

Abstract
This talk will discuss how the Meshless Local Petrov Galerkin Method [Atluri and Zhu (1998), Atluri and Shen (2002 a,b)] is the basis of a variety of meshless methods, based on the use of a variety of trial functions and a variety of test functions, for both domain-solution approaches [Atluri and Shen (2003)], as well as boundary solution approaches using integral equations [Atluri, Han, and Shen (2003)].

Some new and recent results for 3-dimensional solid mechanics problems involving strong singularities [Li, Shen, Han and Atluri (2003)], 3-dimensional non-planar fatigue crack-growth in complexly loaded solids and structures [Han and Atluri (2003 a, b)], and in strain-gradient theories of material inelasticity [Tang, Shen and Atluri (2003)], will be presented and critically examined.

The novel use of the MLPG method in generating O(N) algorithms for molecular dynamics, and for multiple-length&-time scale simulations, is illustrated.

References


1 University of California at Irvine, USA (satluri@uci.edu).

• Han ZD, and Atluri SN (2003b): Truly Meshless Local Patrov-Galerkin (MLPG) solutions of traction & displacement BIEs. CMES: Computer Modeling in Engineering & Sciences, (accepted).
