Matrix Decomposition MFS Algorithms

Andreas Karageorghis⁽¹⁾, Yiorgos-S. Smyrlis⁽¹⁾ and Graeme Fairweather⁽²⁾

Abstract: The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. We exploit the symmetries of the matrices appearing when this method is applied to certain three-dimensional elliptic problems and develop an efficient algorithm for their solution.

1 MFS formulation for potential problems

We consider the boundary value problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial\Omega, \end{cases}$$
 (1.1)

where Δ denotes the Laplace operator and f is a given function. The region $\Omega \subseteq \mathbb{R}^3$ is axisymmetric, which means that it is formed by rotating a region $\Omega' \in \mathbb{R}^2$ about the z-axis. The boundaries of Ω and Ω' are denoted by $\partial\Omega$ and $\partial\Omega'$, respectively. The solution u is approximated by

$$u_{MN}(c,Q;P) = \sum_{m=1}^{M} \sum_{n=1}^{N} c_{m,n} k(P,Q_{m,n}), \quad P \in \overline{\Omega},$$
(1.2)

where $c=(c_{11},c_{12},\ldots,c_{1N},\ldots,c_{M1},\ldots,c_{MN})^T$ and Q is a 3MN-vector containing the coordinates of the singularities $Q_{m,n}, m=1,\ldots,M, n=1,\ldots,N$, which lie outside $\overline{\Omega}$. The function $k_1(P,Q)$ is a fundamental solution of Laplace's equation in \mathbb{R}^3 given by

$$k_1(P,Q) = \frac{1}{4\pi |P-Q|},$$
 (1.3)

¹Department of Mathematics and Statistics, University of Cyprus/Πανεπιστημίο Κηπροή, P.O.Box 20537, 1678 Nicosia/ Λετκωσία, Cyprus/ Κήπρος (andreask@ucy.ac.cy, smyrlis@ucy.ac.cy).

²Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado 80401, USA.

where |P-Q| is the distance between the points P and Q. The singularities $Q_{m,n}$ are fixed on the boundary $\partial \tilde{\Omega}$ of a solid $\tilde{\Omega}$ surrounding Ω . The solid $\tilde{\Omega}$ is generated by the rotation of the planar domain $\tilde{\Omega}'$ which is similar to Ω' . A set of MN collocation points $\{P_{i,j}\}_{i=1,j=1}^{M,N}$ is chosen on $\partial \Omega$ in the following way: We first choose N points on the boundary $\partial \Omega'$ of Ω' . These can be described by their polar coordinates $(r_{P_j}, z_{P_j}), \ j=1,\cdots,N,$ where r_{P_j} denotes the vertical distance of the point P_j from the z-axis and z_{P_j} denotes the z- coordinate of the point P_j . The points on $\partial \Omega$ are taken to be $x_{P_{i,j}} = r_{P_j} \cos \varphi_i, \ y_{P_{i,j}} = r_{P_j} \sin \varphi_i, \ z_{P_{i,j}} = z_{P_j},$ where $\varphi_i = \frac{2(i-1)\pi}{M}, \ i=1,\ldots,M$. Similarly, we choose a set of MN singularities $\{Q_{m,n}\}_{i=m,n=1}^{M,N}$ on $\partial \tilde{\Omega}$ by taking $Q_{m,n} = (x_{Q_{m,n}}, y_{Q_{m,n}}, z_{Q_{m,n}}),$ and $x_{Q_{i,j}} = r_{Q_j} \cos \varphi_i, \ y_{Q_{i,j}} = r_{Q_j} \sin \varphi_i, \ z_{Q_{i,j}} = z_{Q_j},$ where the N points Q_j are chosen on the boundary $\partial \tilde{\Omega}'$ of $\tilde{\Omega}'$.

The coefficients c are determined so that the boundary condition is satisfied at the boundary points:

$$u_N(c,Q;P_{i,j}) = f(P_{i,j}), i = 1,...,M, j = 1,...,N,$$
 (1.4)

which yields an $MN \times MN$ linear system of the form

$$G^0c = f, (1.5)$$

for the coefficients c, where the elements of the matrix G^0 are given by

$$G_{(i-1)N+j,(m-1)N+n}^{0} = \frac{1}{4\pi |P_{i,j} - Q_{m,n}|}, \quad i, m = 1, \dots, M, \quad j, n = 1, \dots, N.$$
 (1.6)

The global matrix G^0 has the block circulant structure

$$G^{0} = \begin{pmatrix} A_{1} & A_{2} & \cdots & A_{M} \\ A_{M} & A_{1} & \cdots & A_{M-1} \\ \vdots & \vdots & & \vdots \\ A_{2} & A_{3} & \cdots & A_{1} \end{pmatrix}, \tag{1.7}$$

where the matrices A_{ℓ} , $\ell = 1, ..., M$, are $N \times N$ matrices defined by

$$(A_{\ell})_{j,n} = \frac{1}{4\pi |P_{1,j} - Q_{\ell,n}|}, \quad \ell = 1, \dots, M \quad j, n = 1, \dots, N..$$
 (1.8)

The system (1.5) can therefore be written as

$$G^{0}c = \left(I_{M} \otimes A_{1} + P \otimes A_{2} + P^{2} \otimes A_{3} + \dots + P^{M-1} \otimes A_{M}\right)c = f, \tag{1.9}$$

where the matrix P is the $M \times M$ permutation matrix $P = circ(0, 1, 0, \dots, 0)$ and \otimes denotes the matrix tensor product.

1.1 Matrix decomposition algorithm

If $C = \operatorname{circ}(c_1, \ldots, c_M)$, then

$$C = U^*DU$$

where $D = \operatorname{diag}(d_1, \ldots, d_M)$, and

$$d_j = \sum_{k=1}^{M} c_k \omega^{(k-1)(j-1)}$$
,

where $\omega = e^{2\pi i/M}$ and U is the conjugate transpose of the Fourier matrix. In particular, the permutation matrix $P = \text{circ}(0,1,0,\ldots,0)$ is diagonalized as $P = U^*DU$ where $D = \text{diag}(d_1,\ldots,d_M)$, $d_j = \omega^{j-1}$.

Premultiplication of system (1.9) by $U \otimes I_N$ yields

$$(U \otimes I_N) \left(\sum_{k=1}^M P^{k-1} \otimes A_k \right) (U^* \otimes I_N) (U \otimes I_N) c = (U \otimes I_N) f, \qquad (1.10)$$

and

$$(I_M \otimes A_1 + D \otimes A_2 + D^2 \otimes A_3 + \dots + D^{M-1} \otimes A_M) \tilde{c} = \tilde{f}, \qquad (1.11)$$

where $\tilde{c} = (U \otimes I_N) c$, $\tilde{f} = (U \otimes I_N) f$. The solution of system (1.11) can thus be decomposed into the solution of the M independent $N \times N$ systems

$$B_m \tilde{c}_m = (A_1 + d_m A_2 + d_m^2 A_3 + \dots + d_m^{M-1} A_M) \tilde{c}_m = \tilde{f}_m \quad m = 1, 2, \dots M.$$
 (1.12)

The (r,s) entry of the matrix B_m is

$$(B_m)_{rs} = (A_1)_{rs} + \omega^{m-1} (A_2)_{rs} + \dots + \omega^{(m-1)(M-1)} (A_M)_{rs}$$

where r, s = 1, ..., N and m = 1, ..., M. Thus we have

$$((B_1)_{rs},...,(B_M)_{rs})^T = M^{1/2}U^*((A_1)_{rs},...,(A_M)_{rs})^T.$$

This observation enables us to reduce the cost of constructing the matrices B_1, \ldots, B_M from $O(M^2N^2)$ operations to $O(N^2M\log M)$ operations, using Fast Fourier Transforms (FFTs). Further details can be found in [1].

2 MFS formulation for biharmonic problems

We also consider the boundary value problem

$$\begin{cases} \Delta^2 u = 0 & \text{in } \Omega, \\ u = f, \frac{\partial u}{\partial n} = g & \text{on } \partial\Omega, \end{cases}$$
 (2.1)

where $\partial/\partial n$ is the outward normal derivative at P, and f and g are given functions. The region Ω is axisymmetric, and as before it is formed by rotating a region $\Omega' \in \mathbb{R}^2$ about the z-axis. We now approximate the solution u of (2.1) by

$$u_{MN}(c,d,Q;P) = \sum_{m=1}^{M} \sum_{n=1}^{N} \left[c_{m,n} k_1(P,Q_{m,n}) + d_{m,n} k_2(P,Q_{m,n}) \right], \quad P \in \overline{\Omega},$$
 (2.2)

where $c = (c_{11}, c_{12}, \ldots, c_{1N}, \ldots, c_{M1}, \ldots, c_{MN})^T$, $d = (d_{11}, d_{12}, \ldots, d_{1N}, \ldots, d_{M1}, \ldots, d_{MN})^T$, and Q is a 3MN-vector containing the coordinates of the singularities $\{Q_{m,n}\}_{m=1,n=1}^{M,N}$, which lie outside $\overline{\Omega}$. The function $k_1(P,Q)$ is the fundamental solution of Laplace's equation in \mathbb{R}^3 and

$$k_2(P,Q) = \frac{1}{8\pi}|P-Q|,$$
 (2.3)

is the fundamental solution of the biharmonic equation in \mathbb{R}^3 . With the singularities and boundary points defined as in the potential problem, the coefficient vectors c and d are determined so that the boundary conditions are satisfied at the collocation points $\{P_{i,j}\}_{i=1,j=1}^{M,N}$:

$$u_N(c,d,Q;P_{i,j}) = f(P_{i,j}), \quad \frac{\partial u_N}{\partial n_P}(c,d,Q;P_{i,j}) = g(P_{i,j}), \quad i = 1,\dots,M, \quad j = 1,\dots,N.$$
(2.4)

These equations yield a $2MN \times 2MN$ linear system of the form

$$\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right) \left(\begin{array}{c} c \\ \hline d \end{array}\right) = \left(\begin{array}{c} f \\ \hline g \end{array}\right),\tag{2.5}$$

where the $MN \times MN$ matrices A, B, C, D have a block circulant structure. Specifically,

$$A = \begin{pmatrix} A_1 & A_2 & \cdots & A_M \\ A_M & A_1 & \cdots & A_{M-1} \\ \vdots & \vdots & & \vdots \\ A_2 & A_3 & \cdots & A_1 \end{pmatrix}, \tag{2.6}$$

where the $N \times N$ submatrices $A_{\ell} = ((A_{\ell})_{j,n}), \ \ell = 1, \dots, M$, are defined by

$$(A_{\ell})_{j,n} = \frac{1}{4\pi} \frac{1}{|P_{1,j} - Q_{\ell,n}|}, \quad j,n = 1,\dots,N,$$
 (2.7)

and

$$B = \operatorname{circ}(B_1 B_2 \cdots B_M), \quad C = \operatorname{circ}(C_1 C_2 \cdots C_M), \quad D = \operatorname{circ}(D_1 D_2 \cdots D_M),$$

where, for $\ell = 1, \dots, M$, $j, n = 1, \dots, N$,

$$(B_{\ell})_{j,n} = \frac{1}{8\pi} |P_{1,j} - Q_{\ell,n}|, \quad (C_{\ell})_{j,n} = \frac{1}{4\pi} \frac{\partial}{\partial n} \left[\frac{1}{|P_{1,j} - Q_{\ell,n}|} \right], \quad (D_{\ell})_{j,n} = \frac{1}{8\pi} \left[\frac{\partial}{\partial n} |P_{1,j} - Q_{\ell,n}| \right].$$

2.1 Matrix decomposition algorithm

With $P^0 = I_M$,

$$\left(\begin{array}{c|c}A & B\\\hline C & D\end{array}\right) = \sum_{k=1}^{M} \left(\begin{array}{c|c}P^{k-1} \otimes A_k & P^{k-1} \otimes B_k\\\hline P^{k-1} \otimes C_k & P^{k-1} \otimes D_k\end{array}\right)$$

$$= \sum_{k=1}^{M} \left[\left(\begin{array}{c|c} P^{k-1} & 0 \\ \hline 0 & 0 \end{array} \right) \otimes A_k + \left(\begin{array}{c|c} 0 & P^{k-1} \\ \hline 0 & 0 \end{array} \right) \otimes B_k + \left(\begin{array}{c|c} 0 & 0 \\ \hline P^{k-1} & 0 \end{array} \right) \otimes C_k + \left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & P^{k-1} \end{array} \right) \otimes D_k \right]. \tag{2.1}$$

Clearly,

$$P^{k-1}U^* = U^*E^{k-1}, \quad k = 1, \dots, M,$$
 (2.2)

where $E = \text{diag}(e_1 \ e_2 \ \cdots \ e_M)$ with $e_j = \omega^{j-1}$. Premultiplying system (2.5) by

$$\left(\begin{array}{c|c} U & 0 \\ \hline 0 & U \end{array}\right) \otimes I_N$$

and introducing the $MN \times MN$ identity matrix yields

$$\left[\left(\begin{array}{c|c} U & 0 \\ \hline 0 & U \end{array} \right) \otimes I_N \right] \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) \left[\left(\begin{array}{c|c} U^* & 0 \\ \hline 0 & U^* \end{array} \right) \otimes I_N \right] \left[\left(\begin{array}{c|c} U & 0 \\ \hline 0 & U \end{array} \right) \otimes I_N \right] \left(\begin{array}{c|c} c \\ \hline d \end{array} \right)$$

$$= \left[\left(\begin{array}{c|c} U & 0 \\ \hline 0 & U \end{array} \right) \otimes I_N \right] \left(\begin{array}{c} f \\ \hline g \end{array} \right). \tag{2.3}$$

On using (2.1), (2.2) and the properties of \otimes , (2.3) becomes

$$\sum_{k=1}^{M} \left[\left(\frac{E^{k-1} \mid 0}{0 \mid 0} \right) \otimes A_{k} + \left(\frac{0 \mid E^{k-1}}{0 \mid 0} \right) \otimes B_{k} \right. \\
\left. + \left(\frac{0 \mid 0}{E^{k-1} \mid 0} \right) \otimes C_{k} + \left(\frac{0 \mid 0}{0 \mid E^{k-1}} \right) \otimes D_{k} \right] \left(\frac{\tilde{c}}{\tilde{d}} \right) = \left(\frac{\tilde{f}}{\tilde{g}} \right), \tag{2.4}$$

where

$$\left(\begin{array}{c|c} \tilde{c} \\ \hline \tilde{d} \end{array}\right) = \left[\left(\begin{array}{c|c} U & 0 \\ \hline 0 & U \end{array}\right) \otimes I_N\right] \left(\begin{array}{c|c} c \\ \hline d \end{array}\right), \quad \left(\begin{array}{c|c} \tilde{f} \\ \overline{\tilde{g}} \end{array}\right) = \left[\left(\begin{array}{c|c} U & 0 \\ \hline 0 & U \end{array}\right) \otimes I_N\right] \left(\begin{array}{c|c} f \\ \hline g \end{array}\right).$$

System (2.4) can then be written as

$$\sum_{k=1}^{M} \left(\frac{E^{k-1} \otimes A_k \mid E^{k-1} \otimes B_k}{E^{k-1} \otimes C_k \mid E^{k-1} \otimes D_k} \right) \left(\frac{\tilde{c}}{\tilde{d}} \right) = \left(\frac{\tilde{f}}{\tilde{g}} \right),$$

or

$$\left(\frac{\sum_{k=1}^{M} E^{k-1} \otimes A_k \mid \sum_{k=1}^{M} E^{k-1} \otimes B_k}{\sum_{k=1}^{M} E^{k-1} \otimes C_k \mid \sum_{k=1}^{M} E^{k-1} \otimes D_k}\right) \left(\frac{\tilde{c}}{\tilde{d}}\right) = \left(\frac{\tilde{f}}{\tilde{g}}\right).$$

This system reduces to the M independent $2N \times 2N$ linear systems

$$\left(\begin{array}{c|c}
\tilde{A}_m & \tilde{B}_m \\
\tilde{C}_m & \tilde{D}_m
\end{array}\right) \left(\begin{array}{c|c}
\tilde{c}_m \\
\tilde{d}_m
\end{array}\right) = \left(\begin{array}{c|c}
\tilde{f}_m \\
\tilde{g}_m
\end{array}\right), \quad m = 1, 2, \cdots, M,$$
(2.5)

where

$$\tilde{A}_m = \sum_{i=1}^{M} e_m^{i-1} A_i, \tag{2.6}$$

with \tilde{B}_m , \tilde{C}_m , and \tilde{D}_m defined similarly, and

$$\tilde{c}_m = [\tilde{c}_{m1}, \tilde{c}_{m2}, \cdots, \tilde{c}_{mN}]^T,$$

with \tilde{d}_m , \tilde{f}_m and \tilde{g}_m defined similarly. Further details can be found in [2].

References

- [1] Y. S. SMYRLIS AND A. KARAGEORGHIS, A matrix decomposition MFS algorithm for axisymmetric potential problems, Technical Report TR/10/2002, Department of Mathematics and Statistics, University of Cyprus, 2002.
- [2] G. FAIRWEATHER, A. KARAGEORGHIS AND Y. S. SMYRLIS, A matrix decomposition MFS algorithm for axisymmetric biharmonic problems, Technical Report TR/03/2003, Department of Mathematics and Statistics, University of Cyprus, 2003.