inner product spaces

Definition D.1. A function〈·, ·〉 : H×H → K is called aninner productif for every
x, y, z∈ H and everyλ ∈ K

(i) 〈x,x〉 ≥ 0 for everyx∈ H and〈x,x〉 = 0 if and only if x = 0,

(ii) 〈x,y〉 = 〈y,x〉,
(iii) 〈λx+y,z〉 = λ 〈x,z〉+ 〈y,z〉.
A pair (H,〈·, ·〉) of a vector space overK and a scalar product is called aninner
product space.

Example D.2. 1. On the spaceH = Kd,

〈x,y〉 :=
d

∑
i=1

xi ȳi

defines an inner product.
2. On the spaceH = l2 := {(xn) ⊂ K : ∑ |xn|2 < ∞},

〈x,y〉 := ∑
n

xnȳn

defines an inner product.
3. On the spaceH = C([0,1]), the Riemann integral

〈 f ,g〉 :=
∫ 1

0
f (x)g(x) dx

1035
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defines an inner product.
4. On the spaceH = L2(Ω), the integral

〈 f ,g〉 :=
∫

Ω
f ḡ dµ

defines an inner product.

Lemma D.3.Let 〈·, ·〉 be an inner product on a vector space H. Then, for every x,
y, z∈ H andλ ∈ K

(iv) 〈x,λy+z〉 = λ̄〈x,y〉+ 〈x,z〉.

Proof.

〈x,λy+z〉= 〈λy+z,x〉 = λ̄ 〈y,x〉+ 〈z,x〉 = λ̄ 〈x,y〉+ 〈x,z〉.

In the following, if H is an inner product space, then we put

‖x‖ :=
√

〈x,x〉, x∈ H.

Lemma D.4 (Cauchy-Schwarz inequality).Let H be an inner product space.
Then, for every x, y∈ H,

|〈x,y〉| ≤ ‖x‖‖y‖,
and equality holds if and only if x and y are colinear.

Proof. Let λ ∈ K. Then

0 ≤ 〈x+ λy,x+ λy〉
= 〈x,x〉+ 〈λy,x〉+ 〈x,λy〉+ |λ |2〈y,y〉
= 〈x,x〉+ λ 〈x,y〉+ λ̄〈x,y〉+ |λ |2〈y,y〉,

that is,
0≤ ‖x+ λy‖2 = ‖x‖2 +2Reλ̄〈x,y〉+ |λ |2‖y‖2. (D.1)

Assuming thaty 6= 0 (for y = 0 the Cauchy-Schwarz inequality is trivial), we may
putλ := −〈x,y〉/‖y‖2. Then

0 ≤ 〈x− 〈x,y〉
‖y‖2 y,x− 〈x,y〉

‖y‖2 y〉

= ‖x‖2− |〈x,y〉|2
‖y‖2 ,

which is the Cauchy-Schwarz inequality. The calculation also shows that equality
holds if and only ifx = λy, that is, ifx andy are colinear.

Lemma D.5.Every inner product space H is a normed linear space for the norm

‖x‖ =
√

〈x,x〉, x∈ H.
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Proof. Properties (i) and (ii) in the definition of a norm follow fromthe properties (i)
and (iii) (together with Lemma D.3) in the definition of an inner product. The only
difficulty is to show that‖ ·‖ satisfies the triangle inequality. This, however, follows
from puttingλ = 1 in (D.1) and estimating with the Cauchy-Schwarz inequality:

‖x+y‖2 ≤ (‖x‖+‖y‖)2.

Definition D.6. A complete inner product space is called aHilbert space.

Example D.7.The spacesKd (with euclidean inner product),l2 and L2(Ω) are
Hilbert spaces. More examples are given by the Sobolev spaces defined below.

Lemma D.8 (Completion of an inner product space).Let H be an inner product
space. Then there exists a Hilbert space K and a bounded linear operator j : H →K
such that for every x, y∈ H

〈x,y〉H = 〈 j(x), j(y)〉K ,

and such that j(H) is dense in K. The Hilbert space K is uniqueup to isometry. It
is called thecompletionof H.

Lemma D.9 (Parallelogram identity). Let H be an inner product space. Then for
every x, y∈ H

‖x+y‖2+‖x−y‖2 = 2(‖x‖2 +‖y‖2).

Proof. The parallelogram identity follows immediately from (D.1)by puttingλ =
±1 and adding up.

Exercise D.10 (von Neumann)Show that a norm satisfying the parallelogram
identity comes from a scalar product. That means, the parallelogram identity char-
acterises inner product spaces.

Definition D.11. A subsetK of a vector spaceX (overK) is convexif for every x,
y∈ K and everyt ∈ [0,1] one hastx+(1− t)y∈ K.

Theorem D.12 (Projection onto closed, convex sets).Given a nonempty closed,
convex subset K of a Hilbert space H, and given a point x∈ H, there exists a unique
y∈ K such that

‖x−y‖= inf{‖x−z‖ : z∈ K}.

Proof. Let d := inf{‖x−z‖ : z∈ K}, and choose(yn) ∈ K such that

lim
n→∞

‖x−yn‖ = d. (D.2)

Applying the parallelogram identity to(x−yn)/2 and(x−ym)/2, we obtain

‖x− yn +ym

2
‖2 +

1
4
‖yn−ym‖2 =

1
2
(‖x−yn‖2 +‖x−ym‖2).
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SinceK is convex,yn+ym
2 ∈ K and hence‖x− yn+ym

2 ‖2 ≥ d2. Using this and (D.2),
the last identity implies that(yn) is a Cauchy sequence. SinceH is complete,y :=
limn→∞ yn exists. SinceK is closed,y∈K. Moreover,‖x−y‖= limn→∞ ‖x−yn‖= d,
so thaty is a minimizer for the distance tox. To see that there is only on such
minimizer, suppose thaty′ ∈ K is a second one, and apply the parallelogram identity
to x−y andx−y′.

Definition D.13. Let H be an inner product space. We say that two vectorsx, y∈ H
areorthogonal(and we writex⊥ y), if 〈x,y〉 = 0. Given a subsetS⊂ H, we define
theorthogonal space S⊥ := {y∈H : x⊥ y for all x∈S}. If S= K is a linear subspace
of H, then we callK⊥ also theorthogonal complementof K.

Theorem D.14.Let H be a Hilbert space, S⊂ H be a subset and K a closed linear
subspace. Then:

a) S⊥ is a closed linear subspace of H,

b) K and K⊥ are complementary subspaces, i.e. every x∈ H can be decomposed
uniquely as a sum of an x0 ∈ K and an x1 ∈ K⊥,

c) (K⊥)⊥ = K and(S⊥)⊥ = spanS.

d) spanS is dense in H if and only if S⊥ = {0}.

Proof. (a) It follows from the bilinearity of the inner product thatS⊥ is a linear
subspace ofH. Let (yn) ∈ S⊥ be convergent to somey∈ H. Then, for everyx ∈ S,
by the Cauchy-Schwarz inequality,

〈x,y〉 = lim
n→∞

〈x,yn〉 = 0,

that is,y∈ S⊥ and thereforeS⊥ is closed.
(b) For everyx∈ H we letx0 ∈ K be the unique element (Theorem D.12) such

that
‖x−x0‖ = inf{‖x−y‖ : y∈ K}.

Putx1 = x−x0. For everyy∈ K and everyλ ∈ K, by the minimum property ofx0,

‖x1‖2 ≤ ‖x1−λy‖2

= ‖x1‖2−2Reλ̄ 〈x1,y〉+ |λ |2‖y‖2.

This implies that〈x1,y〉= 0, that is,x1 ∈ K⊥. Every decompositionx= x0+x1 with
x0 ∈ K andx1 ∈ K⊥ is unique sincex∈ K ∩K⊥ implies〈x,x〉 = 0, that is,x = 0.

(c) and (d) follow immediately from (a) and (b).

Lemma D.15 (Pythagoras).Let H be an inner product space. Whenever x, y∈ H
are orthogonal, then

‖x+y‖2 = ‖x‖2 +‖y‖2.

Proof. The claim follows from (D.1) and puttingλ = 1.
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Definition D.16. Let X be a normed space. We call an operatorP : X → X aprojec-
tion if P2 = P.

Lemma D.17.Let X be a normed space and let P∈L (X) be a bounded projection.
Then the following are true:

a) Q = I −P is a projection.

b) Either P= 0 or ‖P‖ ≥ 1.

c) The kernelkerP and the rangeranP are closed in X.

d) Every x∈ X can be decomposed uniquely as a sum of an x0 ∈ kerP and an
x1 ∈ ranP, and X∼= kerP⊕ ranP.

Proof. (a)Q2 = (I −P)2 = I −2P+P2 = I −P= Q.
(b) follows from‖P‖ = ‖P2‖ ≤ ‖P‖2.
(c) Since{0} is closed inX and sinceP is continuous, kerP= P−1({0}) is closed.

Similarly, ranP = ker(I −P) is closed.
(d) For everyx∈ X we can writex = Px+(I −P)x= x1 +x2 with x1 ∈ ranP and

x2 ∈ kerP. The decomposition is unique since ifx∈ kerP∩ ranP, thenx = Px= 0.
This proves that thevectorspacesX and kerP⊕ ranP are isomorphic. That they are
also isomorphic as normed spaces follows from the continuity of P.

Lemma D.18.Let H be a Hilbert space and K⊂H be a closed linear subspace. For
every x∈ H we let x1 = Px be the unique element in K which minimizes the distance
to x (Theorem D.12). Then P: H → H is a bounded projection satisfyingranP = K.
Moreover,kerP = K⊥. We call P theorthogonal projectiononto K.

D.2 Orthogonal decomposition

Definition D.19. We call a metric spaceseparableif there exists a countable dense
subset.

Example D.20.The spaceRd (or Cd) is separable: one may takeQd as an example
of a dense countable subset. It is not too difficult to see thatsubsets of separable
metric spaces are separable (note, however, that in generalthe dense subset has to
be constructed carefully), and that finite products of separable metric spaces are
separable.

Lemma D.21.A normed space X is separable if and only if there exists a sequence
(xn) ⊂ X such thatspan{xn : n ∈ N} is dense in X (such a sequence is in general
called atotalsequence).

Proof. If X is separable, then there exists a sequence(xn)⊂X such that{xn : n∈N}
is dense. In particular, the larger set span{xn : n∈ N} is dense.

If, one the other hand, there exists a total sequence(xn)⊂X, and if we putD = Q

in the caseK = R andD = Q+ iQ in the caseK = C, then the set
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{
m

∑
i=1

λixni : m∈ N, λi ∈ D, ni ∈ N}

is dense inX (in fact, the closure contains all finite linear combinations of thexn, that
is, it contains span{xn : n∈ N}). It is an exercise to show that this set is countable.
The claim follows.

Corollary D.22. The space(C([0,1]),‖ · ‖∞) is separable.

Proof. By Weierstrass’ theorem, the subspace of all polynomials isdense in
C([0,1]) (Weierstrass’ theorem says that every continuous functionf : [0,1] → R

can be uniformly approximated by polynomials). The polynomials, however, are the
linear span of the monomialsfn(t) = tn. The claim therefore follows from Lemma
D.21.

Corollary D.23. The space lp is separable if1≤ p < ∞. The space c0 is separable.

Proof. Let en = (δnk)k ∈ l p be then-th unit vector inl p (hereδnk denotes the Kro-
necker symbol:δnk = 1 if n= k andδnk = 0 otherwise). Thenspan{en : n∈N}= c00

(the space of all finite sequences) is dense inl p if 1 ≤ p < ∞. The claim forl p fol-
lows from Lemma D.21. The argument forc0 is similar.

Lemma D.24.The space l∞ is not separable.

Proof. The set{0,1}N ⊂ l∞ of all sequences taking only values 0 or 1 is uncount-
able. Moreover, wheneverx, y∈ {0,1}N, x 6= y, then

‖x−y‖∞ = 1.

Hence, the ballsB(x, 1
2) with centersx∈ {0,1}N and radius1

2 are mutually disjoint.
If l∞ was separable, that is, if there exists a dense countable setD ⊂ l∞, then in each
B(x, 1

2) there exists at least one elementy∈ D, a contradiction.

Definition D.25. Let H be an inner product space. A family(el )l∈I ⊂ H is called

a) anorthogonal systemif (el ,ek) = 0 wheneverl 6= k,

b) anorthonormal systemif it is an orthogonal system and‖el‖ = 1 for every
l ∈ I , and

c) anorthonormal basisif it is an orthonormal system and span{el : l ∈ I} is
dense inH.

Lemma D.26 (Gram-Schmidt process).Let (xn) be a sequence in an inner prod-
uct space H. Then there exists an orthonormal system(en) such thatspan{xn} =
span{en}.

Proof. Passing to a subsequence, if necessary, we may assume that the (xn) are
linearly independent.

Let e1 := x1/‖x1‖. Thene1 andx1 span the same linear subspace. Next, assume
that we have constructed an orthonormal system(ek)1≤k≤n such that
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span{xk : 1≤ k≤ n} = span{ek : 1≤ k≤ n}.

Let e′n+1 := xn+1 − ∑n
k=1〈xn+1,ek〉ek. Since thexn are linearly independent, we

find e′n+1 6= 0. Let en+1 := e′n+1/‖e′n+1‖. By construction, for every 1≤ k ≤ n,
〈en+1,ek〉 = 0, and

span{xk : 1≤ k≤ n+1}= span{ek : 1≤ k≤ n+1}.

Proceeding inductively, the claim follows.

Corollary D.27. Every separable inner product space admits an orthonormal basis.

Example D.28.Consider the inner product spaceC([−1,1]) equiped with the scalar
product〈 f ,g〉 =

∫ 1
−1 f (t)g(t) dt and resulting norm‖ ·‖2. Let fn(t) := tn (n≥ 0), so

that span{ fn} is the space of all polynomials on the interval[−1,1]. Applying the
Gram-Schmidt process to the sequence( fn) yields a orthonormal sequence(pn) of
polynomials. Thepn are calledLegendre polynomials.

Recall that the space of all polynomials is dense inC([−1,1]) by Weierstrass’
theorem (even for the uniform norm;a fortiori also for the norm‖ · ‖2). Hence, the
Legendre polynomials form an orthonormal basis inC([−1,1]).

Lemma D.29 (Bessel’s inequality).Let H be an inner product space,(en)n∈N ⊂ H
an orthonormal system. Then, for every x∈ H,

∑
n∈N

|〈x,en〉|2 ≤ ‖x‖2.

Proof. Let N ∈ N. PutxN = x−∑N
n=1〈x,en〉en so thatxN ⊥ en for every 1≤ n≤ N.

By Pythagoras (Lemma D.15),

‖x‖2 = ‖xN‖2 +‖
N

∑
n=1

〈x,en〉en‖2

= ‖xN‖2 +
N

∑
n=1

|〈x,en〉|2

≥
N

∑
n=1

|〈x,en〉|2.

SinceN was arbitrary, the claim follows.

Lemma D.30.Let H be a (separable) Hilbert space,(en)n∈N ⊂ H an orthonormal
system. Then:

a) For every x∈ H, the series∑n∈N〈x,en〉en converges.

b) P : H → H, x 7→ ∑n∈N〈x,en〉en is the orthogonal projection ontospan{en : n∈
N}.
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Proof. (a) Letx∈ H. Since(en) is an orthonormal system, by Pythagoras (Lemma
D.15), for everyl > k≥ 1,

‖
l

∑
n=1

〈x,en〉en−
k

∑
n=1

〈x,en〉en‖2 = ‖
l

∑
n=k+1

〈x,en〉en‖2

=
l

∑
n=k+1

|〈x,en〉|2.

Hence, by Bessel’s inequality, the sequence(∑l
n=1〈x,en〉en) of partial sums forms a

Cauchy sequence. SinceH is complete, the series∑n∈N〈x,en〉en converges.
(b) is an exercise.

Theorem D.31.Let H be a (separable) Hilbert space,(en)n∈N an orthonormal sys-
tem. Then the following are equivalent:

(i) (en)n∈N is an orthonormal basis.

(ii) If x ⊥ en for every n∈ N, then x= 0.

(iii) x = ∑n∈N〈x,en〉en for every x∈ H.

(iv) 〈x,y〉 = ∑n∈N〈x,en〉〈en,y〉 for every x, y∈ H.

(v) (Parseval’s identity) For every x∈ H,

‖x‖2 = ∑
n∈N

|〈x,en〉|2.

Proof. (i)⇒(ii) follows from Theorem D.14.
(ii)⇒(iii) follows from Lemma D.30 (i). In fact, letx0 = ∑n∈N〈x,en〉en (which

exists by Lemma D.30 (i)). Then〈x−x0,en〉= 0 for everyn∈N, and by assumption
(ii), this impliesx = x0.

(iii)⇒(iv) follows when multiplyingx scalarly withy, applying also the Cauchy-
Schwarz inequality for the sequences(〈x,el 〉), (〈el ,y〉) ∈ l2.

(iv)⇒(v) follows from puttingx = y.
(v)⇒(i). Let x ∈ span{en : n∈ N}⊥. Then Parseval’s identity implies‖x‖2 = 0,

that is,x = 0. By Theorem D.14, span{en : n∈ N} is dense inH, that is,(en) is an
orthonormal basis.

Definition D.32. A bounded linear operatorU ∈ L (H,K) between two Hilbert
spaces is called aunitary operatorif it is invertible and for everyx, y∈ H,

〈x,y〉H = 〈Ux,Uy〉K .

Two Hilbert spacesH andK areunitarily equivalentif there exists a unitary operator
U ∈ L (H,K).

Corollary D.33. Every infinite dimensional separable Hilbert space H is unitarily
equivalent to l2.
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Proof. Choose an orthonormal basis(en)n∈N of H (which exists by Corollary D.27),
and defineU : H → l2 by U(x) = (〈x,en〉)n∈N. Then〈x,y〉H = 〈U(x),U(y)〉l2 by
Theorem D.31; in particular,U is bounded, isometric and injective. The fact thatU
is surjective, that is, that∑ncnen converges for everyc = (cn) ∈ l2, follows as in the
proof of Lemma D.30 (i).

Clearly, if a sequence(en) in a Hilbert spaceH is an orthonormal basis, then
necessarilyH is separable by Lemma D.21. Hence, the equivalent statements of
Theorem D.31 are only satisfied in separable Hilbert spaces.In most of the applica-
tions (if not all!), we will only deal with separable Hilbertspaces so that Theorem
D.31 is sufficient for our purposes.

However, what is true in general Hilbert spaces? The following sequence of re-
sults generalizes the preceeding results to arbitrary Hilbert spaces.

Definition D.34. Let X be a normed space,(xi)i∈I be a family. We say that the series
∑i∈I xi convergesunconditionallyif the setI0 := {i ∈ I : xi 6= 0} is countable, and
for every bijectiveϕ : N → I0 the series∑∞

n=1xϕ(n) converges.

Corollary D.35 (Bessel’s inequality, general case).Let H be an inner product
space,(el )l∈I ⊂ H an orthonormal system. Then, for every x∈ H, the set{l ∈ I :
〈x,el 〉 6= 0} is countable and

∑
l∈I

|〈x,el 〉|2 ≤ ‖x‖2. (D.3)

Proof. By Bessel’s inequality, the sets{l ∈ I : |〈x,el 〉| ≥ 1/n} must be finite for
everyn∈ N. The countability of{l ∈ I : 〈x,el 〉 6= 0} follows. The inequality (D.3)
is then a direct consequence of Bessel’s inequality.

Lemma D.36.Let H be a Hilbert space,(el )l∈I ⊂ H an orthonormal system. Then:

a) For every x∈ H, the series∑l∈I 〈x,el 〉el converges unconditionally.

b) P : H →H, x 7→∑l∈I 〈x,el 〉el is the orthogonal projection ontospan{el : l ∈ I}.

Corollary D.37. Every Hilbert space admits an orthonormal basis.

Proof. If H is separable, the claim follows directly from the Gram-Schmidt process
and has already been stated in Corollary D.27. In general, one may argue as follows:

The set of all orthonormal systems inH forms a partially ordered set by inclu-
sion. Given a totally ordered collection of orthonormal systems, the union of all
vectors contained in all systems in this collection forms a supremum. By Zorn’s
lemma, there exists an orthonormal system(el )l∈I which is maximal. It follows
from Bessel’s inequality (D.3) that this system is actuallyan orthonormal basis.

Theorem D.31 remains true for arbitrary Hilbert spaces whenreplacing the
countable orthonormal system(en)n∈N by an arbitrary orthonormal system(el )l∈I .
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D.3 * Fourier series

In the following we will identify the spaceL1(0,2π) with

L1
2π(R) := { f : R → C measurable, 2π-periodic :

∫ 2π

0
| f | dλ < ∞}.

Similarly, we identifyL2(0,2π) with L2
2π(R), and we define

C2π(R) := { f ∈C(R) : f is 2π-periodic}.

Definition D.38. For everyf ∈ L1(0,2π) = L1
2π(R) and everyn∈ Z we call

f̂ (n) :=
1

2π

∫ 2π

0
f (t)e−int dt

the n-th Fourier coefficientof f . The sequencêf = ( f̂ (n)) is called theFourier
transformof f . The formal series 1√

2π ∑n∈Z f̂ (n)ein· is called theFourier seriesof
f .

Lemma D.39.For every f∈ L1(0,2π)= L1
2π(R) we havef̂ ∈ l∞(Z) and theFourier

transformˆ:L1(0,2π)→ l∞ is a bounded, linear operator. More precisely,

‖ f̂‖∞ ≤ 1
2π

‖ f‖1, f ∈ L1(0,2π).

Proof. For everyf ∈ L1(0,2π) and everyn∈ Z,

| f̂ (n)| = 1
2π

|
∫ 2π

0
f (t)e−int dt| ≤ 1

2π

∫ 2π

0
| f (t)|dt.

This proves that̂f ∈ l∞ and the required bound on‖ f̂ ‖∞. Linearity ofˆis clear.

Lemma D.40 (Riemann-Lebesgue).For every f∈ L1(0,2π) = L1
2π(R) we have

f̂ ∈ c0(Z), i.e.
lim
|n|→∞

| f̂ (n)| = 0.

Proof. Let f ∈ L1(0,2π) = L1
2π(R) andn∈ Z, n 6= 0. Then

f̂ (n) =
1

2π

∫ 2π

0
f (t)e−int dt

=
1

4π

∫ 2π

0
f (t)e−int(1−eiπ n

n ) dt

=
1

4π

∫ 2π

0
f (t)(e−int −e−in(t− π

n )) dt

=
1

4π

∫ 2π

0
( f (t)− f (t +

π
n

))e−int dt,
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so that

| f̂ (n)| ≤ 1
4π

∫ 2π

0
| f (t)− f (t +

π
n

)| dt.

Hence, if f = 1O ∈ L1(0,2π) for some open setO ⊂ [0,2π ], then f̂ ∈ c0(Z) by
Lebesgue dominated convergence theorem. On the other hand,since span{1O : O⊂
[0,2π ] open} is dense inL1(0,2π), since the Fourier transform is bounded with
values inl∞(Z) (Lemma D.39), and sincec0(Z) is a closed subspace ofl∞(Z), we
find that f̂ ∈ c0(Z) for every f ∈ L1(0,2π).

Remark D.41.At the end of the proof of the Lemma of Riemann-Lebesgue, we
used the following general principle: ifT ∈ L (X,Y) is a bounded linear operator
between two normed linear spacesX, Y, and ifM ⊂ X is dense, then ranT ⊂ T(M).
We used in addition thatc0(Z) is closed inl∞(Z).

Theorem D.42.Let f ∈C2π(R) be differentiable in some point s∈ R. Then

f (s) = ∑
n∈Z

f̂ (n)eins.

Proof. Note that forfs(t) := f (s+ t),

f̂s(n) =
1

2π

∫ 2π

0
f (s+ t)e−int dt =

1
2π

∫ 2π

0
f (t)e−in(t−s) dt = eins f̂ (n).

Hence, replacingf by fs, if necessary, we may without loss of generality assume
thats= 0. Moreover, replacingf by f − f (0), if necessary, we may without loss of
generality assume thatf (0) = 0. We hence have to show that iff is differentiable in
0 and if f (0) = 0, then∑n∈Z f̂ (n) = 0.

Let g(t) := f (t)
1−eit . Since f is differentiable in 0,f (0) = 0, and sincef is 2π-

periodic, the functiong belongs toC2π(R). By the Lemma of Riemann-Lebesgue,
ĝ∈ c0(Z). Note that

f̂ (n) =
1

2π

∫ 2π

0
g(t)(1−eit )e−int dt = ĝ(n)− ĝ(n−1).

Hence,

n

∑
k=−n

f̂ (k) =
n

∑
k=−n

ĝ(k)− ĝ(k−1)

= ĝ(n)− ĝ(−n−1)→ 0 (n→ ∞).

This is the claim.

Corollary D.43. For every f∈C1
2π(R) := C2π(R)∩C1(R) and every t∈ R

f (t) = ∑
n∈Z

f̂ (n)eint .
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Remark D.44.We will see that the convergence in the preceeding corollaryis even
uniform in t ∈ R.

Throughout the following, we equip the spaceL2(0,2π)= L2
2π(R) with the scalar

product given by

〈 f ,g〉 :=
1

2π

∫ 2π

0
f (t)g(t) dt,

which differs from the usual scalar product by the factor1
2π .

Lemma D.45.The space C12π(R) is dense in L22π(R).

Proof. We first prove thatC([0,2π ]) is dense inL2(0,2π) = L2
2π(R). For this, con-

sider first a characteristic functionf = 1(a,b) ∈ L2(0,2π). Let (gn) ⊂ C([0,2π ]) be
defined by

gn(t) :=



























1, t ∈ [a,b],

1+n(t−a), t ∈ [a−1/n,a),

1−n(t−b), t ∈ (b,b+1/n],

0, else.

It is then easy to see that limn→∞ ‖ f −gn‖L2 = 0, so thatf = 1(a,b) ∈C([0,2π ])
‖·‖L2 .

In the second step, consider a characteristic functionf = 1A of an arbitrary
Borel setA ∈ B([0,2π ]), and letε > 0. By outer regularity of the Lebesgue mea-
sure, there exists an open setO ⊃ A such thatλ (O\A) < ε2. Recall thatO is the
countable union of mutually disjoint intervals. SinceO has finite measure, there ex-
ist finitely many (mutually disjoint) intervals(an,bn) ⊂ O (1 ≤ n ≤ N) such that
λ (O\⋃N

n=1(an,bn)) ≤ ε2. By the preceeding step, for every 1≤ n≤ N there exists
gn ∈C([0,2π ]) such that‖1(an,bn) −gn‖2 ≤ ε

N . Let g := ∑N
n=1gn ∈C([0,2π ]). Then

‖ f −g‖2 ≤ ‖1A−1O‖2 +‖1O−1⋃N
n=1(an,bn)

‖2 +‖1⋃N
n=1(an,bn)

−g‖2

≤ ε + ε +‖
N

∑
n=1

(1(an,bn)−gn)‖2

≤ 3ε.

This proves 1A ∈C([0,2π ])
‖·‖L2 for every Borel setA∈B([0,2π ]). Sincespan{1A :

A∈ B([0,2π ])} = L2(0,2π), we find thatC([0,2π ]) is dense inL2(0,2π).
It remains to show thatC1

2π(R) is dense inC([0,2π ]) for the norm‖ · ‖2. So
let f ∈ C([0,2π ]) and letε > 0. By Weierstrass’ theorem, there exists a function
g0 ∈C∞([0,2π ]) (even a polynomial!) such that‖ f −g0‖∞ ≤ ε. Letg1 ∈C1([0,2π ])
be such thatg1(2π) = g′1(2π) = 0, g1(0) = g0(2π)−g0(0) andg′1(0) = g′0(2π)−
g′0(0) and‖g1‖2 ≤ ε. Such a functiong1 exists: it suffices for example to consider
functions for which the derivative is of the form
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g′1(t) =















g0(2π)−g0(0)+ct, t ∈ [0,h1],

g0(2π)−g0(0)+ch1+d(t−h1), t ∈ (h1,h2),

0, t ∈ [h2,2π ],

with appropriate constants 0≤ h1 ≤ h2 and c, d ∈ C. Having choseng1, we let
g = g0 +g1 and we calculate that

‖ f −g‖2 ≤ ‖ f −g0‖2 +‖g1‖2 ≤ 2ε.

Sinceg extends to a function inC1
2π(R), we have thus proved thatC1

2π(R) is dense
in L2

2π(R).

Remark D.46.An adaptation of the above proof actually shows that for every 1≤
p< ∞ and every compact interval[a,b]⊂ R, the spaceC([a,b]) is dense inLp(a,b).
A further application of Weierstrass’ theorem actually shows that the space of all
polynomials is dense inLp(a,b). In particular, we may obtain the following result.

Corollary D.47. The space Lp(a,b) is separable if1≤ p < ∞. The space L∞(a,b)
is notseparable.

Corollary D.48. Let en(t) := eint , n ∈ Z, t ∈ R. Then(en)n∈Z is an orthonormal
basis in L22π(R).

Proof. The fact that(en)n∈Z is an orthonormal system inL2
2π(R) is an easy calcu-

lation. We only have to prove that span{en : n∈ Z} is dense inL2
2π(R). Note that

f̂ (n) = ( f ,en) for every f ∈ L2
2π(R) and everyn ∈ Z. By Lemma D.30, we know

that for everyf ∈ L2
2π(R)

g := ∑
n∈Z

f̂ (n)en exists inL2
2π(R).

In particular, a subsequence of(∑k
n=−k f̂ (n)en) converges almost everywhere tog.

But by Corollary D.43 we know that(∑k
n=−k f̂ (n)en) converges pointwise every-

where tof if f ∈C1
2π(R). As a consequence, for everyf ∈C1

2π(R),

lim
k→∞

k

∑
n=−k

f̂ (n)en = f in L2
2π(R),

so that span{en : n ∈ Z} is dense in(C1
2π(R),‖ · ‖L2

2π
). SinceC1

2π(R) is dense in

L2
2π(R) by Lemma D.45, we find that(en)n∈Z is an orthonormal basis inL2

2π(R).

Theorem D.49 (Plancherel).For every f∈ L2
2π(R) we have f̂ ∈ l2(Z) and the

Fourier transform̂ : L2
2π(R) → l2(Z) is an isometric isomorphism. Moreover, for

every f∈ L2
2π(R),

∑
n∈Z

f̂ (n)en = f in L2
2π(R),

that is, the Fourier series of f converges to f in the L2 sense.
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Proof. By Corollary D.48, the sequence(en)n∈Z is an orthonormal basis inL2
2π(R).

Moreover, recall that for everyf ∈ L2
2π(R) and everyn∈ Z, f̂ (n) = 〈 f ,en〉. Hence,

by Theorem D.31,̂f ∈ l2(Z), f = ∑n∈Z f̂ (n)en, and‖ f‖L2
2π

= ‖ f̂ ‖l2 (the last prop-
erty being Parseval’s identity).

Corollary D.50. Let f ∈C2π(R) be such that̂f ∈ l1(Z). Then

∑
n∈Z

f̂ (n)en = f in C2π(R),

that is, the Fourier series of f converges uniformly to f .

Proof. Note that for everyn ∈ Z, ‖en‖∞ = 1. The assumption̂f ∈ l1(Z) therefore
implies that the series∑n∈Z f̂ (n)en converges absolutely inC2π(R), i.e. for the uni-
form norm‖ · ‖∞. Since(C2π(R),‖ · ‖∞) is complete, the series∑n∈Z f̂ (n)en con-
verges uniformly to some elementg∈C2π(R). By Plancherel,g = f .

Remark D.51.The assumption̂f ∈ l1(Z) in Corollary D.50 is essential. For general
f ∈C2π(R), the Fourier series∑n∈Z f̂ (n)en need not not converge uniformly. Ques-
tions regarding the convergence of Fourier series (which type of convergence? for
which function?) can go deeply into the theory of harmonic analysis and answers are
sometimes quite involved. TheL2 theory gives in this context satisfactory answers
with relatively easy proofs (see Plancherel’s theorem). For continuous functions we
state the following result without giving a proof.

Theorem D.52 (F́ejer). For every f∈C2π(R) one has

lim
K→∞

1
K

K

∑
k=1

k

∑
n=−k

f̂ (n)en = f in C2π(R),

i.e. the Fourier series of f converges in theCésaro meanuniformly to f .

D.4 Linear functionals on Hilbert spaces

In this section, we discuss bounded functionals on Hilbert spaces. Compared to the
case of bounded linear functionals on general Banach spaces, the case of bounded
linear functionals on Hilbert spaces is considerably easy but it has far reaching con-
sequences.

Theorem D.53 (Riesz-Fŕechet).Let H be a Hilbert space. Then for every bounded
linear functionalϕ ∈ H ′ there exists a unique y∈ H such that

ϕ(x) = 〈x,y〉 for every x∈ H.

Proof. Uniqueness.Let y1, y2 ∈ H be two elements such that
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ϕ(x) = 〈x,y1〉 = 〈x,y2〉 for everyx∈ H.

Then〈x,y1−y2〉 = 0 for everyx∈ H, in particular also forx= y1−y2. This implies
‖y1−y2‖2 = 0, that is,y1 = y2.

Existence.We may assume thatϕ 6= 0 since the caseϕ = 0 is trivial. Let ỹ ∈
(kerϕ)⊥ \ {0}. SinceH 6= kerϕ and since kerϕ is closed, such a ˜y exists. Next, let

y := ϕ(ỹ)/‖ỹ‖2 ỹ.

Note thatϕ(y) = ‖y‖2 = 〈y,y〉. Recall that everyx∈ H can be uniquely written as
x = x0 + λy with x0 ∈ kerϕ andλ ∈ K so thatλy∈ (kerϕ)⊥. Note that(kerϕ)⊥ is
one-dimensional. Hence, for everyx∈ H,

ϕ(x) = ϕ(x0 + λy)

= ϕ(x0)+ λ ϕ(y)

= λ ϕ(y)

= λ 〈y,y〉
= 〈λy,y〉
= 〈x0,y〉+ 〈λy,y〉
= 〈x,y〉.

The claim is proved.

Corollary D.54. Let J : H → H ′ be the mapping which maps to every y∈ H the
functional Jy∈ H ′ given by Jy(x) = 〈x,y〉. Then J is antilinear ifK = C and linear
if K = R. Moreover, J is isometric and bijective.

Proof. The fact thatJ is isometric follows from the Cauchy-Schwarz inequality.
Antilinearity (or linearity in caseK = R) follows from the sesquilinearity (resp.
bilinearity) of the scalar product onH. SinceJ is isometric, it is injective. The
surjectivity ofJ follows from Theorem D.53.

Remark D.55.The theorem of Riesz-Fréchet allows us to identify any (real) Hilbert
spaceH with its dual spaceH ′. Note, however, that there are situations in which one
does not identifyH ′ with H. This is for example the case whenV is a second Hilbert
space which embeds continuously and densely intoH, that is, for which there exists
a bounded, injectiveJ : V → H with dense range.

D.5 Weak convergence in Hilbert spaces

Definition D.56. Let H be a Hilbert space. We say that a sequence(xn) ⊂ H con-
verges weaklyto some elementx ∈ H if for every y ∈ H one has limn→∞〈xn,y〉 =

〈x,y〉. We writexn ⇀ x or xn
weak
→ x if (xn) converges weakly tox.



1050 D Hilbert spaces

Theorem D.57.Every bounded sequence(xn) in a Hilbert space H admits a weakly
convergent subsequence, that is, there exists x∈ H and there exists a subsequence

(xnk) of (xn) such that xnk

weak
→ x.

In the proof of this theorem, we will use the following general result.

Lemma D.58.Let X and Y be two normed spaces, let(Tn)∈L (X,Y) be a bounded
sequence of bounded operators. Assume that there exists a dense set M⊂ X such
that limn→∞ Tnx exists for every x∈M. Thenlimn→∞ Tnx=: Tx exists for every x∈X
and T∈ L (X,Y).

Proof. DefineTx := limn→∞ Tnx for everyx∈ spanM. Then

‖Tx‖ = lim
n→∞

‖Tnx‖ ≤ sup
n
‖Tn‖‖x‖,

that is.T : spanM →Y is a bounded linear operator. SinceM is dense inX, T admits
a unique bounded extensionT : X →Y.

Let x∈X andε > 0. SinceM is dense inX, there existsy∈M such that‖x−y‖≤
ε. By assumption, there existsn0 such that for everyn≥ n0 we have‖Tny−Ty‖≤ ε.
Hence, for everyn≥ n0,

‖Tnx−Tx‖ ≤ ‖Tnx−Tny‖+‖Tny−Ty‖+‖Ty−Tx‖
≤ sup

n
‖Tn‖‖x−y‖+ ε +‖T‖‖x−y‖

≤ ε(sup
n
‖Tn‖+1+‖T‖),

and therefore limn→∞ Tnx = Tx.

Proof (Proof of Theorem D.57).As in the proof of the Arzela-Ascoli theorem (The-
orem B.43), we use Cantor’s diagonal sequence argument. Let(xn) be a bounded
sequence inH. We first assume thatH is separable, and we let(ym) ⊂ H be a dense
sequence.

Since(〈xn,y1〉) is bounded by the boundedness of(xn), there exists a subse-
quence(xϕ1(n)) of (xn) (ϕ1 : N → N is increasing, unbounded) such that

lim
n→∞

〈xϕ1(n),y1〉 exists.

Similarly, there exists a subsequence(xϕ2(n)) of (xϕ1(n)) such that

lim
n→∞

〈xϕ2(n),y2〉 exists.

Note that for this subsequence, we also have that

lim
n→∞

〈xϕ2(n),y1〉 exists.

Iterating this argument, we find a subsequence(xϕ3(n)) of (xϕ2(n)) and finally for
everym∈ N, m≥ 2, a subsequence(xϕm(n)) of (xϕm−1(n)) such that
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lim
n→∞

〈xϕm(n),y j〉 exists for every 1≤ j ≤ m.

Let (x′n) := (xϕn(n)) be the ’diagonal sequence’. Then(x′n) is a subsequence of
(xn) and

lim
n→∞

〈x′n,ym〉 exists for everym∈ N.

By Lemma D.58 and the Riesz-Fréchet representation theorem (Theorem D.53),
there existsx∈ H such that

lim
n→∞

〈x′n,y〉 = 〈x,y〉 for everyy∈ H,

and the claim is proved in the case whenH is separable.
If H is not separable as we first assumed, then one may replaceH by H̃ :=

span{xn : n∈ N} which is separable. By the above, there existsx∈ H̃ and a subse-
quence of(xn) (which we denote again by(xn)) such that for everyy∈ H̃,

lim
n→∞

〈xn,y〉 = 〈x,y〉,

that is,(xn) converges weakly iñH. On the other hand, for everyy∈ H̃⊥ and every
n,

〈xn,y〉 = 〈x,y〉 = 0.

The decompositionH = H̃ ⊕ H̃⊥ therefore yields that(xn) converges weakly inH.





Appendix E
Dual spaces and weak convergence

E.1 The theorem of Hahn-Banach

Given a normed spaceX, we denote byX′ := L (X,K) the space of all bounded
linear functionals onX. Recall thatX′ is always a Banach space by Corollary B.35
of Chapter B.

However,a priori it is not clear whether there exists any bounded linear func-
tional on a normed spaceX (apart from the zero functional). This fundamental ques-
tion and the analysis of dual spaces (analysis of functionals) shall be developed in
this chapter.

The existence of nontrivial bounded functionals is guaranteed by the Hahn-
Banach theorem which actually admits several versions. However, before stating
the first version, we need the following definition.

Definition E.1. Let X be a real or complex vector space. A functionp : X → R is
calledsublinearif

(i) p(λx) = λ p(x) for everyλ > 0, x∈ X, and

(ii) p(x+y)≤ p(x)+ p(y) for everyx, y∈ X.

Example E.2.On a normed spaceX, the norm‖ · ‖ is sublinear. Every linearp :
X → R is sublinear.

Theorem E.3 (Hahn-Banach; version of linear algebra, real case).Let X be a
real vector space, U⊂ X a linear subspace, and p: X →R sublinear. Letϕ : U →R

be linear such that
ϕ(x) ≤ p(x) for all x ∈U.

Then there exists a linear̃ϕ : X → R such thatϕ̃(x) = ϕ(x) for every x∈U (that is,
ϕ̃ is an extension ofϕ) and

ϕ̃(x) ≤ p(x) for all x ∈ X. (E.1)

1053
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The following lemma asserts that this version of Hahn-Banach is true in the spe-
cial case whenX/U has dimension 1. It is an essential step in the proof of Theorem
E.3.

Lemma E.4.Take the assumptions of Theorem E.3 and assume in addition that
dimX/U = 1. Then the assertion of Theorem E.3 is true.

Proof. If dim X/U = 1, then there existsx0 ∈ X \U such that everyx ∈ X can be
uniquely written in the formx = u+ λx0 with u ∈ U and λ ∈ R. So we define
ϕ̃ : X → R by

ϕ̃(x) := ϕ̃(u+ λx0) := ϕ(u)+ λ r,

wherer ∈ R is a parameter which has to be chosen such that (E.1) holds, that is,
such that for everyu∈U , λ ∈ R,

ϕ(u)+ λ r ≤ p(u+ λx0). (E.2)

If λ = 0, then this condition clearly holds for everyu∈U by the assumption onϕ .
If λ > 0, then (E.2) holds for everyu∈U if and only if

λ r ≤ p(u+ λx0)−ϕ(u) for everyu∈U

⇔ r ≤ p(
u
λ

+x0)−ϕ(
u
λ

) for everyu∈U

⇔ r ≤ inf
v∈U

p(v+x0)−ϕ(v).

Similarly, if λ < 0, then (E.2) holds for everyu∈U if and only if

λ r ≤ p(u+ λx0)−ϕ(u) for everyu∈U

⇔ −r ≤ p(
u
−λ

−x0)−ϕ(
u
−λ

) for everyu∈U

⇔ r ≥ sup
w∈U

ϕ(w)− p(w−x0).

So it is possible to find an appropriater ∈ R in the definition ofϕ̃ if and only if

ϕ(w)− p(w−x0) ≤ p(v+x0)−ϕ(v) for all v, w∈U,

or, equivalently, if

ϕ(w)+ ϕ(v) ≤ p(v+x0)+ p(w−x0) for all v, w∈U.

However, by the assumptions onϕ andp, for everyv, w∈U ,

ϕ(w)+ϕ(v) = ϕ(w+v) ≤ p(w+v) = p(v+x0+w−x0) ≤ p(v+x0)+ p(w−x0).

For the second step in the proof of Theorem E.3, we need the Lemma of Zorn.

Lemma E.5 (Zorn). Let(M,≤) be a ordered set. Assume that every totally ordered
subset T⊂ M (i.e. for every x, y∈ T one either has x≤ y or y≤ x) admits an
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upper bound. Then for every x∈ M there exists a maximal element m≥ x (that is,
an element m such that m≤ m̃ implies m= m̃ for everym̃∈ M).

Proof (Proof of Theorem E.3).Define the following set

M := {(V,ϕV) : V ⊂ X linear subspace,U ⊂V, ϕV : V → R linear, s.t.

ϕ(x) = ϕV(x)(x∈U) andϕV(x) ≤ p(x)(x∈V)},

and equip it with the order relation≤ defined by

(V1,ϕV1) ≤ (V2,ϕV2) :⇔V1 ⊂V2 andϕV1(x) = ϕV2(x) for all x∈V1.

Then(M,≤) is an ordered set. LetT = ((Vi ,ϕVi ))i∈I ⊂M be a totally ordered subset.
Then the element(V,ϕV) ∈ M defined by

V :=
⋃

i∈I

Vi andϕV(x) = ϕVi (x) for x∈Vi

is an upper bound ofT. By the Lemma of Zorn, the setM admits a maximal element
(X0,ϕX0). Assume thatX0 6= X. Then, by Lemma E.4, we could construct an element
which is strictly larger than(X0,ϕX0), a contradiction to the maximality of(X0,ϕX0).
Hence,X = X0, andϕ̃ := ϕX0 is an element we are looking for.

The complex version of the Hahn-Banach theorem reads as follows.

Theorem E.6 (Hahn-Banach; version of linear algebra, complex case).Let X be
a complex vector space, U⊂ X a linear subspace, and p: X → R sublinear. Let
ϕ : U → C be linear such that

Reϕ(x) ≤ p(x) for all x ∈U.

Then there exists a linear̃ϕ : X → C such thatϕ̃(x) = ϕ(x) for every x∈U (that is
ϕ̃ is an extension ofϕ) and

Reϕ̃(x) ≤ p(x) for all x ∈ X. (E.3)

Proof. We may considerX also as a real vector space. Note thatψ(x) := Reϕ(x) is
anR-linear functional onX. By Theorem E.3, there exists an extensionψ̃ : X → R

of ψ satisfying
ψ̃(x) ≤ p(x) for everyx∈ X.

Let
ϕ̃(x) := ψ̃(x)− iψ̃(ix), x∈ X.

It is an exercise to show thatϕ̃ is C-linear, thatϕ(x) = ϕ̃(x) for everyx∈U and it
is clear from the definition that Rẽϕ(x) = ψ̃(x). Thus,ϕ̃ is a possible element we
are looking for.

Theorem E.7 (Hahn-Banach; extension of bounded linear functionals). Let X
be a normed space and U⊂ X a linear subspace. Then for every bounded linear
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u′ : U → K there exists a bounded linear extension x′ : X → K (that is, x′|U = u′)
such that‖x′‖ = ‖u′‖.

Proof. We first assume thatX is a real normed space. The functionp : X → R

defined byp(x) := ‖u′‖‖x‖ is sublinear and

u′(x) ≤ p(x) for everyx∈U.

By the first Hahn-Banach theorem (Theorem E.3), there existsa linearx′ : X → R

extendingu′ such that

x′(x) ≤ p(x) = ‖u′‖‖x‖ for everyx∈ X.

Replacingx by−x, this implies that

|x′(x)| ≤ ‖u′‖‖x‖ for everyx∈ X.

Hence,x′ is bounded and‖x′‖ ≤ ‖u′‖. On the other hand, one trivially has

‖x′‖ = sup
x∈X
‖x‖≤1

|x′(x)| ≥ sup
x∈U
‖x‖≤1

|x′(x)| = sup
x∈U
‖x‖≤1

|u′(x)| = ‖u′‖.

If X is a complex normed space, then the second Hahn-Banach theorem (Theorem
E.6) implies that there exists a linearx′ : X → C such that

Rex′(x) ≤ p(x) = ‖u′‖‖x‖ for everyx∈ X.

In particular,

|x′(x)| = sup
θ∈[0,2π ]

Rex′(eiθ x) ≤ ‖u′‖‖x‖ for everyx∈ X,

so that againx′ is bounded and‖x′‖ ≤ ‖u′‖. The inequality‖x′‖ ≥ ‖u′‖ follows as
above.

Corollary E.8. If X is a normed space, then for every x∈X\{0} there exists x′ ∈X′

such that
‖x′‖ = 1 and x′(x) = ‖x‖.

In particular, X′ separates the pointsof X, i.e. for every x1, x2 ∈ X, x1 6= x2, there
exists x′ ∈ X′ such that x′(x1) 6= x′(x2).

Proof. By the Hahn-Banach theorem (Theorem E.7), there exists an extensionx′ ∈
X′ of the functionalu′ : span{x} → K defined byu′(λx) = λ‖x‖ such that‖x′‖ =
‖u′‖ = 1.

For the proof of the second assertion, setx := x1−x2.

Corollary E.9. If X is a normed space, then for every x∈ X
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‖x‖ = sup
x′∈X′
‖x′‖≤1

|x′(x)|. (E.4)

Proof. For everyx′ ∈ X′ with ‖x′‖ ≤ 1 one has

|x′(x)| ≤ ‖x′‖‖x‖ ≤ ‖x‖,

which proves one of the required inequalities. The other inequality follows from
Corollary E.8.

Remark E.10.The equality (E.4) should be compared to the definition of thenorm
of an elementx′ ∈ X′:

‖x′‖ = sup
x∈X
‖x‖≤1

|x′(x)|.

From now on, it will be convenient to use the following notation. Given a normed
spaceX and elementsx∈ X, x′ ∈ X′, we write

〈x′,x〉 := 〈x′,x〉X′×X := x′(x).

For the bracket〈·, ·〉, we note the following properties. The function

〈·, ·〉 : X′×X → K,

(x′,x) 7→ 〈x′,x〉 = x′(x)

is bilinear and for everyx′ ∈ X′, x∈ X,

|〈x′,x〉| ≤ ‖x′‖‖x‖.

The bracket〈·, ·〉 thus appeals to the notion of the scalar product on inner product
spaces, and the last inequality appeals to the Cauchy-Schwarz inequality, but note,
however, that the bracket isnot a scalar product since it is defined on a pair of
two different spaces. Moreover, even ifX = H is a complex Hilbert space, then the
bracket differs from the scalar product in that it is bilinear instead of sesquilinear.

Corollary E.11. Let X be a normed space, U⊂ X a closed linear subspace and
x∈ X \U. Then there exists x′ ∈ X′ such that

x′(x) 6= 0 and x′(u) = 0 for every u∈U.

Proof. Let π : X → X/U be the quotient map (π(x) = x+U). Sincex 6∈U , we have
π(x) 6= 0. By Corollary E.8, there existsϕ ∈ (X/U)′ such thatϕ(π(x)) 6= 0. Then
x′ := ϕ ◦π ∈ X′ is a functional we are looking for.

Definition E.12. A linear subspaceU of a normed spaceX is calledcomplemented
if there exists a projectionP∈ L (X) such that ranP = U .

Remark E.13. If P is a projection (that means, ifP2 = P), thenQ = I −P is also
a projection and ranP = kerQ. Hence, ifP is a bounded projection, then ranP is
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necessarily closed. Thus, a necessary condition forU to be complemented is thatU
is closed.

Corollary E.14. Every finite dimensional subspace of a normed space is comple-
mented.

Proof. Let U be a finite dimensional subspace of a normed spaceX. Let (bi)1≤i≤N

be a basis ofU . By Corollary E.11, there exist functionalsx′i ∈ X′ such that

〈x′i ,b j〉 =

{

1 if i = j,

0 otherwise.

Let P : X → X be defined by

Px :=
N

∑
i=1

〈x′i ,x〉bi , x∈ X.

Then Pbi = bi for every 1≤ i ≤ N, and thusP2 = P, that is,P is a projection.
Moreover, ranP = U by construction. By the estimate

‖Px‖ ≤
N

∑
i=1

|〈x′i ,x〉|‖bi‖

≤
(

N

∑
i=1

‖x′i‖‖bi‖
)

‖x‖,

the projectionP is bounded.

The following lemma which does not depend on the Hahn-Banachtheorem is
stated for completeness.

Lemma E.15.In a Hilbert space every closed linear subspace is complemented.

Proof. Take the orthogonal projection onto the closed subspace as apossible pro-
jection.

Corollary E.16. If X is a normed space such that X′ is separable, then X is separa-
ble, too.

Proof. Let D′ = {x′n : n∈ N} be a dense subset of the unit sphere ofX′. For every
n∈ N we choose an elementxn ∈ X such that‖xn‖ ≤ 1 and|〈x′n,xn〉| ≥ 1

2. We claim
thatD := span{xn : n ∈ N} is dense inX. If this was not true, i.e. ifD̄ 6= X, then,
by Corollary E.11, we find an elementx′ ∈ X′ \ {0} such thatx′(xn) = 0 for every
n∈ N. We may without loss of generality assume that‖x′‖ = 1. SinceD′ is dense in
the unit sphere ofX′, we findn0 ∈ N such that‖x′−x′n0

‖ ≤ 1
4. But then

1
2
≤ |〈x′n0

,xn0〉| = |〈x′n0
−x′,xn0〉| ≤ ‖x′n0

−x′‖‖xn0‖ ≤
1
4
,
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which is a contradiction. Hence,̄D = X and X is separable by Lemma D.21 of
Chapter D.

E.2 Weak∗ convergence and the theorem of Banach-Alaoglu

Definition E.17. Let X be a Banach space. We say that a sequence(x′n) ⊂ X′ con-
verges weak∗ to some elementx′ ∈ X′ if for every x ∈ X one has limn→∞〈x′n,x〉 =

〈x′,x〉. We writex′n
weak∗
→ x′ if (x′n) converges weak∗ to x′.

Theorem E.18 (Banach-Alaoglu).Let X be a separable Banach space. Then every
bounded sequence(x′n) ⊂ X′ admits a weak∗ convergent subsequence, that is, there

exists x′ ∈ X′ and there exists a subsequence(x′nk
) of (x′n) such that x′nk

weak∗
→ x′.

Proof. As in the proof of the Arzela-Ascoli theorem (Theorem B.43) and the the-
orem about weak sequential compactness of the unit ball in Hilbert spaces (The-
orem D.57), we use Cantor’s diagonal sequence argument. Let(x′n) be a bounded
sequence inX′.

SinceX is separable by assumption, we can choose a dense sequence(xm) ⊂ X.
Since(〈x′n,x1〉) is bounded by the boundedness of(x′n), there exists a subsequence
(x′ϕ1(n)) of (x′n) (ϕ1 : N → N is increasing, unbounded) such that

lim
n→∞

〈x′ϕ1(n),x1〉 exists.

Similarly, there exists a subsequence(x′ϕ2(n)) of (x′ϕ1(n)) such that

lim
n→∞

〈x′ϕ2(n),x2〉 exists.

Note that for this subsequence, we also have that

lim
n→∞

〈x′ϕ2(n),x1〉 exists.

Iterating this argument, we find a subsequence(x′ϕ3(n)) of (x′ϕ2(n)) and finally for

everym∈ N, m≥ 2, a subsequence(x′ϕm(n)) of (x′ϕm−1(n)) such that

lim
n→∞

〈x′ϕm(n),x j〉 exists for every 1≤ j ≤ m.

Let (y′n) := (x′ϕn(n)) be the ’diagonal sequence’. Then(y′n) is a subsequence of

(x′n) and
lim
n→∞

〈y′n,xm〉 exists for everym∈ N.

By Lemma D.58 of Chapter D, there existsx′ ∈ X′ such that

lim
n→∞

〈y′n,x〉 = 〈x′,x〉 for everyx∈ X.
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This is the claim.

E.3 Weak convergence and reflexivity

Given a normed spaceX, we callX′′ := (X′)′ = L (X′,K) thebidualof X.

Lemma E.19.Let X be a normed space. Then the mapping

J : X → X′′,

x 7→ (x′ 7→ 〈x′,x〉),

is well defined and isometric.

Proof. The linearity ofx′ 7→ 〈x′,x〉 is clear, and from the inequality

|Jx(x′)| = |〈x′,x〉| ≤ ‖x′‖‖x‖,

follows that Jx∈ X′′ (i.e. J is well defined) and‖Jx‖ ≤ ‖x‖. The fact thatJ is
isometric follows from Corollary E.8.

Definition E.20. A normed spaceX is calledreflexiveif the isometryJ from Lemma
E.19 is surjective, i.e. ifJX = X′′. In other words: a normed spaceX is reflexive if
for everyx′′ ∈ X′′ there existsx∈ X such that

〈x′′,x′〉 = 〈x′,x〉 for all x′ ∈ X′.

Remark E.21. If a normed space is reflexive thenX andX′′ are isometrically iso-
morphic (via the operatorJ). SinceX′′ is always complete, a reflexive space is nec-
essarily a Banach space.

Note that it can happen thatX andX′′ are isomorphic withoutX being reflexive
(the example of such a Banach space is however quite involved). We point out that
reflexivity means that the special operatorJ is an isomorphism.

Lemma E.22.Every Hilbert space is reflexive.

Proof. By the Theorem of Riesz-Fréchet, we may identifyH with its dualH ′ and
thus alsoH with its bidualH ′′. The identification is done via the scalar product. It is
an exercise to show that this identification ofH with H ′′ coincides with the mapping
J from Lemma E.19.

Remark E.23. It should be noted that for complex Hilbert spaces, the identification
of H with its dualH ′ is only antilinear, but after the second identification (H ′ with
H ′′) it turns out that the identification ofH with H ′′ is linear.

Lemma E.24.Every finite dimensional Banach space is reflexive.
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Proof. It suffices to remark that ifX is finite dimensional, then

dimX = dimX′ = dimX′′ < ∞.

Surjectivity of the mappingJ (which is always injective) thus follows from linear
algebra.

Theorem E.25.The space Lp(Ω) is reflexive if1 < p < ∞ ((Ω ,A ,µ) being an
arbitrary measure space).

We will actually only prove the following special case.

Theorem E.26.The spaces lp are reflexive if1 < p < ∞.

The proof of Theorem E.26 is based on the following lemma.

Lemma E.27.Let 1 ≤ p < ∞ and let q:= p
p−1 be the conjugate exponent so that

1
p + 1

q = 1. Then the operator

T : lq → (l p)′,

(an) 7→ ((xn) 7→ ∑
n

anxn),

is an isometric isomorphism, i.e.(l p)′ = lq.

Proof. Linearity of T is obvious. Assume firstp > 1, so thatq < ∞. Note that for

everya := (an) ∈ lq \ {0} the sequence(xn) := (cān|an|q−2) (c = ‖a‖−q/p
q ) belongs

to l p and
‖x‖p

p = ‖a‖−q
q ∑

n
|an|(q−1)p = 1.

This particularx∈ l p shows that

‖Ta‖(l p)′ ≥ ∑
n

anxn = ‖a‖−q/p
q ∑

n
|an|q = ‖a‖q(p−1)/p

q = ‖a‖q.

On the other hand, by Hölder’s inequality,

‖Ta‖(l p)′ = sup
‖x‖p≤1

|∑
n

anxn| ≤ ‖a‖q,

so thatT is isometric in the casep∈ (1,∞). The casep = 1 is very similar and will
be omitted.

In order to show thatT is surjective, letϕ ∈ (l p)′. Denote byen the n-th unit
vector inl p, and letan := ϕ(en). If p = 1, then(an) ∈ l∞ = lq by the trivial estimate

|an| = |ϕ(en)| ≤ ‖ϕ‖‖en‖1 = ‖ϕ‖.

If p > 1, then we may argue as follows. For everyN ∈ N,
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N

∑
n=1

|an|q =
N

∑
n=1

an ān |an|q−2

= ϕ(
N

∑
n=1

ān |an|q−2en)

≤ ‖ϕ‖
(

N

∑
n=1

|an|(q−1)p)
1
p

= ‖ϕ‖
(

N

∑
n=1

|an|q
)

1
p ,

which is equivalent to

(

N

∑
n=1

|an|q
)1− 1

p =
(

N

∑
n=1

|an|q
) 1

q ≤ ‖ϕ‖.

Since the right-hand side of this inequality does not dependon N ∈ N, we obtain
thata := (an) ∈ lq and‖a‖q ≤ ‖ϕ‖.

Next, observe that for everyx∈ l p one has

x = ∑
n

xnen = lim
N→∞

N

∑
n=1

xnen,

the series converging inl p (here we need the restrictionp < ∞!). Hence, for every
x∈ l p, by the boundedness ofϕ ,

ϕ(x) = lim
N→∞

ϕ(
N

∑
n=1

xnen)

= lim
N→∞

N

∑
n=1

xnan

= ∑
n

xnan

= Ta(x).

Hence,T is surjective.

Proof (Proof of Theorem E.26).By Lemma E.27, we may identify(l p)′ with lq and,
if 1 < p < ∞ (!), also(l p)′′ = (lq)′ with l p. One just has to notice that this identifi-
cation of l p with (l p)′′ = l p (the identity map onl p) coincides with the operatorJ
from Lemma E.19, so thatl p is reflexive if 1< p < ∞.

Lemma E.28.The spaces l1, L1(Ω) (Ω ⊂ RN) and C([0,1]) are not reflexive.

Proof. For everyt ∈ [0,1], let δt ∈C([0,1])′ be defined by

〈δt , f 〉 := f (t), f ∈C([0,1]).



E.3 Weak convergence and reflexivity 1063

Then‖δt‖ = 1 and whenevert 6= s, then

‖δt − δs‖ = 2.

In particular, the uncountably many ballsB(δt ,
1
2) (t ∈ [0,1]) are mutually disjoint

so thatC([0,1])′ is not separable.
Now, if C([0,1]) were reflexive, thenC([0,1])′′ = C([0,1]) would be separable

(sinceC([0,1]) is separable), and then, by Corollary E.16,C([0,1])′ would be sepa-
rable; a contradiction to what has been said before. This proves thatC([0,1]) is not
reflexive.

The cases ofl1 and L1(Ω) are proved similarly. They are separable Banach
spaces with nonseparable dual.

Theorem E.29.Every closed subspace of a reflexive Banach space is reflexive.

Proof. Let X be a reflexive Banach space, and letU ⊂ X be a closed subspace. Let
u′′ ∈U ′′. Then the mappingx′′ : X′ → K defined by

〈x′′,x′〉 = 〈u′′,x′|U〉, x′ ∈ X′,

is linear and bounded, i.e.x′′ ∈ X′′. By reflexivity of X, there existsx∈ X such that

〈x′,x〉 = 〈u′′,x′|U〉, x′ ∈ X′. (E.5)

Assume thatx 6∈U . Then, by Corollary E.9, there existsx′ ∈ X′ such thatx′|U = 0
and〈x′,x〉 6= 0; a contradiction to the last equality. Hence,x∈U . We need to show
that

〈u′′,u′〉 = 〈u′,x〉,∀u′ ∈U ′. (E.6)

However, ifu′ ∈U ′, then, by Hahn-Banach we can choose an extensionx′ ∈ X′, i.e.
x′|U = u′. The equation (E.6) thus follows from (E.5).

Corollary E.30. The Sobolev spaces Wk,p(Ω) (Ω ⊂ RN open) are reflexive if1 <
p < ∞, k∈ N.

Proof. For example, fork = 1, the operator

T : W1,p(Ω) → Lp(Ω)1+N,

u 7→ (u,
∂u
∂x1

, . . . ,
∂u

∂xN
),

is isometric, so that we may considerW1,p(Ω) as a closed subspace ofLp(Ω)1+N

which is reflexive by Theorem E.25. The claim follows from Theorem E.29.

Corollary E.31. A Banach space is reflexive if and only if its dual is reflexive.

Proof. Assume that the Banach spaceX is reflexive. Letx′′′ ∈ X′′′ (the tridual!).
Then the mappingx′ : X → K defined by
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〈x′,x〉 := 〈x′′′,JX(x)〉, x∈ X,

is linear and bounded, i.e.x′ ∈ X′ (hereJX denotes the isometryX → X′′). Let x′′ ∈
X′′ be arbitrary. SinceX is reflexive, there existsx∈ X such thatJXx = x′′. Hence,

〈x′′′,x′′〉 = 〈x′′′,JXx〉 = 〈x′,x〉 = 〈x′′,x′〉,

which proves thatJX′x′ = x′′′, i.e. the isometryJX′ : X′ → X′′′ is surjective. Hence,
X′ is reflexive.

On the other hand, assume thatX′ is reflexive. ThenX′′ is reflexive by the pre-
ceeding argument, and thereforeX (considered as a closed subspace ofX′′ via the
isometryJ) is reflexive by Theorem E.29.

Definition E.32. Let X be a normed space. We say that a sequence(xn) ⊂ X con-
verges weaklyto somex∈ X if

lim
n→∞

〈x′,xn〉 = 〈x′,x〉 for everyx′ ∈ X′.

Notations: if(xn) converges weakly tox, then we writexn ⇀ x, w− limn→∞ xn = x,
xn → x in σ(X,X′), or xn → x weakly.

Theorem E.33.In a reflexive Banach space every bounded sequence admits a
weakly convergent subsequence.

Proof. Let (xn) be a bounded sequence in a reflexive Banach spaceX. We first
assume thatX is separable. ThenX′′ is separable by reflexivity, andX′ is separable
by Corollary E.16. Let(x′m) ⊂ X′ be a dense sequence.

Since(〈x′1,xn〉) is bounded by the boundedness of(xn), there exists a subse-
quence(xϕ1(n)) of (xn) (ϕ1 : N → N is increasing, unbounded) such that

lim
n→∞

〈x′1,xϕ1(n)〉 exists.

Similarly, there exists a subsequence(xϕ2(n)) of (xϕ1(n)) such that

lim
n→∞

〈x′2,xϕ2(n)〉 exists.

Note that for this subsequence, we also have that

lim
n→∞

〈x′1,xϕ2(n)〉 exists.

Iterating this argument, we find a subsequence(xϕ3(n)) of (xϕ2(n)) and finally for
everym∈ N, m≥ 2, a subsequence(xϕm(n)) of (xϕm−1(n)) such that

lim
n→∞

〈x′j ,xϕm(n)〉 exists for every 1≤ j ≤ m.

Let (yn) := (xϕn(n)) be the ’diagonal sequence’. Then(yn) is a subsequence of
(xn) and
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lim
n→∞

〈x′m,yn〉 exists for everym∈ N.

By Lemma D.58 of Chapter D, there existsx′′ ∈ X′′ such that

lim
n→∞

〈x′,yn〉 = 〈x′,x′′〉 for everyx′ ∈ X′.

SinceX is reflexive, there existsx ∈ X such thatJx = x′′. For thisx, we have by
definition ofJ

lim
n→∞

〈x′,yn〉 = 〈x′,x〉 exists for everyx′ ∈ X′,

i.e. (yn) converges weakly tox.
If X is not separable as we first assumed, then one may replaceX by X̃ :=

span{xn : n ∈ N} which is separable. By the above, there existsx ∈ X̃ and a sub-
sequence of(xn) (which we denote again by(xn)) such that for every ˜x′ ∈ X̃′,

lim
n→∞

〈x̃′,xn〉 = 〈x̃′,x〉,

i.e. (xn) converges weakly iñX. If x′ ∈ X′, thenx′|X̃ ∈ X̃′, and it follows easily that
the sequence(xn) also converges weakly inX to the elementx.

E.4 * Minimization of convex functionals

Theorem E.34 (Hahn-Banach; separation of convex sets).Let X be a Banach
space, K⊂ X a closed, nonempty, convex subset, and x0 ∈ X \K. Then there exists
x′ ∈ X′ andε > 0 such that

Re〈x′,x〉+ ε ≤ Re〈x′,x0〉, x∈ K.

Lemma E.35.Let K be an open, nonempty, convex subset of a Banach space X such
that0∈ K. Define theMinkowski functionalp : X → R by

p(x) = inf{λ > 0 :
x
λ

∈ K}.

Then p is sublinear, there exists M≥ 0 such that

p(x) ≤ M ‖x‖, x∈ X,

and K= {x∈ X : p(x) < 1}.

Proof. SinceB(0, r) ⊂ K for somer > 0, we find that

p(x) ≤ 1
r
‖x‖ for everyx∈ X.

The propertyp(αx) = α p(x) for everyα > 0 and everyx∈ X is obvious.
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Next, if p(x) < 1, then there existsλ ∈ (0,1) such thatx/λ ∈ K. Hence, by
convexity,x= λ x

λ = λ x
λ +(1−λ )0∈K. On the other hand, ifx∈K, then(1+ε)x∈

K, sinceK is open. Hence,p(x) ≤ (1+ ε)−1 < 1, so thatK = {x∈ X : p(x) < 1}.
Let finally x, y∈X. Then for everyε > 0,x/(p(x)+ε)∈K andy/(p(y)+ε)∈K.

In particular, for everyt ∈ [0,1],

t
p(x)+ ε

x+
1− t

p(y)+ ε
y∈ K.

Settingt = (p(x)+ ε)/(p(x)+ p(y)+2ε), one finds that

x+y
p(x)+ p(y)+2ε

∈ K,

so thatp(x+ y) ≤ p(x)+ p(y)+ 2ε. Sinceε > 0 was arbitrary, we findp(x+ y) ≤
p(x)+ p(y). The claim is proved.

Proof (Proof of Theorem E.34).We prove the theorem for the case whenX is a real
Banach space. The complex case is proved similarly.

We may without loss of generality assume that 0∈ K; it suffices to translateK
andx0 for this. Sincex0 6∈ K and sinceK is closed, we find thatd := dist(x0,K) > 0.
Put

Kd := {x∈ X : dist(x,K) < d/2},
so thatKd is an open, convex subset such that 0∈ Kd. Let p be the corresponding
Minkowski functional (see Lemma E.35).

Define on the one-dimensional subspaceU := {λx0 : λ ∈ R} the functionalu′ :
U → R by 〈u′,λx0〉 = λ . Then

〈u′,u〉 ≤ p(u), u∈U.

By the Hahn-Banach theorem E.3, there exists a linear extension x′ : X → R such
that

〈x′,x〉 ≤ p(x), x∈ X. (E.7)

In particular, by Lemma E.35,

|〈x′,x〉| ≤ M ‖x‖,

so thatx′ ∈ X′ and‖x′‖ ≤ M. By construction,〈x′,x0〉 = 1. Moreover, by (E.7) and
Lemma E.35,〈x′,x〉 < 1 for everyx∈ K ⊂ Kd, so that

〈x′,x〉 ≤ 〈x′,x0〉(= 1), x∈ Kd.

Replacing the above argument with(1− ε ′)x0 instead ofx0 (whereε ′ > 0 is chosen
so small that(1− ε ′)x0 6∈ Kd), we find that

〈x′,x〉+ ε ′〈x′,x0〉 ≤ 〈x′,x0〉, x∈ K ⊂ Kd,
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and puttingε := ε ′ = ε ′〈x′,x0〉 > 0 yields the claim.

Corollary E.36. Let X be a Banach space and K⊂ X a closed, convex subset
(closed for the norm topology). If(xn) ⊂ K converges weakly to some x∈ X, then
x∈ K.

Proof. Assume the contrary, i.e.x 6∈ K. By the Hahn-Banach theorem (Theorem
E.34), there existx′ ∈ X′ andε > 0 such that

Re〈x′,xn〉+ ε ≤ Re〈x′,x〉 for everyn∈ N,

a contradiction to the assumption thatxn ⇀ x.

A function f : K → R on a convex subsetK of a Banach spaceX is calledconvex
if for everyx, y∈ K, and everyt ∈ [0,1],

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y). (E.8)

Corollary E.37. Let X be a Banach space, K⊂ X a closed, convex subset, and
f : K → R a continuous, convex function. If(xn) ⊂ K converges weakly to x∈ K,
then

f (x) ≤ lim inf
n→∞

f (xn).

Proof. For everyl ∈ R, the setKl := {x∈ K : f (x) ≤ l} is closed (by continuity of
f ) and convex (by convexity off ). After extracting a subsequence, if necessary, we
may assume thatl := lim infn→∞ f (xn) = limn→∞ f (xn). Then for everyε > 0 the
sequence(xn) is eventually inKl+ε , i.e. except for finitely manyxn, the sequence
(xn) lies inKl+ε . Hence, by Corollary E.36,x∈Kl+ε , which means thatf (x)≤ l +ε.
Sinceε > 0 was arbitrary, the claim follows.

Theorem E.38.Let X be a reflexive Banach space, K⊂ X a closed, convex,
nonempty subset, and f: K → R a continuous, convex function such that

lim
‖x‖→∞

x∈K

f (x) = +∞ (coercivity).

Then there exists x0 ∈ K such that

f (x0) = inf{ f (x) : x∈ K} > −∞.

Proof. Let (xn)⊂ K be such that limn→∞ f (xn) = inf{ f (x) : x∈ K}. By the coerciv-
ity assumption onf , the sequence(xn) is bounded. SinceX is reflexive, there exists
a weakly convergent subsequence (Theorem E.33); we denote by x0 the limit. By
Corollary E.36,x0 ∈ K. By Corollary E.37,

f (x0) ≤ lim
n→∞

f (xn) = inf{ f (x) : x∈ K}.

The claim is proved.
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Remark E.39.Theorem E.38 remains true iff is only lower semicontinuous, i.e. if

liminf
n→∞

f (xn) ≥ f (x)

for every convergent(xn) ⊂ K with x = lim xn. In fact, already Corollary E.37 re-
mains true if f is only lower semicontinuous (and then Corollary E.37 says that
lower semicontinuity of a convex function in the norm topology implies lower semi-
continuity in the weak topology). It suffices for example to remark that the sets
Kl := { f ≤ l} (l ∈ R) are closed as soon asf is lower semicontinuous.

E.5 * The von Neumann minimax theorem

In the following theorem, we call a functionf : K → R on a convex subsetK of a
Banach spaceX concaveif − f is convex, or, equivalently, if for everyx, y∈ K and
everyt ∈ [0,1],

f (tx+(1− t)y)≥ t f (x)+ (1− t) f (y). (E.9)

A function f : K → R is calledstrictly convex(resp.strictly concave) if for everyx,
y∈ K, x 6= y, f (x) = f (y) the inequality in (E.8) (resp. (E.9)) is strict fort ∈ (0,1).

Theorem E.40 (von Neumann).Let K and L be two closed, bounded, nonempty,
convex subsets of reflexive Banach spaces X and Y, respectively. Let f : K×L → R

be a continuous function such that

x 7→ f (x,y) is strictly convex for every y∈ L, and

y 7→ f (x,y) is concave for every x∈ K.

Then there exists(x̄, ȳ) ∈ K ×L such that

f (x̄,y) ≤ f (x̄, ȳ) ≤ f (x, ȳ) for every x∈ K, y∈ L. (E.10)

Remark E.41.A point (x̄, ȳ) ∈ K×L satisfying (E.10) is called asaddle pointof f .
A saddle point is a point ofequilibrium in a two-person zero-sum game in the

following sense: If the player controlling the strategyx modifies his strategy when
the second player plays ¯y, he increases his loss; hence, it is his interest to play ¯x.
Similarly, if the player controlling the strategyy modifies his strategy when the
first player plays ¯x, he diminishes his gain; thus it is in his interest to play ¯y. This
property of equilibrium of saddle points justifies their useas a (reasonable) solution
in a two-person zero-sum game ([Aubin (1979)]).

Proof. Define the functionF : L→R by F(y) := infx∈K f (x,y) (y∈ L). By Theorem
E.38, for everyy∈ L there existsx∈ K such thatF(y) = f (x,y). By strict convexity,
this elementx is uniquely determined. We denotex := Φ(y) and thus obtain

F(y) = inf
x∈K

f (x,y) = f (Φ(y),y), y∈ L. (E.11)
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By concavity of the functiony 7→ f (x,y) and by the definition ofF , for everyy1,
y2 ∈ L and everyt ∈ [0,1],

F(ty1 +(1− t)y2) = f (Φ(ty1 +(1− t)y2),ty1 +(1− t)y2)

≥ t f (Φ(ty1 +(1− t)y2),y1)+ (1− t) f (Φ(ty1+(1− t)y2),y2)

≥ t F(y1)+ (1− t)F(y2),

so thatF is concave. Moreover,F is upper semicontinuous: let(yn) ⊂ L be conver-
gent toy∈ L. For everyx∈ K and everyn∈ N one hasF(yn) ≤ f (x,yn), and taking
the limes superior on both sides, we obtain, by continuity off ,

limsup
n→∞

F(yn) ≤ limsup
n→∞

f (x,yn) = f (x,y).

Sincex∈ K was arbitrary, this inequality implies limsupn→∞ F(yn)≤ F(y), i.e.F is
upper semicontinuous.

By Theorem E.38 (applied to−F; use also Remark E.39), there exists ¯y∈ L such
that

f (Φ(ȳ), ȳ) = F(ȳ) = sup
y∈L

F(y).

We putx̄ = Φ(ȳ) and show that(x̄, ȳ) is a saddle point. Clearly, for everyx∈ K,

f (x̄, ȳ) ≤ f (x, ȳ). (E.12)

Therefore it remains to show that for everyy∈ L,

f (x̄, ȳ) ≥ f (x̄,y). (E.13)

Let y ∈ L be arbitrary and putyn := (1− 1
n)ȳ+ 1

ny andxn = Φ(yn). Then, by
concavity,

F(ȳ) ≥ F(yn) = f (xn,yn)

≥ (1− 1
n
) f (xn, ȳ)+

1
n

f (xn,y)

≥ (1− 1
n
)F(ȳ)+

1
n

f (xn,y),

or
F(ȳ) ≥ f (xn,y) for everyn∈ N.

SinceK is bounded and closed, the sequence(xn) ⊂ K has a weakly convergent
subsequence which converges to some elementx0 ∈K (Theorem E.33 and Corollary
E.36). By the preceeding inequality and Corollary E.37,

F(ȳ) ≥ f (x0,y).

This is just the remaining inequality (E.13) if we can prove thatx0 = x̄. By concavity,
for everyx∈ K and everyn∈ N,



1070 E Dual spaces and weak convergence

f (x,yn) ≥ f (xn,yn)

≥ (1− 1
n
) f (xn, ȳ)+

1
n

f (xn,y)

≥ (1− 1
n
) f (xn, ȳ)+

1
n

F(y).

Letting n→ ∞ in this inequality and using Corollary E.37 again, we obtainthat for
everyx∈ K,

f (x, ȳ) ≥ f (x0, ȳ).

Hence,x0 = Φ(ȳ) = x̄ and the theorem is proved.



Appendix F
The divergence theorem

by WOLFGANG ARENDT

Introduction

This is an appendix to the course “PARTIAL DIFFERENTIAL EQUATIONS” given in
Summer Semester 2006. We give a proof of the Divergence Theorem. The idea is to
use Riesz’ Theorem to prove uniqueness of thesurface measure, i.e., a measure on
the boundary of aC1-domainΩ ⊂ Rn such that

∫

Ω

D jvdx =

∫

Γ

vν j dσ

for all j = 1, . . .n and allv∈C1(Ω̄ ), whereν ∈C(Γ ,Rn) denotes the outer normal.
In the construction of the surface measure, this uniquenessresults makes superfluous
the tedious proof of independance of the chosen graph and thepartition of the unity.

F.1 Open sets of classC1

Let Ω ⊂ Rn be an open, bounded set andΓ = ∂Ω its boundary. Forx,y ∈ Rn we
denote by

x ·y=
n

∑
j=1

x jy j

the scalar product, by|x| := √
x ·x the Eucleadian norm and by|x|∞ := max

j=1...n
|x j | the

supremum norm.

1071
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Definition F.1. a) LetU ⊂ Rn be open. We say thatΓ ∩ U is anormal C1-graph
(with Ω on one side), if there existg∈C1(Rn−1), r > 0,h > 0 such that

U = {(y,g(y)+s) : y∈ Rn−1, |y|∞ < r,s∈ R, |s| < h}

such that forx = (y,g(y)+s) ∈U one has

x∈ Ω if and only if s> 0 ;

x∈ Γ if and only if s= 0 and

x 6∈ Ω̄ if and only if s< 0 .

b) Let U ⊂ Rn be open. We say thatU ∩Γ is aC1-graph with Ω on one sideif
there exist an orthonormaln× n matrix B andb ∈ Rn such thatφ(U)∩ φ(Γ ) is a
normalC1-graph withφ(Ω) on one side whereφ(x) = Bx+b.
c) We say thatΩ is of classC1 or thatΩ hasC1-boundary if for eachz∈ Γ there
exists an open neighborhoodU ⊂ Rn of z such thatU ∩Γ is aC1-graph withΩ on
one side.

Remark F.2. Similarly, we define anormal Ck-graph or a normal Lipschitz
graph, if the functiong in a) is of classCk or Lipschitz continuous, respectively.
Accordingly, we defineCk-graphs and Lipschitz graphs as in b). We say thatΩ is
of classCk or Ω has Lipschitz boundary, if for eachz∈ Γ there exists an open
neighborhoodU such thatU ∩Γ is aCk-graph or a Lipschitz-graph, respectively.

Next we give the definition of the tangent space ofΓ at a pointz∈ Γ . Here
we need this notion merely to define the outer normal intrinsically (Theorem F.5
below).

Definition F.3. Let z∈ Γ . A vectorv ∈ Rn is said to betangent to Γ at z if there
existsψ ∈C1((−ε,ε),Rn) such that

ψ(t) ∈ Γ for |t| < ε and ψ(0) = z,ψ ′(0) = v .

We denote byTz the set of all vectorsv which are tangent toΓ at z. It is easy to see
thatTz is a vector subspace ofRn. We call it thetangent spaceof Γ at z.

Proposition F.4.Let Ω ⊆ Rn be of class C1, and let z∈ Γ . Then Tz has dimension
n−1.

Proof. Let U ⊂ Rn be an open neighborhood ofz such thatU ∩Γ is aC1-graph
with Ω on one side. We may assume that the graph is normal and keep thenotations
of Definition F.1.a). Forx = (x1, . . .xn) ∈ Rn we letx := (x1, . . .xn−1) ∈ Rn−1. Thus
zn = g(x). We show that

Tz = {v∈ Rn : vn =
n−1

∑
j=1

v jD jg(x)} (F.1)
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which implies the claim. Letv ∈ Rn such thatvn =
n−1
∑
j=1

v jD jg(z). Defineψ(t) =

(z) + tv,g(z+ tv)). Thenψ ∈ C1((−ε,ε),Rn) and ψ(t) ∈ Γ for |t| < ε if ε > 0

is small enough. Thenψ(0) = z and ψ ′(0) = (v,
n−1
∑
j=1

v jD jg(z)) = v. This proves

one inclusion. Conversely, letv ∈ Tz. Considerψ as in Definition F.3. Then
ψ(0) = z,ψ ′(0) = v. Since ψ(t) = (ψ1(t), . . . ,ψn(t)) ∈ Γ for |t| < ε, it fol-
lows thatψn−1(t) = g(ψ1(t), . . . ,ψn(t)) for |t| < ε. Consequently,vn = ψ ′

n(0) =
n−1
∑
j=1

ψ ′
j(0)D jg(ψ1(0), . . . ,ψn−1(0)) =

n−1
∑
j=1

v jD jg(z). This proves the other inclusion.

ForA⊂ Rn we denote by

A⊥ := {v∈ Rn : x ·v= 0 for all x∈ A}

the space which is orthogonal toA. For x = (x1, . . . ,xn) ∈ Rn we let x :=
(x1, . . . ,xn−1) ∈ Rn−1.

Theorem F.5 (Definition of the outer normal).Assume thatΩ is of class C1. Then
for each z∈ Γ there exists a unique vectorν(z) ∈ Rn satisfying

a) ν(z) ∈ T⊥
z , |ν(z)| = 1,

b) z+ tν(z) ∈ Ω for t ∈ (−ε,0),

c) z+ tν(z) 6∈ Ω for t ∈ [0,ε)

for someε > 0. We callν(z) the outer normal of Ω at z. Moreover,ν ∈C(Γ ,Rn).

Proof. SincedTz = n− 1 it follows that for eachz∈ Γ there exists at most one
ν(z) ∈ Rn satisfying (a), (b), (c). LetU ⊂Rn be open such thatU ∩Γ is aC1-graph.
We show that forz∈ Γ ∩U there existsν(z) satisfying (a), (b), (c). We may assume
that the graph is normal and keep the notation of Definition F.1. Forx∈ Rn we let
x = (x1, . . .xn−1) ∈ Rn−1. Let

ν(z) =
(∇g(z),−1)
√

1+ |∇g(z)|2
for z∈ Γ ∩U . (F.2)

Then|ν(z)| = 1 andν(z) ∈ T⊥
z by (F.1). It remains to show (b) and (c). Letψ(x) =

g(x)−xn. Thenψ ∈C1(Rn) and forx∈U one has

ψ(x) < 0 if and only if x∈ Ω and

ψ(x) ≥ 0 if and only if x 6∈ Ω .

Let z∈ Γ ∩U . By Taylor’s formula,

ψ(z+h) = (∇ψ(z)|h)+o(h)

with o(h)
|h| → 0 as|h| → 0. Note that∇ψ(z) = (∇g(x),−1), henceν(z) = ∇ψ(z)

|∇ψ(z)| .
Thus
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ψ(z+ tν(z)) = t(∇ψ(z) ·ν(z))+o(tν(z)) = t{|∇ψ(z)|+ o(tν(z))
t

} .

Since |∇ψ(z)| ≥ 1 and o(tν(z))
t → 0 ast → 0 there existsε > 0 such thatψ(z+

tν(z)) ≥ 0 for t ∈ [0,ε) andψ(z+ tν(z)) < 0 for t ∈ (−ε,0). Thus (b) and (c) are
proved. It follows from (F.2) thatν : U ∩Γ → Rn is continuous.

F.2 The divergence theorem

Let Ω ⊂ Rn be a bounded, open set withC1-boundaryΓ = ∂Ω . In this section
we introduce the surface measure onΓ as the unique measure onΓ such that
the Divergence Theorem holds. The Divergence Theorem is theextension of the
Fundamental Theorem of Calculus to higher dimension. It implies the formula of
partial integration in higher dimension and the Green’s formulas. The proof of the
Divergence Theorem will be given in the next section.

Let Ω ⊂Rn be open and bounded with boundaryΓ := ∂Ω . By C1(Ω̄ ) we denote
the space of all continuous functionsu : Ω̄ → R which areC1 in Ω such thatD ju
has a continuous extension tōΩ for j = 1, . . .n. HereD ju(x) = ∂u

∂xj
(x1, . . . ,xn) is the

jth partial derivative atx = (x1, . . . ,xn).

Theorem F.6 (Divergence Theorem).Assume thatΩ is of class C1. Then there
exists a unique Borel measureσ onΓ such that

∫

Ω

D judx =
∫

Γ

uν jdσ ( j = 1, . . .n) for all u ∈C1(Ω̄) . (F.3)

Hereν ∈C(Γ ,Rn) is the outer normal with components

ν(z) = (ν1(z), . . . ,νn(z)) (z∈ Γ ) .

The measureσ is calledthe surface measureor the(n−1)-dimensional Haus-
dorff measure.

The Divergence Theorem is also called Gauß’s Theorem. It is an extension of the
Fundamental Theorem of Calculus

b
∫

a

u′(x)dx = u(b)−u(a)

(u∈C1[a,b]) to higher dimension. The following formula of integration by parts in
higher dimension is frequently used.
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Corollary F.7 (Integration by parts).
∫

Ω

(D j u)vdx = −
∫

Ω

uD jvdx+

∫

Γ

uvν jdσ (F.4)

(u,v∈C1(Ω̄)), j = 1, . . .n, whereν(z) = (ν1(z), . . . ,νn(z)) is the outer normal.

Proof. By the Divergence Theorem applied touvwe have
∫

Γ

uvν jdσ =

∫

Ω

D j(uv)dx

=

∫

Ω

(D ju)vdx +

∫

Ω

u(D jv)dx .

Takingv = 1 in (F.4) we recover the original formula (F.3). Next we prove the
Green’s formula. Foru∈C1(Ω̄) we denote by

∂u
∂ν

(z) :=
n

∑
j=1

D ju(z)ν j(z)

the normal derivative. Recall, that forx∈ Ω ,v∈ Rn,

Dvu(x) :=
∂
∂ t |t=0

u(x+ tv)

= ∇u(x) ·v

is the directional derivative (or Gateaux derivative) ofu at x in the directionv. Here

∇u(x) ·v =
n
∑
j=1

D ju(x)v j is the scalar product inRn. Thus

∂u
∂ν

(z) = Dν(z)u(z)

if u has an extension inC1(Rn).

Corollary F.8 (Green’s formula). Let u,v∈C2(Ω̄). Then

a)
∫

Ω
∆u ·vdx = − ∫

Ω
∇u∇vdx+

∫

Γ

∂u
∂ν vdσ

b)
∫

Ω
∆udx =

∫

Γ

∂u
∂ν dσ .

Here C2(Ω̄) = {u∈C1(Ω̄) : D ju∈C1(Ω̄), j = 1. . .n}.

Proof. (a) Applying the integration-by-parts formula (F.4) toD ju instead ofu we
obtain
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∫

Ω

∆u vdx =
n

∑
j=1

∫

Ω

D j(D ju)vdx

=
n

∑
j=1

{−
∫

Ω

D juD jvdx+

∫

Γ

ν jD juvdσ}

= −
∫

Ω

∇u ·∇vdx+
∫

Γ

∂u
∂ν

vdσ .

(b) follows from (a) takingv = 1.

Exercise.Foru,v∈C2(Ω̄),

∫

Ω

((∆u)v−u∆v)dx =

∫

Γ

(
∂u
∂ν

v−u
∂v
∂ν

)dσ .

Finally we give some comments explaining the name “Divergence Theorem”
and also the physical significance of this result. Letv∈C1(Ω̄ ,Rn), be a vector field,
v(x) = (v1(x), . . . ,vn(x)) with v j ∈C1(Ω̄), j = 1, . . .n. Denote by

(div v)(x) :=
n

∑
j=1

D jv j(x)

thedivergence ofv. Note that divv∈C(Ω̄ ). By (ν(z) ·v(z)) =
n
∑
j=1

ν j(z)v j(z) (z∈

Γ ) we denote the scalar product ofv and the normal vector onΓ .

Corollary F.9. Let v∈C1(Ω̄ ,Rn). Then
∫

Ω

(div v)(x)dx =

∫

Γ

v ·ν dσ . (F.5)

Proof. One has

∫

Ω

(div v)(x)dx =
n

∑
j=1

∫

Ω

D jv j(x)dx =
n

∑
j=1

∫

Γ

ν j(z)v j(z)dσ(z) =

∫

Γ

v ·ν dσ

by Theorem F.6.

Remark F.10 (Physical interpretation). The scalar productv(z) · ν(z) =
‖v(z)‖cosα, whereα is the angle between the vectorsv(z) andν(z), is the pro-
jection ofv(z) to the normal vectorν(z). If dσ(z) is identified with a small square
(we consider dimensionn = 3), thenv(z) ·ν(z)dσ(z) is the flux of the vectorfieldv
through the surface elementdσ(z). Thus, ifv is the velocity of a liquid, measured
in m/sec, thenv(z) · ν(z)dσ(z) is the quantity of liquid going through the surface
elementdσ(z) in 1 second. The integral
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∫

∂ω

v(z) ·ν(z)dσ(z) (F.6)

is the quantity of liquid going through the surface of a bodyω in 1 second. If the
liquid is incompressible, then the quantity going into the body is equal to the quan-
tity going out of it; hence the flux (F.5) is 0. By the Divergence Theorem in the form
of Corollary F.9 this implies that

∫

ω

(div v)(x)dx = 0

for all open setsω of classC1 satisfyingω̄ ⊂ Ω . This implies that

div v(x) = 0 for all x∈ Ω .

This result is rephrased by saying that the velocity field of an incompressible liquid
is divergence free. The same is true for the electrical field in a space without charge.

Example F.11 (Archimedean Principle).A body A is in a liquid of constant den-
sity c > 0, whose surface coincides with the plane{(x1,x2,0) : x1,x2 ∈ R}. At the
pointz∈ ∂A the liquid yields a pressure onto the bodyA which is equal tocz3ν(z).
Observe thatz3 is negative and the presure is directed to the interior ofA. Thus, the
forceF executed onto the bodyA is

F =

∫

∂A

cz3ν(z)dσ(z)

i.e.,Fi =
∫

∂A
cz3νi(z)dσ(z) (i = 1,2,3). By the Divergence Theorem,

Fi =

∫

A

c
∂

∂xi
x3dx .

HenceF1 = F2 = 0 and

F3 = c
∫

A

dx = c|A|

where|A| is the volume ofA.

F.3 Proof of the divergence theorem

We start recalling Riesz’s Theorem. LetK be a compact space andC(K) the space
of all continuous functionsf : K → R. By a positive linear form ϕ on C(K) we
understand a linear mappingϕ : C(K) → R such that
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f ≥ 0 implies ϕ( f ) ≥ 0

for all f ∈C(K). If µ is a Borel measure onK, then

ϕ( f ) =

∫

K

f (x)dµ(x)

defines a positive linear form onC(K). Conversely, Riesz’s Theorem says that each
positive linear form is induced by a measure.

Theorem F.12 (Riesz).Letϕ be a positive linear form on C(K). Then there exists a
unique Borel measureµ on K such that

ϕ( f ) =

∫

K

f (x)dµ(x) (F.7)

for all f ∈C(K).

Next we recall the Stone-Weierstraß Theorem. Asubalgebraof C(K) is a sub-
spaceA of C(K) such that

f ,g∈ A implies f ·g∈ A .

We say thatA separates the points ofK if for all x,y ∈ K satisfyingx 6= y there
exists f ∈ A such thatf (x) 6= f (y).

Theorem F.13 (Stone-Weierstraß).Let A be a subalgebra of C(K) which sepa-
rates the points of K and contains the constant-1-function1K . ThenA is dense in
C(K).

Now let Ω ⊂ Rn be an open, bounded set of classC1. We first prove uniqueness
of the surface measure.

Proposition F.14 (Uniqueness of the surface measure).Letσ be a Borel measure
onΓ such that

∫

Γ

uν jdσ = 0 ( j = 1, . . . ,n) (F.8)

for all u ∈C1(Ω̄). Thenσ = 0.

Proof. The set A = {u|Γ : u ∈ C1(Rn)} is dense inC(Γ ) by the Stone-
Weierstraß Theorem. It follows from this and the assumption(F.8) that

∫

Γ
uν jdσ = 0

for all u∈C(Γ ). Replacingu by uν j we conclude that
∫

Γ
uν2

j dσ = 0 for all u∈C(Γ ).

Since
n
∑
j=1

ν2
j = 1, it follows that

∫

Γ
udσ = 0. This implies thatσ = 0, by Riesz’ The-

orem.
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Next we prove existence of the surface measure. LetU ⊂ Rn be open such that
U ∩Γ 6= /0. Let

Cc(U ∩Γ ) := {u∈C(Γ ) : ∃ K ⊂U compact such thatu(z) = 0 for z∈ Γ \K} .

We denote byCc(U ∩Γ )′+ := {ϕ : Cc(U ∩Γ ) → R : ϕ is linear such thatf ≥ 0
implies ϕ( f ) ≥ 0 for all f ∈ Cc(U ∩Γ )} the set of all positive linear forms on
Cc(U ∩Γ ). LetU ∩Γ be a normal graph. Define

ϕ( f ) =
∫

|y|∞<r

f (y,g(y))
√

1+ |∇g(y)|2dy (F.9)

for all f ∈Cc(U ∩Γ ) where we use the notation of Definition F.1. Thenϕ ∈Cc(U ∩
Γ )′+.

Lemma F.15.Let U∩Γ be a normal C1-graph as above. Let u∈ C1(Ω̄ ) be such
thatsuppu⊂U. Then

∫

Ω

D judx = ϕ(u|Γ ν j) ( j = 1. . .n) . (F.10)

Here suppu := {x∈ Ω : u(x) 6= 0} (i.e. the closure of the open set{x ∈ Ω :
u(x) 6= 0}) is a compact subset ofRn. We assume that suppu⊂U , henceu(x) = 0
for all x∈U \ suppu. Thusu|Γ ∈Cc(U ∩Γ ).

Proof. Denote by
φ : Rn−1× (−h,h)→U

the diffeomorphism given byφ(y,s) = (y,g(y) + s). Then detDφ(y,s) = 1 for all
(y,s) ∈ Rn−1× (−h,h).

a) Let j ∈ {1, . . . ,n−1}. Let u∈C1(Ω̄) such that suppu⊂U . Then

∫

Ω

D judx =
∫

|y|∞<r

h
∫

0

D ju(y,g(y)+s) dy

=

∫

|y|∞<r

h
∫

0

∂
∂ j

u(y,g(y)+s) dy−
∫

|y|∞<r

h
∫

0

Dnu(y,g(y)+s)D jg(y) dy

=

h
∫

0

∫

|y|∞<r

∂
∂y j

u(y,g(y)+s)dy +
∫

|y|∞<r

u(y,g(y))D jg(y)dy

=

∫

|y|∞<r

u(y,g(y))D jg(y)dy
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where we used the Fundamental Theorem of Calculus in 1 variable and the fact that
suppu⊂U . Sinceν j(y,g(y)) =

D j g(y)√
1+|∇g(y)|2

, the last term equalsϕ(ν ju|Γ ).

b) Let j = n. Then∂u
∂s(y,g(y)+s) = Dnu(y,g(y)+s). Hence

∫

Ω

Dnu(x)dx =

∫

|y|∞<r

h
∫

0

Dnu(y,g(y)+s) dy =

∫

|y|∞<r

h
∫

0

∂
∂s

u(y,g(y)+s) dy = −
∫

|y|∞<r

u(y,g(y))dy =

∫

|y|∞<r

u(y,g(y))νn(y,g(y))
√

1+ |∇g(y)|2dy = ϕ(u|Γ νn)

sinceνn(y,g(y)) = −1√
1+|∇g(y)|2

.

Now letU ⊂ Rn be open and suppose thatU ∩Γ is aC1-graph, i.e. there exist an
orthogonal matrixB, detB = 1, andb ∈ Rn such thatΓ̃ ∩Ũ is a normalC1-graph
with Ω̃ on one side whereφ(x) = Bx+b, Ω̃ = φ(Ω), Γ̃ = ∂Ω̃ = φ(Γ ), Ũ = φ(U).
Notice that the outer normalν̃(φ(z)) of Ω̃ atφ(z) is given by

ν̃(φ(z)) = Bν(z) (F.11)

for all z∈ Γ . Consider the positive linear form̃ϕ onCc(Γ̃ ∩Ũ) constructed above.
Defineϕ ∈Cc(Γ ∩U)′+ by

ϕ( f ) = ϕ̃( f ◦φ−1) (F.12)

for f ∈Cc(Γ ∩U).

Lemma F.16.Let U∩Γ be a C1-graph as above. Let u∈C1(Ω̄ ) such thatsuppu⊂
U. Then

∫

Ω

D judx = ϕ(u|Γ ν j) ( j = 1, . . . ,n) .

Proof. Let B= (bk j)k, j=1...n. Let ũ = u◦φ−1. Thenũ∈C1(Ω̃ ) and by Lemma F.15.
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∫

Ω

D ju =
∫

Ω

∂
∂x j

ũ(φ(x))dx

=

∫

Ω

n

∑
k=1

Dkũ(φ(x))bk j dx

=
∫

Ω̃

n

∑
k=1

Dkũ(y)bk j dy

=
n

∑
k=1

bk jϕ̃(ũ|Γ̃ ν̃k)

= ϕ̃(u◦φ−1
|Γ̃

(B−1ν̃) j)

= ϕ(u|Γ (B−1ν̃ ◦φ) j)

= ϕ(u|Γ ν j) .

Now we piece together the surface measure using the positivelinear forms on the
graphs. SinceΩ is of classC1 there exist open setsUm⊂Rn,m= 1, . . . ,M such that

Γ ⊂
M
⋃

m=1

Um

andΓ ∩Um is aC1-graph for eachm∈ {1, . . . ,M}. LetU0 be an open set such that

Ω̄ ⊂
M
⋃

m=0
Um. We recall that there exists a partition of unity on̄Ω subordinate to the

open setsUm, m = 0,1. . .M; that is, there exist functionsηm ∈ C∞(Rn) such that
0≤ ηm ≤ 1, suppηm ⊂Um and

M

∑
m=0

ηm(x) = 1

for all x∈ Ω̄ . Form∈ {1, . . . ,M} let ϕm ∈Cc(Γ ∩Um)′+ be the positive linear form
constructed above; that is,ϕm satisfies

∫

Ω

D ju = ϕm(ν j u|Γ∩Um
)

for all u∈C1(Ω̄ ) satisfying suppu⊂Um. Define the positive linear formϕ onC(Γ )
by

ϕ( f ) :=
M

∑
m=1

ϕm(ηm f ) .

By Riesz’ Theorem there exists a Borel measureσ onΓ such that
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ϕ( f ) =

∫

Γ

f (z)dσ(z)

for all f ∈C(Γ ). Letu∈C1(Ω̄) and let j ∈ {1, . . .n}. Thenuη0 has compact support
in Ω . Hence

∫

Ω
D j(uη0)dx = 0. Indeed, extendinguη0 by 0 outside ofΩ we obtain

a functionv ∈ C1(Rn) vanishing outside of a cubeQ := {x : |x j | ≤ R for all j =
1, . . . ,n}. Since

R
∫

−R

∂v
∂x j

(x1 . . .x j ,x. . .xn)dx j = v(x1, . . . ,R, . . .xn)−v(x1, . . . ,−R, . . .xn) = 0

for all x1, . . .x j−1,x j+1, . . .xn ∈ R it follows that

∫

Ω
D j(uη0)dx =

∫

Q
D jvdx

=
R
∫

−R
. . .

R
∫

−R

∂v
∂xj

(x1 . . .x j . . .xn)dx j dx1 . . .dxj−1dxj+1 . . .dx1 = 0 .

Let m∈ {1. . .M}. Thenuηm ∈Cc(Γ ∩U j). Hence forj ∈ {1, . . .n},

∫

Ω

D j(ηmu)dx = ϕm(ηmu|Γ ν j) .

Thus

∫

Ω

D judx =

∫

Ω

D j(
M

∑
m=0

ηmu)dx

=
M

∑
m=0

∫

Ω

D j(ηmu)dx

=
M

∑
m=1

∫

Ω

D j(ηmu)dx

=
M

∑
m=1

ϕm(ηmu|Γ ν j)

= ϕ(u|Γ ν j)

=

∫

Γ

u|Γ ν j dσ .

Thusσ is a Borel measure satisfying the requirements of the Divergence Theorem.
We have seen before that it is unique. In particular, the construction given above
does not depend on the choice of the graphs and the choice of the partition of unity.



Appendix G
Sobolev spaces

G.1 Test functions, convolution and regularization

Let Ω ⊆ Rd be anopenset. For every continuous functionϕ ∈C(Ω) we define the
support

suppϕ := {x∈ Ω : ϕ(x) 6= 0},
where the closure is to be understood inRd. Thus, the support is by definition always
closed inRd, but it is not necessarily a subset ofΩ . Next we let

D(Ω) := C∞
c (Ω) := {ϕ ∈C∞(Ω) : suppϕ ⊂ Ω is compact}

be the space oftest functionsonΩ , and

L1
loc(Ω) := { f : Ω → K measurable :

∫

K
| f | < ∞∀K ⊂ Ω compact}

the space oflocally integrable functionson Ω .
For everyf ∈ L1

loc(R
d) and everyϕ ∈ D(Rd) we define theconvolution f∗ϕ by

f ∗ϕ(x) :=
∫

Rd
f (x−y)ϕ(y) dy

=

∫

Rd
f (y)ϕ(x−y) dy.

Lemma G.1.For every f∈ L1
loc(R

d) and everyϕ ∈D(Rd) one has f∗ϕ ∈C∞(Rd)
and for every1≤ i ≤ d,

∂
∂xi

( f ∗ϕ) = f ∗ ∂ϕ
∂xi

.

Proof. Let ei ∈ Rd be thei-th unit vector. Then

lim
h→0

1
h
(ϕ(x+hei)−ϕ(x)) =

∂ϕ
∂xi

(x)

1083
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uniformly in x∈ Rd (note thatϕ has compact support). Hence, for everyx∈ Rd

1
h
( f ∗ϕ(x+hei)− f ∗ϕ(x))

=
1
h

∫

Rd
f (y)(ϕ(x+hei −y)−ϕ(x−y)) dy

→
∫

Rd
f (y)

∂ϕ
∂xi

(x−y) dy.

The following theorem is proved in courses on measure theory. We omit the
proof.

Theorem G.2 (Young’s inequality).Let f ∈ Lp(Rd) andϕ ∈D(Rd). Then f∗ϕ ∈
Lp(Rd) and

‖ f ∗ϕ‖p ≤ ‖ f‖p‖ϕ‖1.

Theorem G.3.For every1 ≤ p < ∞ and every openΩ ⊂ Rd the spaceD(Ω) is
dense in Lp(Ω).

Proof. The technique of this proof (regularizationandtruncation) is important in
the theory of partial differential equations, distributions and Sobolev spaces. The
first step (regularization) is based on Lemma G.1. The truncation step is in this case
relatively easy.

Regularization.Let ϕ ∈ D(Rd) be a positive function such that‖ϕ‖1 =
∫

Rd ϕ =
1. One may take for example the function

ϕ(x) :=

{

ce1/(1−|x|2) if |x| < 1,

0 otherwise,
(G.1)

with an appropriate constantc > 0. Then letϕn(x) := ndϕ(nx), so that‖ϕn‖1 =
∫

Rd ϕn = 1 for everyn∈ N.
Let f ∈Lp(Rd). By Lemma G.1 and Young’s inequality (Theorem G.2), for every

n∈ N, fn := f ∗ϕn ∈C∞(Rd)∩Lp(Rd) and‖ fn‖p ≤ ‖ f‖p. Hence, for everyn∈ N

the operatorTn : Lp(Rd)→ Lp(Rd), f 7→ f ∗ϕn is linear and bounded and‖Tn‖ ≤ 1.
Moreover, if f = 1I for some bounded intervalI = (a1,b1)× ·· · × (ad,bd) ⊂ Ω ,
then

‖ fn− f‖p
p =

∫

Rd

∣

∣

∣

∣

∫

Rd
f (x−y)ϕ(ny)nd dy− f (x)

∣

∣

∣

∣

p

dx

=

∫

Rd

∣

∣

∣

∣

∫

Rd
( f (x− y

n
)− f (x))ϕ(y) dy

∣

∣

∣

∣

p

dx

≤
∫

Rd

(

∫

Rd
| f (x− y

n
)− f (x)|ϕ(y) dy

)p

dx→ 0

as n → ∞ by Lebesgue’s dominated convergence theorem. In other words,
limn→∞ ‖Tn f − f‖p = 0 for every f = 1I with I as above. Since span{1I : I ⊂ Rd
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bounded interval} is dense inLp(Rd), we find that limn→∞ ‖Tn f − f‖p = 0 for ev-
ery f from a dense subsetM of Lp(Rd). Since theTn are bounded, we conclude
from Lemma D.58 thatTn f → f in Lp(Rd) for every f ∈ Lp(Rd). This proves that
Lp∩C∞(Rd) is dense inLp(Rd).

Truncation.Now we consider a general open setΩ ⊂ Rd and prove the claim.
Let ϕ ∈ D(Rd) be a positive test function such that suppϕ ⊂ B(0,1) and

∫

Rd ϕ = 1
(one may take for example the function from (G.1)). Then letϕn(x) := ndϕ(nx).

For everyn∈ N we let

Kn := {x∈ Ω : dist(x,∂Ω) ≥ 1
n
}∩B(0,n),

so thatKn ⊂ Ω is compact for everyn∈ N.
Now let f ∈ Lp(Ω) ⊂ Lp(Rd) andε > 0. Let

f 1Kn(x) =

{

f (x) if x∈ Kn,

0 if x∈ Ω \Kn.

By Lebesgue’s dominated convergence theorem (since
⋃

n Kn = Ω ),

‖ f − f 1Kn‖p
p =

∫

Ω
| f |p(1−1Kn)

p → 0 asn→ ∞.

In particular, there existsn∈ N such that‖ f − f 1Kn‖p ≤ ε.
For everym≥ 4n we definegm := ( f 1Kn)∗ϕm∈ Lp∩C∞(Rd); note that we here

considerLp(Ω) as a subspace ofLp(Rd) by extending functions inLp(Ω) by 0
outsideΩ . However, sincegm = 0 outsideK2n, we find that actuallygm ∈ D(Ω).
By the first step (regularisation), there existsm≥ 4n so large that‖gm− f 1Kn‖p ≤ ε.
For suchmwe have‖ f −gm‖p ≤ 2ε, and the claim is proved.

Lemma G.4.Let f ∈ L1
loc(Ω) be such that

∫

Ω
f ϕ = 0 for everyϕ ∈ D(Ω).

Then f= 0.

Proof. We first assume thatf ∈ L1(Ω) is real and thatΩ has finite measure. By
Theorem G.3, for everyε > 0 there existsg ∈ D(Ω) such that‖ f −g‖1 ≤ ε. By
assumption, this implies

|
∫

Ω
gϕ | = |

∫

Ω
( f −g)ϕ | ≤ ε‖ϕ‖∞ ∀ϕ ∈ D(Ω).

Let K1 := {x ∈ Ω : g(x) ≥ ε} andK2 := {x ∈ Ω : g(x) ≤ −ε}. Sinceg is a test
function, the setsK1, K2 are compact. Since they are disjoint and do not touch the
boundary ofΩ ,

inf{|x−y|, |x−z|, |y−z| : x∈ K1, y∈ K2, z∈ ∂Ω} =: δ > 0.
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Let Kδ
i := {x∈ Ω : dist(x,Ki) ≤ δ/4} (i = 1, 2). ThenKδ

1 andKδ
2 are two compact

disjoint subsets ofΩ . Let

h(x) :=















1 if x∈ Kδ
1 ,

−1 if x∈ Kδ
2 ,

0 else,

choose a positive test functionϕ ∈ D(Rd) such that
∫

Rd ϕ = 1 and suppϕ ⊂
B(0,δ/8), and letψ := h∗ϕ . Thenψ ∈ D(Ω), −1 ≤ ψ ≤ 1, ψ = 1 on K1 and
ψ = −1 onK2. Let K := K1∪K2. Then

∫

K
|g|=

∫

K
gψ ≤ ε +

∫

Ω\K
|gψ | ≤ ε +

∫

Ω\K
|g|.

Hence,
∫

Ω
|g| =

∫

K
|g|+

∫

Ω\K
|g| ≤ ε +2

∫

Ω\K
|g| ≤ ε(1+2|Ω |),

which implies
∫

Ω
| f | ≤

∫

Ω
| f −g|+

∫

Ω
|g| ≤ 2ε(1+ |Ω |).

Sinceε > 0 was arbitrary, we find thatf = 0.
The general case can be obtained from the particular case (f ∈ L1 and|Ω | < ∞)

by considering first real and imaginary part off separately, and then by considering
f 1B for all closed (compact) ballsB⊂ Ω .

G.2 Sobolev spaces in one dimension

Recall the fundamental rule of partial integration: iff , g∈C1([a,b]) on some com-
pact interval[a,b], then

∫ b

a
f g′ = f (b)g(b)− f (a)g(a)−

∫ b

a
f ′g.

In particular, for everyf ∈C1([a,b]) and everyϕ ∈ D(a,b)

∫ b

a
f ϕ ′ = −

∫ b

a
f ′ϕ , (G.2)

sinceϕ(a) = ϕ(b) = 0.

Definition G.5 (Sobolev spaces).Let −∞ ≤ a < b≤ ∞ and 1≤ p≤ ∞. We define

W1,p(a,b) := {u∈ Lp(a,b) : ∃g∈ Lp(a,b)∀ϕ ∈ D(a,b) :
∫ b

a
uϕ ′ = −

∫ b

a
gϕ}.
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The spaceW1,p(a,b) is called (first)Sobolev space. If p = 2, then we also write
H1(a,b) := W1,2(a,b).

By Lemma G.4, the functiong∈ Lp(a,b) is uniquely determined if it exists. In
the following, we will writeu′ := g, in accordance with (G.2). We equipW1,p(a,b)
with the norm

‖u‖W1,p := ‖u‖p+‖u′‖p,

and if p = 2, then we define the inner product

〈u,v〉H1 :=
∫ b

a
uv+

∫ b

a
u′v′,

which actually yields the norm‖u‖H1 = (‖u‖2
2 + ‖u′‖2

2)
1
2 (which is equivalent to

‖ · ‖W1,2).

Lemma G.6.The Sobolev spaces W1,p(a,b) are Banach spaces, which are separa-
ble if p 6= ∞. The space H1(a,b) is a separable Hilbert space.

Proof. The fact that theW1,p are Banach spaces, or thatH1 is a Hilbert space, is an
exercise. Recall thatLp(a,b) is separable (Remark D.46). Hence, the product space
Lp(a,b)× Lp(a,b) is separable, and also every subspace of this product space is
separable. Now consider the linear mapping

T : W1,p(a,b) → Lp(a,b)×Lp(a,b), u 7→ (u,u′),

which is bounded and even isometric. Hence,W1,p is isometrically isomomorphic
to a subspace ofLp×Lp which is separable. HenceW1,p is separable.

Lemma G.7.Let u∈W1,p(a,b) be such that u′ = 0. Then u is constant.

Proof. Chooseψ ∈ D(a,b) such that
∫ b

a ψ = 1. Then, for everyϕ ∈ D(a,b), the
functionϕ − (

∫ b
a ϕ)ψ is the derivative of a test function since

∫ b
a (ϕ − (

∫ b
a ϕ)ψ) = 0.

Hence, by definition,

0 =
∫ b

a
u(ϕ − (

∫ b

a
ϕ)ψ),

or, with c =
∫ b

a uψ = const,

∫ b

a
(u−c)ϕ = 0 ∀ϕ ∈ D(a,b).

By Lemma G.4,u = c almost everywhere.

Lemma G.8.Let−∞ < a < b < ∞ and let t0 ∈ [a,b]. Let g∈ Lp(a,b) and define

u(t) :=
∫ t

t0
g(s) ds, t ∈ [a,b].

Then u∈W1,p(a,b) and u′ = g.
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Proof. Let ϕ ∈ D(a,b). Then, by Fubini’s theorem,

∫ b

a
uϕ ′ =

∫ b

a

∫ t

t0
g(s) dsϕ ′(t) dt

=
∫ t0

a

∫ t

t0
g(s) dsϕ ′(t) dt+

∫ b

t0

∫ t

t0
g(s) dsϕ ′(t) dt

= −
∫ t0

a

∫ s

a
ϕ ′(t) dtg(s) ds+

∫ b

t0

∫ b

s
ϕ ′(t) dtg(s) ds

= −
∫ t0

a
ϕ(s)g(s) ds−

∫ b

t0
ϕ(s)g(s) ds

= −
∫ b

a
gϕ .

Theorem G.9.Let u∈W1,p(a,b) (bounded or unbounded interval). Then there ex-
ists ũ∈C((a,b)) which is continuous up to the boundary of(a,b), which coincides
with u almost everywhere and such that for every s, t∈ (a,b)

ũ(t)− ũ(s) =

∫ t

s
u′(r) dr.

Proof. Fix t0 ∈ (a,b) and definev(t) :=
∫ t
t0

u′(s) ds(t ∈ (a,b)). Clearly, the function

v is continuous. By Lemma G.8,v∈W1,p(c,d) for every bounded interval(c,d) ⊂
(a,b), andv′ = u′. By Lemma G.7,u− v = C for some constantC which clearly
does not depend on the choice of the interval(c,d). This proves thatu coincides
almost everywhere with the continuous function ˜u = v+C. By Lemma G.8,

ũ(t)− ũ(s) = v(t)−v(s) =

∫ t

s
u′(r) dr.

Remark G.10.By Theorem G.9, we will identify every functionu∈W1,p(a,b) with
its continuous representant, and we say that every functionin W1,p(a,b) is continu-
ous.

Lemma G.11 (Extension lemma).Let u ∈ W1,p(a,b). Then there exists̃u ∈
W1,p(R) such thatũ = u on(a,b).

Proof. Assume first thata andb are finite and define

g(t) :=



























u′(t) if t ∈ [a,b],

u(a) if t ∈ [a−1,a),

−u(b) if t ∈ (b,b+1],

0 else.
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Theng∈ Lp(R). Let ũ(t) :=
∫ t
−∞ g(s) ds, so that ˜u = u on (a,b). By Lemma G.8,

ũ∈ W1,p(c,d) for every bounded interval(c,d) ∈ R. However, ˜u = 0 outside(a−
1,b+1) which implies that ˜u∈W1,p(R).

The case ofa = −∞ or b = ∞ is treated similarly.

Lemma G.12.For every1≤ p < ∞, the spaceD(R) is dense in W1,p(R).

Proof. Let u∈W1,p(R).
Regularization:Choose a positive test functionϕ ∈D(R) such that

∫

R ϕ = 1 and
putϕn(x) = nϕ(nx). Thenun := u∗ϕn ∈C∞ ∩Lp(R), u′n = u′ ∗ϕn ∈ Lp(R) and

lim
n→∞

‖u−un‖p = 0 and

lim
n→∞

‖u′−u′n‖p = 0,

so that limn→∞ ‖u− un‖W1,p = 0. This proves thatW1,p(R)∩C∞(R) is dense in
W1,p(R).

Truncation:Choose a sequence(ψn) ⊂ D(R) such that 0≤ ψn ≤ 1, ψn = 1 on
[−n,n] and‖ψ ′

n‖∞ ≤C for all n∈ N. Let ε > 0. Choosev∈C∞ ∩W1,p(R) such that
‖u− v‖W1,p ≤ ε (regularization step). For everyn∈ N, one hasvψn ∈ D(R) and it
is easy to check that for alln large enough,‖v−vψn‖W1,p ≤ ε. The claim is proved.

Corollary G.13. For every u∈W1,p(a,b) (bounded or unbounded interval,1≤ p<
∞) and everyε > 0, there exists v∈ D(R) such that‖u−v|(a,b)‖W1,p ≤ ε.

Proof. Givenu∈W1,p(a,b), we first choose an extension ˜u∈ W1,p(R) (extension
lemma G.11) and then a test functionv∈D(R) such that‖ũ−v‖W1,p(R) ≤ ε (Lemma
G.12). Then‖ũ−v‖W1,p(a,b) = ‖u−v‖W1,p(a,b) ≤ ε.

Corollary G.14 (Sobolev embedding theorem).Every function u∈ W1,p(a,b) is
continuous and bounded and there exists a constant C≥ 0 such that

‖u‖∞ ≤C‖u‖W1,p for every u∈W1,p(a,b).

Proof. If p = ∞, there is nothing to prove. We first prove the claim for the case
(a,b) = R.

So let 1≤ p < ∞ and letv∈ D(R). ThenG(v) := |v|p−1v∈C1
c(R) andG(v)′ =

p|v|p−1v′. By Hölder’s inequality,

|G(v)(x)| = p|
∫ x

−∞
|v|p−1v′| ≤ p‖v‖p−1

p ‖v′‖p,

so that by Young’s inequality (ab≤ 1
pap+ 1

p′ b
p′)

‖v‖∞ = ‖G(v)‖1/p
∞ ≤C‖v‖W1,p.

SinceD(R) is dense inW1,p(R) by Lemma G.12, the claim for(a,b) = R follows
by an approximation argument.

The case(a,b) 6= R is an exercise.
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Theorem G.15 (Product rule, partial integration). Let u, v∈W1,p(a,b) (1≤ p≤
∞). Then:

(i) (Product rule). The product uv belongs to W1,p(a,b) and

(uv)′ = u′v+uv′.

(ii) (Partial integration). If−∞ < a < b < ∞, then

∫ b

a
u′v = u(b)v(b)−u(a)v(a)−

∫ b

a
uv′.

Proof. Since every function inW1,p(a,b) is bounded, we find thatuv, u′v+ uv′ ∈
Lp(a,b). Choose sequences(un), (vn) ⊂ D(R) such that limn→∞ un|(a,b) = u and
limn→∞ vn|(a,b) = v in W1,p(a,b) (Corollary G.13). By Corollary G.14, this implies
also limn→∞ ‖un|(a,b)−u‖∞ = limn→∞ ‖vn|(a,b)−v‖∞ = 0. The classical product rule
implies

(unvn)
′ = u′nvn +unv

′
n for everyn∈ N,

and the classical rule of partial integration implies

∫ b

a
u′nvn = un(b)vn(b)−un(a)vn(a)−

∫ b

a
unv′n for everyn∈ N.

The claim follows upon lettingn tend to∞.

Definition G.16. For every 1≤ p ≤ ∞ and everyk ≥ 2 we define inductively the
Sobolev spaces

Wk,p(a,b) := {u∈W1,p(a,b) : u′ ∈Wk−1,p(a,b)},

which are Banach spaces for the norms

‖u‖Wk,p :=
k

∑
j=0

‖u( j)‖p.

We denoteHk(a,b) := Wk,2(a,b) which is a Hilbert space for the scalar product

〈u,v〉Hk :=
k

∑
j=0

u( j)v( j)
L2.

Finally, we define

Wk,p
0 (a,b) := D(a,b)

‖·‖
Wk,p

,

that is,Wk,p
0 (a,b) is the closure of the test functions inWk,p(a,b), and we put

Hk
0(a,b) := Wk,2

0 (a,b).
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Theorem G.17.Let−∞ < a < b < ∞. A function u∈ W1,p
0 (a,b) if and only if u∈

W1,p(a,b) and u(a) = u(b) = 0.

Theorem G.18 (Poincaŕe inequality). Let−∞ < a < b < ∞ and1≤ p < ∞. Then
there exists a constantλ > 0 such that

λ
∫ b

a
|u|p ≤

∫ b

a
|u′|p for every u∈W1,p

0 (a,b).

Proof. Let u∈W1,p(a,b). Then

∫ b

a
|u(x)|p dx =

∫ b

a

∣

∣

∣

∣

∫ x

a
u′(y) dy

∣

∣

∣

∣

p

dx

≤
∫ b

a

(

∫ b

a
|u′(y)| dy

)p

dx

≤
∫ b

a
(b−a)p−1

∫ b

a
|u′(y)|p dy dx

= (b−a)p
∫ b

a
|u′(y)|p dy.

Between the first and the second line, we have used the assumption thatu(a) = 0,
while in the following inequality we applied Hölder’s inequality.

Theorem G.19.Let−∞ < a < b < ∞. For every f∈ L2(a,b) there exists a unique
function u∈ H1

0(a,b)∩H2(a,b) such that

{

u−u′′ = f and

u(a) = u(b) = 0 .
(G.3)

Proof. We first note that ifu ∈ H1
0(a,b)∩H2(a,b) is a solution, then, by partial

integration (Theorem G.15), for everyv∈ H1
0(a,b)

∫ b

a
(uv+u′v′) = (u,v)H1

0
=

∫ b

a
f v. (G.4)

By the Cauchy-Schwarz inequality, the linear functionalϕ ∈ H1
0(a,b)′ defined

by ϕ(v) =
∫ b

a f v is bounded:

|ϕ(v)| ≤ ‖ f‖2‖v‖2 ≤ ‖ f‖2‖v‖H1
0
.

By the theorem of Riesz-Fréchet, there exists a uniqueu ∈ H1
0(a,b) such that

(G.4)holds true for allv∈ H1
0(a,b). This proves uniqueness of a solution of (G.3),

and if we prove that in additionu∈H2(a,b), then we prove existence, too. However,
(G.4)holds in particular for allv∈ D(a,b), i.e.

∫ b

a
u′v′ = −

∫ b

a
(u− f )v ∀v∈ D(a,b)
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andu− f ∈ L2(a,b) by assumption. Hence, by definition,u′ ∈ H1(a,b), i.e. u ∈
H2(a,b) andu′′ = u− f . Using also Theorem G.17, the claim is proved.

G.3 Sobolev spaces in several dimensions

In order to motivate Sobolev spaces in several space dimensions, we have to recall
the partial integration rule in this case (see the Divergence Theorem F.6).

Theorem G.20 (Gauß).LetΩ ⊆ Rd be open and bounded such that∂Ω is of class
C1. Then there exists a unique Borel measureσ on ∂Ω such that for every u, v∈
C1(Ω̄) and every1≤ i ≤ d

∫

Ω
u

∂v
∂xi

=

∫

∂Ω
uvni dσ −

∫

Ω

∂u
∂xi

v,

where n(x) = (ni(x))1≤i≤d denotes the outer normal vector at a point x∈ ∂Ω .

In particular, ifu∈C1(Ω̄) andϕ ∈ D(Ω), then

∫

Ω
u

∂ϕ
∂xi

= −
∫

Ω

∂u
∂xi

ϕ .

Definition G.21 (Sobolev spaces).Let Ω ⊆Rd be any open set and 1≤ p≤ ∞. We
define

W1,p(Ω) := {u∈ Lp(Ω) : ∀1≤ i ≤ d∃gi ∈ Lp(Ω)

∀ϕ ∈ D(Ω) :
∫

Ω
u

∂ϕ
∂xi

= −
∫

Ω
giϕ}.

The spaceW1,p(Ω) is called (first)Sobolev space. If p = 2, then we also write
H1(Ω) := W1,2(Ω).

Let u∈W1,p(Ω). By Lemma G.4, the functionsgi are uniquely determined. We
write ∂u

∂xi
:= gi and call ∂u

∂xi
thepartial derivativeof u with respect toxi . As in the

one-dimensional case, the following holds true.

Lemma G.22.The Sobolev spaces W1,p(Ω) are Banach spaces for the norms

‖u‖W1,p := ‖u‖p+
d

∑
i=1

‖ ∂u
∂xi

‖p (1≤ p≤ ∞),

and H1(Ω) is a Hilbert space for the inner product

〈u,v〉H1 := 〈u,v〉L2 +
d

∑
i=1

〈 ∂u
∂xi

,
∂v
∂xi

〉L2.
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Proof. Exercise.

Not all properties of Sobolev spaces on intervals carry overto Sobolev spaces on
open setsΩ ⊂ Rd. For example, it isnot true that every functionu ∈ W1,p(Ω) is
continuous (without any further restrictions onp andΩ )!

Definition G.23. For every openΩ ⊂ Rd, 1≤ p ≤ ∞ and everyk ≥ 2 we define
inductively theSobolev spaces

Wk,p(Ω) := {u∈W1,p(Ω) : ∀1≤ i ≤ d :
∂u
∂xi

∈Wk−1,p(Ω)},

which are Banach spaces for the norms

‖u‖Wk,p := ‖u‖p+
k

∑
i=0

‖ ∂u
∂xi

‖Wk−1,p.

We denoteHk(Ω) := Wk,2(Ω) which is a Hilbert space for the inner product

〈u,v〉Hk := 〈u,v〉L2 +
k

∑
i=0

〈 ∂u
∂xi

,
∂v
∂xi

〉Hk−1.

Finally, we define

Wk,p
0 (Ω) := D(Ω)

‖·‖
Wk,p

,

that is, Wk,p
0 (Ω) is the closure of the test functions inWk,p(Ω), and we put

Hk
0(Ω) := Wk,2

0 (Ω).

Theorem G.24 (Poincaŕe inequality). Let Ω ⊂ Rd be aboundeddomain, and let
1≤ p < ∞. Then there exists a constant C≥ 0 such that

∫

Ω
|u|p ≤Cp

∫

Ω
|∇u|p for every u∈W1,p

0 (Ω).

We note that the Poincaré inequality implies that

‖u‖ :=

(

∫

Ω
|∇u|p

)
1
p

defines an equivalent norm onW1,p
0 (Ω) if Ω ⊂ Rd is bounded. Clearly,

‖u‖ ≤ ‖u‖
W1,p

0
for everyu∈W1,p

0 ,

by the definition of the norm inW1,p. On the other hand,

‖u‖
W1,p

0
≤ C(‖u‖Lp +‖∇u‖Lp)

≤ C‖∇u‖Lp = C‖u‖,
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by the Poincaré inequality.

We also state the following two theorems without proof.

Theorem G.25 (Sobolev embedding theorem).Let Ω ⊂ Rd be an open set with
C1 boundary. Let1≤ p≤ ∞ and define

p∗ :=

{

dp
d−p if 1≤ p < d

∞ if d < p,

and if p= d, then p∗ ∈ [1,∞). Then, for every p≤ q≤ p∗ we have

W1,p(Ω) ⊂ Lq(Ω)

with continuous embedding, that is, there exists C= C(p,q) ≥ 0 such that

‖u‖Lq ≤C‖u‖W1,p for every u∈W1,p(Ω).

Theorem G.26 (Rellich-Kondrachov).Let Ω ⊂ Rd be an open and bounded set
with C1 boundary. Let1≤ p≤ ∞ and define p∗ as in the Sobolev embedding theo-
rem. Then, for every p≤ q < ∞ the embedding

W1,p(Ω) ⊂ Lq(Ω)

is compact, that is, every bounded sequence in W1,p(Ω) has a subsequence which
converges in Lq(Ω).

G.4 * Elliptic partial differential equations

Let Ω ⊂ Rd be an open, bounded set,f ∈ L2(Ω), and consider the elliptic partial
differential equation

{

u−∆u= f in Ω ,

u = 0 in ∂Ω ,
(G.5)

where

∆u(x) :=
d

∑
i=1

∂ 2

∂x2
i

u(x)

stands for theLaplace operator.
If u ∈ H1

0(Ω)∩H2(Ω) is a solution of (G.5), then, by definition of the Sobolev
spaces, for everyv∈ D(a,b)
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〈u,v〉H1
0

=

∫

Ω

(

uv+
d

∑
i=1

∂u
∂xi

∂v
∂xi

)

=

∫

Ω

(

uv−
d

∑
i=1

∂ 2u

∂x2
i

v
)

=

∫

Ω
(u−∆u)v

=
∫

Ω
f v.

By density of the test functions inH1
0(Ω), this equality holds actually for allv ∈

H1
0(Ω). This may justify the following definition of a weak solution.

Definition G.27. A function u ∈ H1
0(Ω) is called aweak solutionof (G.5) if for

everyv∈ H1
0(Ω)

〈u,v〉H1
0

=

∫

Ω
uv+

∫

Ω
∇u∇v =

∫

Ω
f v, (G.6)

where∇u is the usual, euclidean gradient ofu.

Theorem G.28.Let Ω ⊂ Rd be an open, bounded set. Then, for every f∈ L2(Ω)
there exists a unique weak solution u∈ H1

0(Ω) of the problem(G.5).

Proof. By the Cauchy-Schwarz inequality, the linear functionalϕ ∈H1
0(Ω)′ defined

by ϕ(v) =
∫

Ω f v is bounded:

|ϕ(v)| ≤ ‖ f‖2‖v‖2 ≤ ‖ f‖2‖v‖H1
0
.

By the theorem of Riesz-Fréchet, there exists a uniqueu∈ H1
0(Ω) such that (G.6)

holds true for allv∈ H1
0(a,b). The claim is proved.


