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The Stability Problem

Sensorium Dei
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The Stability Problem

Newton-Bentley’s correspondence

Letter 1

Newton-Bentley’s correspondence led Newton to abandon the Stoic
Cosmos of a finite distribution of matter in infinite space and to adopt
the Atomist Universe in which matter is distributed throughout infinite
space.

If the distribution of matter were finite, then the matter on the outside
of this space would by its gravity tend toward the matter on the inside, and
by consequence, fall down into the middle of the whole space, and there
compose one great spherical mass... But if the matter was evenly diffused
through an infinite space, it would never convene into one mass but some of
it into one mass and some of it into another so as to make an infinite number
of great masses scattered at great distances from one to another throughout
all of infinite space. And thus might the Sun and fixed stars be formed.
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The Stability Problem

Letter 2

Letter 2

Newton had fully agreed with Bentley that gravity meant
providence had created a universe of great precision.

The hypothesis of deriving the frame of the world by mechanical
principles from matter evenly spread through the heavens being inconsistent
with my system, I had considered it very little before your letters put me
upon it, and therefore trouble you with a line or two more about it...
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Sensorium Dei
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The Stability Problem

The problem of stability

Letter 3

Newton elaborated earlier arguments that a divine power was
essential in the design of initial conditions.

... this frame of things could not always subsist without a divine power
to conserve it.
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Hilbert’s tenth problem

Hilbert’s tenth problem

Hilbert’s tenth problem is the tenth on the list of Hilbert’s problems of
1900. Its statement is as follows:

Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined in a finite number of operations whether the
equation is solvable in rational integers.
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Hilbert’s tenth problem Definition and examples

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with
integer coefficients, such that,

m ∈ D iff ∃x1, . . . , xn ∈ N1 [ p(m,x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)
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Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with
integer coefficients, such that,
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Hilbert’s tenth problem Definition and examples

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with
integer coefficients, such that,

m ∈ D iff ∃x1, . . . , xn ∈ N1 [ p(m,x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)

x|y and x < y iff ∃u, v ∈ N1 [ (xu− y)2 + (y − x− v)2 = 0 ]
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Hilbert’s tenth problem Definition and examples

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with
integer coefficients, such that,

m ∈ D iff ∃x1, . . . , xn ∈ N1 [ p(m,x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)

x is not a power of 2 iff ∃y, z ∈ N1 [ x− y(2z + 1) = 0 ]
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Hilbert’s tenth problem Definition and examples

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with
integer coefficients, such that,

m ∈ D iff ∃x1, . . . , xn ∈ N1 [ p(m,x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)

k + 2 is prime iff . . .
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Hilbert’s tenth problem Definition and examples

Primes

∃a ∃b ∃c ∃d ∃e ∃f ∃g ∃h ∃i ∃j ∃` ∃m ∃n ∃o ∃p ∃q ∃r ∃s ∃t ∃u ∃v ∃x ∃w ∃y ∃z

[wz + h + j − q]2

+ [(gk + 2g + k + 1)(h + j) + h− z]2

+ [16(k + 1)
3
(k + 2)(n + 1)

2
+ 1− f2]2

+ [2n + p + q + z − e]2

+ [e
3
(e + 2)(a + 1)

2
+ 1− o2]2

+ [(a
2 − 1)y

2
+ 1− x2]2

+ [16r
2
y
4
(a

2 − 1) + 1− u2
]
2

+ [n + ` + v − y]2

+ [(a
2 − 1)`

2
+ 1−m2

]
2

+ [ai + k + 1− `− i]2

+ [((a + u
2
(u

2 − a))2 − 1)(n + 4dy)
2
+ 1− (x + cu)

2
]
2

+ [p + `(a− n− 1) + b(2an + 2a− n2 − 2n− 2)−m]
2

+ [q + y(a− p− 1) + s(2ap + 2a− p2 − 2p− 2)− x]2

+ [z + p`(a− p) + t(2ap− p2 − 1)− pm]
2
)

= 0
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Hilbert’s tenth problem 4 degrees are enough

4 degrees are enough ([V.M93])

4x3y + 5z = 2x2z3 + 3y2x

p1 = 4x p2 = p1x p3 = p2x p4 = p3y

q1 = 5z

r1 = 2x r2 = r1x r3 = r2z r4 = r3z r5 = r4z

s1 = 3y s2 = s1y s3 = s2x

t1 = p4 + q1 u1 = r5 + s3 t1 = u1

Theorem

To solve Hilbert’s Tenth Problem positively, it is sufficient to find a method
for deciding whether a Diophantine equation of degree 4 has a solution.
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Hilbert’s tenth problem RDP conjecture

RDP conjecture

Conjetura RDP

A função exponencial (de expressão xy) é diofantina.

Teorema (Yuri Matiyasevich, January 1970 ([V.M93]))

O conjunto dos números de Fibonacci é diofantino,
ou (alternativamente)...
m = nk se e só se as equações numeradas de I a XIII têm solução nas
demais variáveis.
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Hilbert’s tenth problem RDP conjecture

RDP conjecture

I x2 − (a2 − 1)y2 = 1

II u2 − (a2 − 1)v2 = 1

III s2 − (b2 − 1)t2 = 1

IV v = ry2

V b = 1 + 4py = a+ qu

VI s = x+ cu

VII t = k + 4(d− 1)y

VIII y = k + `− 1

IX a = z + 1

X (x− y(a− n)−m)2 = (f − 1)2(2an− n2 − 1)2

XI m + g = 2an− n2 − 1

XII w = n + h = k + `

XIII a2 − (w2 − 1)(w − 1)2z2 = 1
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Hilbert’s tenth problem MRDP theorem

MRDP theorem

Theorem (Matiyasevich, Robinson, Davis, Putnam ([Dav73, V.M93]))

A set is Diophantine if and only if it is semidecidable.
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Towards understanding undecidability in Physics

Undecidability in Physics I

15/ 58



Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Assumptions

1 Let E be a set of expressions denoting real, single valued, partially
defined functions of one variable and let Φ be the set of functions
denoted by expressions in E .

2 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition.

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(y) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(y) ≡ A(y).

16/ 58



Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Assumptions

1 Let E be a set of expressions denoting real, single valued, partially
defined functions of one variable and let Φ be the set of functions
denoted by expressions in E .

2 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition.

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(y) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(y) ≡ A(y).

16/ 58



Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Assumptions

1 Let E be a set of expressions denoting real, single valued, partially
defined functions of one variable and let Φ be the set of functions
denoted by expressions in E .

2 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition.

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(y) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(y) ≡ A(y).

16/ 58



Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Assumptions

1 Let E be a set of expressions denoting real, single valued, partially
defined functions of one variable and let Φ be the set of functions
denoted by expressions in E .

2 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition.

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(y) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(y) ≡ A(y).

16/ 58



Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Assumptions

1 Let E be a set of expressions denoting real, single valued, partially
defined functions of one variable and let Φ be the set of functions
denoted by expressions in E .

2 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition.

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(y) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(y) ≡ A(y).

16/ 58



Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Assumptions

1 Let E be a set of expressions denoting real, single valued, partially
defined functions of one variable and let Φ be the set of functions
denoted by expressions in E .

2 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition.

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(y) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(y) ≡ A(y).

16/ 58



Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Assumptions

1 Let E be a set of expressions denoting real, single valued, partially
defined functions of one variable and let Φ be the set of functions
denoted by expressions in E .

2 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition.

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(y) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(y) ≡ A(y).

16/ 58



Towards understanding undecidability in Physics Expressions

Elementary and subelementary

Conditions on Φ

1 Φ contains π and the real-valued functions sin(y) and ey;

2 Φ contains µ such that µ(y) = |y| for y 6= 0;

3 Φ contains β, a totally defined function such that no f ∈ Φ and no
interval I are such that f ′ ≡ β in I.
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Towards understanding undecidability in Physics Expressions

Undecidability in Analysis

Theorem

1 If Φ satisfies conditions 1 and 2, then the identity problem for (E ,Φ)
is undecidable;

2 If Φ satisfies conditions 1, 2 and 3, then the integration problem for
(E ,Φ) is undecidable.
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Towards understanding undecidability in Physics Expressions

Undecidability in Analysis

In[1]:= Simplify@2 Tan@xD ê H1 + Tan@xD^2LD

Out[1]= Sin@2 xD

In[2]:= Simplify@Hx − 1L Hx + 1L Hx^2 + 1L + 1D

Out[2]= x4

In[4]:= SimplifyB
1

3 H1 + xL
−

−1 + 2 x

6 I1 − x + x2M
+

2

3 I1 +
1

3
H−1 + 2 xL2M

F

Out[4]=

1

1 + x3
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Towards understanding undecidability in Physics Expressions

Some problems in Analysis

Just show that

n∑
i=0

i∑
j=0

xixj =
1

2

(
(

n∑
i=0

xi)
2 +

n∑
i=0

x2i

)
.

Just compute ∫
(x+ 1) log(x)

(x2 + 2x+ 10)3
dx
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Towards understanding undecidability in Physics Expressions

Existence

E
is the smallest class of expressions obtained by iteration of addition,
subtraction, multiplication, and composition, starting with y, ey, sin(y)
and |y|, and expressions for the rational numbers.

Φ

is the class of functions of a real variable usually denoted by the
expressions above; take β(y) = ey

2
and µ(y) = |y|.
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Towards understanding undecidability in Physics The analytic machinery

The analytic machinery

f [p](m, y1, . . . , yn) = (n+ 1)4{p(m, y1, . . . , yn)2

+

n∑
i=1

sin2(πyi) ( gi(m, y1, . . . , yn) )4}

F [p](m, y1, . . . , yn) = f [p](m, y21, . . . , y
2
n)
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Towards understanding undecidability in Physics The analytic machinery

The analytic machinery

Theorem (Richardson [Ric68])

There is a subelementary function of n+ 1 variables, F (y, y1, . . . , yn), for
which, as y varies over the natural numbers,

1 There is no algorithm for deciding whether or not there are real
numbers y1, . . . , yn such that F (y, y1, . . . , yn) = 0.

2 There are real numbers y1, . . . , yn such that F (y, y1, . . . , yn) ≤ 1 if
and only if there are real numbers y1, . . . , yn such that
F (y, y1, . . . , yn) = 0
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Towards understanding undecidability in Physics The analytic machinery

The analytic machinery

2 4 6 8

-10

-5

5

10

9x sinHxL, x sinIx3M=
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Towards understanding undecidability in Physics The analytic machinery

The analytic machinery

Theorem

Let h(w) = w sinw and g(w) = w sinw3. For every y1, y2 ∈ R and δ ∈ R+, there is w ∈ R+ so
that |h(w)− y1| < δ and g(w) = y2.

Theorem (Generalization, induction)

For every y1, y2, . . . , yn ∈ R and every δ ∈ R+, there is a number w ∈ R so that

|h(w)− y1| < δ
|h(g(w))− y2| < δ

. . .
|h(g(g(· · · g(w) · · · )− yn−1| < δ

g(g(g(· · · g(w) · · · ) = yn
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Theorem (Generalization, induction)
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Towards understanding undecidability in Physics The analytic machinery

The analytic machinery

h(x) = x sin(x)

g(x) = x sin(x3)

x1 = h(x)

x2 = h ◦ g(x)

x3 = h ◦ g ◦ g(x)

...

xn−1 = h ◦
n− 2︷ ︸︸ ︷

g ◦ . . . ◦ g(x)

xn =

n︷ ︸︸ ︷
g ◦ . . . ◦ g(x)
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Towards understanding undecidability in Physics The analytic machinery

The analytic machinery

G[p](m, y) = F [p](m, y1(w), . . . , yn(w))
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Towards understanding undecidability in Physics The analytic machinery

The analytic machinery

Theorem

∃y1, . . . , yn ∈ N1 p(m, y1, . . . , yn) = 0

iff

∃y ∈ R G[p](m, y) ≤ 1

iff

∀z > 0 ∃y ∈ R G[p](m, y) ≤ z

Theorem (Richardson, 1968)

There is a elementary function of two variables, G(m, y), such that, as m
varies over N1, there is no algorithm for deciding whether there is a real
number y such that G(m, y) ≤ 1.
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Towards understanding undecidability in Physics Richardson’s results

Richardson’s results (1)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the
real-valued functions of expressions |y| and sin(y), and is closed under
addition, subtraction, multiplication, and composition, then the identity
problem for (E ,Φ) is undecidable.

Proof:

Take B(m, y) = |G(m, y)− 1| − (G(m, y)− 1). We have that
∃y G(m, y) < 1 if and only if B(m, y) ≡/ 0.
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Towards understanding undecidability in Physics Richardson’s results

Richardson’s results (2)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the
real-valued functions of expressions |y|, ey and sin(y), and it is closed
under addition, subtraction, multiplication, and composition, then the
integration problem for (E ,Φ) is undecidable.

Proof:

If such integration problem were solvable, we would be able to decide, for
each m ∈ N1, whether there were a function f ∈ Φ so that

f ′(y) = ey
2 |1− (1

.
− (2

.
− 2G(m, y)))|
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Reflection in Physics
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Reflection in Physics

Reflection in Physics

Theorem (Subelementary motion)

There is no general algorithmic procedure to determine whether an
arbitrary motion in the 〈x, y〉-plane, r(t) = 〈x(t), y(t)〉, will cross the
y-axis.

Proof: The reading of rewriting

Take xm(t) = G(m, t)− 1. Given an arbitrary number m ∈ N1, there is no
general decision procedure to check whether one has xm(t) < 0 for some
t. Take rm(t) = 〈xm(t), 12gt

2〉.
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Reflection in Physics

Motion in the plane

will the particle ever

cross the y-axis?

x

y
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Undecidability in Physics

Undecidability in Physics II
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Undecidability in Physics The integration problem

Hamiltonians

y

x

P

O

q

α

L =
1

2
m(q̇2 + q2α̇2)− U

H = q̇
∂L
∂q̇

+ α̇
∂L
∂α̇
− L =

1

2
m(q̇2 + q2α̇2)

{
p = ∂L

∂q̇
= mq̇ so that q̇ = p

m

pα = ∂L
∂α̇

= mq2α̇ so that α̇ = pα
mq2

H =
p2

2m
+

p2α
2mq2
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Undecidability in Physics The integration problem

Undecidability in Physics

A. J. Lichtenberg and M. A. Liberman, Regular and Stochastic Motion

Are there general methods to test for the integrability of a given
Hamiltonian? The answer, for the moment, is no. We can turn the question
around, however, and ask if methods can be found to construct potentials
that give rise to integrable Hamiltonians. The answer is that a method exists,
at least for restricted class of problems, but the method becomes rapidly very
tedious as the forms allowed for the integrals of the motion are expanded.
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Undecidability in Physics The integration problem

Hamiltonians

Definition (Poisson brackets)

[f, g] =

N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
If the Poisson bracket of f and g vanishes ([f, g] = 0), then f and g are
said to be in involution.

Theorem

A Hamiltonian system is completely integrable if and only if the constants
of motion are in mutual involution.
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Undecidability in Physics The integration problem

Hamiltonians

Completely integrable systems for the case H(q, p, t) = H(q, p), Francisco
Dória and Newton da Costa in [dD91]

If L is a putative constant of motion, then [H,L] = 0. E.g., if Hk =
B(k,q)
2m

p2 and L = qpα,
then we will have the trouble

∂Hk

∂q

∂L

∂p
−
∂Hk

∂p

∂L

∂q
= −

p

m
B(k, q)pα = 0
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Off infinite

Off to Infinite
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Off infinite Singularidade

Singularidade

Definition (Singularidade)

Uma singularidade é um valor do tempo t = t? onde deixa de existir
solução da equação f́ısica que determina a trajetória de um ponto material.

Example (Exemplo e conjetura)

E.g., a colisão é uma singularidade. Mas serão colisões todas as
singularidades? Este problema foi levantado na viragem do século XIX
para o século XX por Painlevé e von Zeipel. Henri Poincaré conjeturou que
havia singularidades sem colisões (Conjetura de Painlevé Poincaré).
The way to the solution was provided by Sundman, Wintner, Saari,
Mather and McGehee, Anosov, Xia, Gerver.
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Uma singularidade é um valor do tempo t = t? onde deixa de existir
solução da equação f́ısica que determina a trajetória de um ponto material.
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Off infinite Singularidade

Solução 3-D, Zhihong Xia [Xia92]

m3

m2

m1
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Off infinite Xia

Solução 3-D, Zhihong Xia [Xia92]

m5

m3

m2

m1

m4

42/ 58



Off infinite Gerver

Solução 2-D, Joseph Gerver [Ger91]

N -gono

asteróide

binário de estrelas
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Off infinite Gerver

Topologia TIPO I

binário

B antes

C antes

C depoisB depois

Tipo I
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Off infinite Gerver

Topologia TIPO II

Tipo II
binário
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Off infinite Topologias

Topologias

Teorema (Topologias incontáveis)

N pontos materiais num plano, cujas massas, posições e velocidades iniciais se
encontram num hipercubo de números reais, podem descrever um número não contável
de trajetórias distintas em 1 segundo.

Teorema (Limitações das máquinas de Turing)

Um simulador de máquinas de Turing pode apenas imprimir uma trajetória finita de
entre um certo número finito de trajetórias finitas, num intervalo de tempo finito, tão
grande quanto se queira.
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Off infinite Smith

Warren Smith e o “computador” Gerver-Smith

M:

;

máquina arbitrária que imprime
a sequência dos seus estados, q0 ou q1,
como sequência binária

M1:

trajetória descrita pela sequência de bits

;
M2

posição e a velocidade iniciais dos N corpos

M3

sequência binária em 1 s
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Off infinite Smith

The halting revisited

Description of M3

Given the initial real number data in such a form that M3 can access
more bits on demand, by some integration scheme, M3 simulates the
motion of the n-body system to sufficient accuracy to be confident it
knows the topology of the trajectories the bodies take in 1s.

Teorema (A decisão da paragem em 1 segundo, Smith [Smi06])

A máquina global, que resulta do processamento paralelo das máquinas
M1, M2 e M3, designada por M =M1||M2||M3, para se e só se os
2×N + 1 corpos não atingem a singularidade em 1 segundo.

Theorem (Solving the halting problem in 1s)

M3 halts if and only if the N bodies do not reach the singularity in 1s.
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Off infinite Smith

Revising the Physics: Pataphysics

Negative gravity

dpi
dt

= −
∑
j 6=i

Gmimj

rij − η(m
1/3
i +m

1/3
j )

r3ij

rij
rij

SRTG

dpi
dt

= −
∑
j 6=i

Gmim
′
j

r′j − ri

|r′j − ri|3

m′j =
mj√
1− v2j

c2

r′j given by the Lorentz transformation
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Church-Turing Thesis II

Church-Turing Thesis II
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Church-Turing Thesis II Kreisel

Perspetiva de Kreisel [Kre74, Kre87]

Fenómenos: Teorias F́ısicas:

modelo

realidade f́ısica limite

separação

– computador comum

– computador ótico

– comp. reação-difusão

– ...

– mecânica newtoniana

– hidrodinâmica

– mecânica quântica

– ...
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Church-Turing Thesis II Kreisel

The Church-Turing Thesis

Postulate

Church-Turing thesis states that the set of things commonly understood to
be computation is identical with the set of tasks that can be carried out by
a Turing machine.
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Church-Turing Thesis II Kreisel

Kreisel’s perspective

Postulate (As read by Kreisel 1987; statement 1)

Any physical system that purports to be a computer is not capable of any
computational task that a Turing machine in incapable of.

Postulate (As read by Kreisel 1987; statement 2)

A theory is mechanistic if every sequence of natural numbers or every real
number which is well defined (observable) according to theory is recursive
or more generally, recursive in the data.
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number which is well defined (observable) according to theory is recursive
or more generally, recursive in the data.
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CT thesis

Postulate (The standard CT thesis)

Every function computable by an abstract human being following a routine
procedure is Turing machine computable.
Every function computable by a finite mechanical procedure is computable by a
Turing machine.

Postulate (The Physical CT thesis)

Every function computable by a finite physical system is Turing machine
computable.

Postulate (The simulation thesis)

Every function simulating a finite physical system is Turing machine computable.
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CT thesis

Postulate (The standard CT thesis)
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Church-Turing thesis

Abstract of Smith’s paper on the n-body system, [Smi06]

Church’s thesis is at the foundation of computer science. We point out
that any particular set of physical laws, Church’s thesis need not merely be
postulated, in fact it may be decidable. Trying to do so is valuable. In
Newton’s laws of physics with point masses, we outline a proof that Church’s
thesis is false; physics is unsimulable. But with certain more realistic laws of
motion, incorporating some relativistic effects, the [...] Church’s thesis is
true.
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Conclusão: Programa filosófico

F́ısica simulável

Se a construção de Warren Smith tivesse sido apresentada no prinćıpio do
século XX, teriam os f́ısicos reformulado a f́ısica newtoniana de modo a
tornar a f́ısica simulável e reestabeler a tese de Church-Turing?

CT como refutação

Poderemos usar o argumento computacional (CT ) como refutação de uma
teoria cient́ıfica? Caso contrário, qual é o significado de uma f́ısica não
simulável?
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