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Abstract

This paper analyzes the common factor structure of US, German, and Japanese Government bond re-
turns. Unlike previous studies, we formally take into account the presence of country-specific factors when
estimating common factors. We show that the classical approach of running a principal component anal-
ysis on a multi-country dataset of bond returns captures both local and common influences and therefore
tends to pick too many factors. We conclude that US bond returns share only one common factor with
German and Japanese bond returns. This single common factor is associated most notably with changes
in the level of domestic term structures. We show that accounting for country-specific factors improves the
performance of domestic and international hedging strategies.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Traditional principal component analysis (hereafter PCA) provides much of the intuition for
the dynamics of bond yields. Empirical analysis generally determines that three principal com-
ponents are needed to almost fully explain the dynamics of the term structure of interest rates
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(see Litterman and Scheinkman, 1991; Lardic et al., 2003). The interpretation of these principal
components in terms of level, slope, and curvature describes how the yield curve shifts or
changes shape in response to a shock on a yield-curve factor. For the postwar period, the first
three principal components already capture over 96% of the total variation in US bond yield
changes and in the case of bond yield levels, the proportion exceeds 99% (see Piazzesi,
2003, Table 1). Statistical factors extracted from PCA are useful in thinking about the driving
forces of the yield curve in finance and macroeconomics. Indeed, latent factors implied by es-
timated affine term structure models typically behave like the first principal components (see
Bams and Schotman, 2003; Dai and Singleton, 2003) and have important macroeconomic
and monetary policy underpinnings (see Rudebusch and Wu, 2004). Moreover, the three-factor
decomposition of the term structure is rather stable through time (see Bliss, 1997; Chapman and
Pearson, 2001; Pérignon and Villa, 2006).

The aim of this paper is to analyze the common factor structure of US, German, and
Japanese Government bond returns using PCA and alternative techniques. Understanding the
commonalities between different country’s term structures is useful for assessing the potential
for international diversification and managing the risk of international bond portfolios. To per-
form this task, we have to model a multi-country covariance matrix that contains (1) the var-
iances of bond returns in each country, (2) the covariances between domestic bond returns
with different maturities, and (3) the covariances between bond returns across countries.
Two different approaches have been proposed in the literature to study the factors affecting in-
ternational bond yields or returns. One approach is to estimate the factor structure in each coun-
try and then compare the domestic structures based on correlation measures. The other involves
jointly studying several domestic term structures and directly extracting the common factors.

In order to study separately the factor structures of bond returns in several countries, PCA
can be run on each domestic term structure. By applying this technique to the US, German, and

Table 1

Descriptive statistics

Mean Std-dev Skewness Kurtosis Rho(l) ADF

US 1e3 years 6.43 1.70 �0.12 3.71 �0.04 �8.21*

US 3e5 years 7.26 3.63 �0.18 3.52 �0.09 �8.63*

US 5e7 years 7.65 4.87 �0.30 3.92 �0.12 �8.95*

US 7e10 years 7.82 6.25 �0.37 4.21 �0.15 �9.30*

US >10 years 8.50 8.85 �0.32 4.20 �0.15 �9.75*

Germany 1e3 years 6.12 2.84 0.06 5.98 �0.34 �10.41*

Germany 3e5 years 6.95 3.56 0.12 4.11 �0.18 �8.97*

Germany 5e7 years 7.46 4.29 �0.17 6.15 �0.15 �9.27*

Germany 7e10 years 7.34 5.45 �0.71 5.81 �0.05 �9.57*

Germany >10 years 8.28 8.32 �0.43 5.12 �0.07 �9.82*

Japan 1e3 years 7.50 3.07 0.74 9.24 �0.36 �9.91*

Japan 3e5 years 9.80 4.34 0.62 7.02 �0.17 �8.33*

Japan 5e7 years 10.07 5.05 0.25 5.88 �0.13 �8.19*

Japan 7e10 years 10.37 6.19 0.16 5.75 �0.06 �8.28*

Japan >10 years 10.96 7.79 �0.11 5.50 �0.08 �7.84*

Note: Descriptive statistics are computed from the 510 weekly observations, from January 8, 1990 to October 11, 1999,

of Government bond returns, with five maturities. Std-dev stands for standard deviation, Rho(l) for autocorrelation, ADF

for Augmented DickeyeFuller test. Mean returns and standard deviations have been annualized. *Indicates that the unit

root hypothesis can be rejected at the 1% level, and then that the series is stationary.
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Japanese term structures, Driessen et al. (2003) find that the factor loadings in different coun-
tries are very similar but that the explained variance per factor is quite different across coun-
tries. Alternatively, common PCA can be used to extract the main factors in each country.
This parsimonious approach developed by Flury (1988) is consistent with the above stylized
fact since it assumes that the eigenvectors in several groups are the same, whereas the eigen-
values vary among groups. Furthermore, combining information from several samples leads in
general to more stable estimates. However, since common PCA neglects the covariations be-
tween bond returns across countries, it fails to estimate common factors.

In order to study jointly the term structures of interest rates in several countries, PCA can be
run on a pooled dataset of several domestic term structures. Following this approach, Rodrigues
(1997) concludes that the three-factor structure does not adequately describe the common
movements among several domestic term structures and that more factors are required. In
the same vein, Driessen et al. (2003) conclude that a five-factor model explains almost perfectly
the dynamics of Government bonds returns from US, Germany, and Japan. Using 10 years of
weekly data of LIBOR/swap rates for US dollar and Japanese yen, Leippold and Wu (2003)
need five principal components to capture almost all variations in the system. Therefore, there
is an inconsistency between the large number of factors suggested by statistical analyses and the
single common factor used in affine term structure models in an international setting (see
Backus et al., 2001; Han and Hammond, 2003; Ahn, 2004). Indeed, the basic assumption in
these models is that each domestic term structure is driven by one specific factor in each coun-
try and one factor that is common to both countries.1

Although PCA has been broadly used to estimate the key factors driving a single domestic term
structure, one may critique its application in a multi-country setting.2 Indeed, the goal of PCA is to
extract the factors that maximize the explained variance, but not necessarily factors that are com-
mon across countries. For this reason, running a PCA on a dataset pooling different domestic term
structures does not prevent selecting a local factor e whose influence is limited, by definition, to
a single country e with a huge variance as a common factor. Consequently, one never knows
whether a given principal component is associated with a common or a local factor.3 In the
case of two countries, the inter-battery factor analysis (hereafter IBFA) offers an alternative to
PCA. This multivariate statistical technique developed by Tucker (1958) has been widely used
in psychology but only sparingly in finance e the only two applications are Cho (1984) and
Cho et al. (1986) that both analyze stock returns. Unlike PCA, IBFA intends to capture all comove-
ments across domestic term structures by first estimating common factors. Once the influence of
the common factors has been discarded, the two groups of securities become independent, i.e., the
residual covariance matrix is block-diagonal. Each country-specific residual covariance matrix
may still contain factors that affect only securities within each country.

In the empirical analysis, we apply our methodology to US, German, and Japanese
Government bond returns over the 1990s. Using IBFA, we study the number and the nature
of the common factors driving international bond returns. We conclude that US bond returns

1 In the single-country case, such an inconsistency does not arise. Indeed, both PCA and affine term structure models

conclude that three factors are required to model a given domestic term structure of interest rates (see Piazzesi, 2003).
2 Lekkos (2000) also criticizes the use of PCA in a domestic setting. He claims that the explanatory power of the first

factor is amplified by the no-arbitrage restrictions linking bond yields and forward rates.
3 When controlling for local factors, Barr and Priestley (2004) find that the average contribution of world factors to

bond returns is only 70%. This figure is significantly lower than the total variance explained by the first five principal

components of the multi-country dataset, i.e., over 95%, in Driessen et al. (2003).
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share only one common factor with, respectively, German and Japanese bond returns. We find
that the single common factor is associated most notably with changes in the level of domestic
term structures. We also extend the standard methodology to the case of more than two coun-
tries and allow for time-variation in the covariance matrix of bond returns, while maintaining
the spirit of IBFA. As an illustration, we present a factor-based strategy to hedge long-term
bonds using domestic or foreign shorter-term bonds. We find that accounting for country-spe-
cific factors improves the performance of hedging strategies.

The remainder of the paper is organized as follows. Section 2 details the methodology, Sec-
tion 3 presents the empirical analysis, while Section 4 concludes.

2. Factor decomposition of international bond returns

2.1. Model specification

Let Rt be the 2M-vector containing the bond returns in two countries measured in excess of
the risk-free interest rate at time t. In each country, we observe the returns on bonds of M ma-
turities at time t¼ 1, ., T and R0t ¼ ½R01t;R

0
2t�. We take the viewpoint of a country-one investor

(domestic investor) and then convert country-two returns into country-one currency returns. We
consider bond positions that are hedged for currency risk and use the country-one risk-free in-
terest rate to compute the excess returns in both countries.

We denote by Skk the M�M covariance matrix of the excess hedged bond returns in country
k, Skl the M�M cross-covariance matrix of the excess hedged bond returns between countries
k and l, and S the 2M� 2M overall covariance matrix. We assume that excess hedged bond
returns are linearly related to c common factors contained in vector Ft:

Rkt ¼ EðRkÞ þBkFt þ ekt; k ¼ 1;2; ð1Þ

where the Bk matrix contains the loadings on the common factors in country k and ek is the vec-
tor of residuals in country k. We assume that Ft and ekt follow a multivariate normal distribution
with zero means and are orthogonal to each other. It is also convenient to assume that the com-
mon factors are orthogonal, i.e., E(FF0)¼ Ic. These assumptions imply that R follows a multi-
variate normal distribution with mean E(R) and covariance matrix:

S¼ BB0 þJ; ð2Þ

where B0 ¼ ½B01;B02�. The only difference between the present model and a standard factor anal-
ysis comes from the potential presence of additional factors being common to one country only.
Consequently, the J matrix is not assumed to be diagonal, but block-diagonal:

J¼
�

J11 0
0 J22

�
; ð3Þ

where Jkk are non-negative definite matrices. As the diagonality of the residual covariance ma-
trix is not necessary for the arbitrage pricing theory (APT) of Ross (1976) to be valid (see
Chamberlain and Rothschild, 1983), this model fits into the APT framework.
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2.2. Estimation of the inter-battery factor analysis model

The model presented in Eqs. (1)e(3) is an IBFA model (see Tucker, 1958) and can be
estimated by maximum likelihood following Browne (1979). If S is the usual unbiased
estimate of S obtained from a sample of T independent observations on R, then
(T� 1)S has a Wishart distribution with (T� 1) degrees of freedom. Browne (1979) shows
that the maximum likelihood estimates bB0 ¼ ½bB01; bB02� and bJ must satisfy the following
equations:

bB2 ¼ S21S�1
11
bB1

�bB01S�1
11
bB1

��1

; ð4Þ

S12S�1
22 S21S�1

11
bB1 ¼ bB1

�bB02S�1
22
bB2

��bB01S�1
11
bB1

�
; ð5Þ

J¼ Bdiag
�

S� bBbB0�; ð6Þ

where Skl is the sample cross-covariance matrix between countries k and l and Bdiag(E ) rep-
resents a block-diagonal matrix formed from the principal submatrices of E.

To simultaneously evaluate whether the variables are generated by an IBFA model and find
the appropriate number of common factors, one has to investigate if there exists a ‘‘sufficiently
small’’ c such that the covariance matrix can be written as BB0 þJ. If c equals 0, then no com-
mon factor structure exists. If no c can be found, then again the factor model does not hold: in
this case the number of factors needed to explain the variability of the observable variables is
too high. If a small value of c is found, then the model is not rejected and, at the same time, the
dimension of the factor structure is obtained. In order to test the fit of the model, the following
statistic can be used:

�2 ln D¼�ðT � 1Þln
YM

j¼cþ1

�
1�br2

j

�
; ð7Þ

where br2
j are the eigenvalues of S12S�1

22 S21S�1
11 and D is the likelihood ratio. The limiting distri-

bution of �2 ln D is chi-square with (M� c)2 degrees of freedom (see Browne, 1979; Cho,
1984).

2.3. Comparing inter-battery factor analysis and principal component analysis

Driessen et al. (2003) have proposed a related model for international bond returns,
which is called the principal component model. They claim that the common factors driving
international bond returns can be estimated by the principal components of the overall co-
variance matrix S. In order to see the main differences between the principal component
and IBFA models, let p¼ 2M. Recall also that PCA breaks down the covariance matrix
S as:

S¼ ALA0; ð8Þ

where A is a p� p orthogonal matrix containing the p eigenvectors and L is a p� p diagonal
matrix containing the p eigenvalues. We partition the A matrix as [A1, A2] where A1 is a p� c
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matrix. Let L1 be the c� c upper left-hand corner matrix of L and L2 be the lower right-hand
corner matrix of L. Defining X¼ R� E(R), we can write:

X ¼ AA0X ¼ A1ZþU; ð9Þ

where Z ¼ A01X and U ¼ A2A02X.
An associated model can be obtained by letting B ¼ A1L

1=2
1 and F ¼ L

�1=2
1 Z ¼ L

�1=2
1 A01X so

that X¼ BFþU which remarkably resembles the IBFA model. As in the IBFA model, the fac-
tors have an identity covariance matrix and are uncorrelated with the residuals:

EðFF0Þ ¼ E
�

L
�1=2
1 ZðL�1=2

1 ZÞ
0�
¼ L

�1=2
1 EðZZ0ÞL�1=2

1 ¼ Ic ð10Þ

EðFU0Þ ¼ E
�

L
�1=2
1 A01X

�
A2A02X

�0�¼ L
�1=2
1 A01SA2A02 ¼ 0: ð11Þ

However, the principal component model does not account for country-specific factors and its
residual covariance matrix is not necessarily block-diagonal:

EðUU0Þ ¼ E
�
A2A02X

�
A2A02X

�0�¼ A2L2A02: ð12Þ

Therefore, the common factors obtained from PCA do not necessarily explain all the comove-
ments between the two groups of securities. Since PCA is not primarily concerned with the es-
timation of common factors, but with the estimation of factors that maximize the explained
variance, other principal components have to be added to explain the covariability among in-
ternational bond returns. In conclusion, the main drawback of PCA in the presence of several
groups is the fact that estimated factors jointly capture both local and common influences.

3. Empirical analysis

3.1. Data

Our dataset consists of total weekly returns on Merrill Lynch Government Bond Indices for
the US, Germany, and Japan, from January 8, 1990 to October 11, 1999.4 For each country,
the bond index is denominated in US dollars and five maturity classes are available: 1e3 years,
3e5 years, 5e7 years, 7e10 years, and more than 10 years. Hence, five time-series of 510 ob-
servations are obtained. In Table 1, we provide some descriptive statistics for the hedged bond
returns.5 It appears that both the level and the volatility of bond returns increase with maturity.
According to the skewness and the kurtosis figures, the distribution of the bond returns is
slightly asymmetric and leptokurtic. Moreover, bond return time-series exhibit stationarity
and low autocorrelation. In the following, we use excess hedged bond returns, defined in excess
of the 1-week eurodollar interest rate.

4 To ease the comparison, we use the same data and apply the same hedging procedure as Driessen et al. (2003). We

warmly thank Joost Driessen for providing us with the data.
5 German and Japanese bond index returns have been hedged for currency risk using data on spot and forward

exchange rates: Rhedged
t;m ¼ Rt;m þ lnðStÞ � lnðFt;1 weekÞ; where Rt,m is the raw bond return, Rhedged

t;m the hedged bond return

in dollars, m the maturity of the bond index, St the spot exchange rate, and Ft,1 week is the one-week forward exchange

rate. Both raw and hedged returns are continuously compounded.
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3.2. Single-country analysis

Panel A of Table 2 presents the results of a separate PCA run for each country. The first three
factors explain 99.9% of the variation in bond returns for the US, and 98.7% for Germany and
Japan. The first factor accounts for most of the variability in bond returns: 96.9% for the US,
84.9% for Germany, and 89.7% for Japan. As the loadings on the first factor are always pos-
itive, the first factor captures changes in the level of the term structure. We interpret the second
factor as a slope factor since its loadings increase uniformly from a relatively large negative
value for short maturities to a positive value for the longest maturities. We interpret the third
factor as a curvature factor since its loadings are negative for short and long maturities and pos-
itive for intermediate maturities. Fig. 1 plots the values of the first three factor loadings for bond
returns estimated by running a PCA on each domestic term structure.

As pointed out by Driessen et al. (2003), the factor loadings show a consistent pattern across
countries but the explained variance per factor varies from one country to another (see eigen-
values in Table 2). The common PCA appears particularly adapted to this situation since it

Table 2

First three eigenvectors and eigenvalues for the US, Germany and Japan

Panel A: Separate principal component analyses

US Germany Japan

E1 E2 E3 E1 E2 E3 E1 E2 E3

1e3 years 0.122 �0.315 �0.527 0.181 �0.428 �0.541 0.199 �0.492 �0.571

3e5 years 0.280 �0.507 �0.423 0.281 �0.396 �0.304 0.337 �0.485 �0.116

5e7 years 0.388 �0.429 0.122 0.361 �0.397 �0.030 0.417 �0.299 0.109

7e10 years 0.504 �0.218 0.669 0.471 �0.296 0.752 0.517 �0.061 0.699

>10 years 0.709 0.643 �0.284 0.732 0.644 �0.218 0.637 0.655 �0.400

Eigenvalues 2.916 0.080 0.009 2.249 0.286 0.079 2.635 0.210 0.055

% Variance 0.969 0.027 0.003 0.849 0.108 0.030 0.897 0.071 0.019

Panel B: Common principal component analysis

Eigenvector 1 Eigenvector 2 Eigenvector 3

1e3 years 0.137 �0.376 �0.545

3e5 years 0.292 �0.495 �0.360

5e7 years 0.393 �0.386 0.116

7e10 years 0.506 �0.207 0.684

>10 years 0.697 0.649 �0.303

Eigenvalues US 2.915 0.081 0.009

% Variance 0.969 0.027 0.003

Eigenvalues GE 2.237 0.283 0.086

% Variance 0.844 0.107 0.032

Eigenvalues JP 2.611 0.227 0.059

% Variance 0.888 0.077 0.020

Note: Panel A displays the factor loadings on the first three factors obtained from separate principal component analyses

for the US, German (GE), and Japanese (JP) term structure of bond returns. E1, E2 and E3 are the eigenvalues associated

with the first three eigenvectors for each country. Panel B displays the factor loadings on the first three factors obtained

from a common principal component analysis run jointly on the three domestic term structures of bond returns. In both

panels, the first column indicates the five available maturities for the bond indices, and % variance indicates the per-

centage of the variability of the original data captured by each factor.
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Fig. 1. Factor loading on the first three factors. Note: Panels A, B and C display the factor loadings on the first three

factors. The following abbreviations are used in these panels: JAP1, JAP2 and JAP3 are the factor loadings obtained

from a separate principal component analysis run on the Japanese term structure, US1, US2 and US3 are the factor

loadings obtained from a separate principal component analysis run on the US term structure and GER1, GER2 and

GER3 are the factor loadings obtained from a separate principal component analysis run on the German term structure,

and CPC1, CPC2 and CPC3 are the factors loading obtained from a common principal component analysis jointly run

on the three domestic term structures of bond returns.
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assumes that the eigenvectors in the considered countries are the same, whereas eigenvalues
may vary across countries. This factor extraction method estimates factors with exactly the
same loadings in all countries. Common PCA is clearly related to PCA since it decomposes
each country-level covariance matrix as:

Skk ¼ ALkA
0; k ¼ 1;.;K: ð13Þ

The ith column of the M�M matrix A gives the coefficients of the ith principal component,
and the diagonal elements of Lk, give the variances of the principal components in country k.
Common principal components in country k are given by A0Rk. Technically, common PCA is
a joint-diagonalization of the three domestic covariance matrices (see Appendix 1). We notice
in Fig. 1 and in Panel B of Table 2 that the factor loadings obtained under the common PCA
assumption are quite close to those obtained individually for each country. The cost of the joint-
diagonalization of the three covariance matrices is a slight decrease in the three-factor model
performance: 99.9% for the US, 98.3% for Germany, and 98.5% for Japan.

Comovements among domestic bond markets are investigated through correlation coeffi-
cients between the common principal components in the three countries.6 The first US factor
covaries more strongly with the first German factor (correlation coefficient of 0.401) than
with the first Japanese factor (0.151). Moreover, the correlation between the first US factor
and the second German factor (0.216) is more important than the correlation between the first
US and Japanese factors. Other correlation coefficients are significantly smaller.

3.3. Multi-country analysis

We conduct an IBFA to estimate the common factors driving international hedged excess
bond returns. As bond returns have been computed from indices denominated in US dollars
and currency risk has been hedged away, we implicitly adopt the viewpoint of a US investor.
We then successively study the common structure among US and German bond returns and
among US and Japanese bond returns.7

The main results of the IBFA are summarized in Table 3. We find that, for the two samples,
only one factor can be considered as common as indicated by the statistical test in Eq. (7).
For US and German bonds and for US and Japanese bonds, we can reject the assumption
that there is no common factor at the 5% confidence level ( p-valueUSeGermany¼ 0.000 and
p-valueUSeJapan¼ 0.001) but we cannot reject the assumption that there is only one common
factor at the 5% confidence level ( p-valueUSeGermany¼ 0.392 and p-valueUSeJapan¼ 0.095).
This result is consistent with the conclusion of Ilmanen (1995) that a single global risk factor
is sufficient to explain international bond returns. However, it differs from the conclusion of
Driessen et al. (2003) who claim, based on a PCA, that five common factors jointly determine
international bond returns.

To empirically compare IBFA and PCA, we report in Table 4 the residual covariance matri-
ces in each sample. If all common factors were correctly estimated then these matrices should
be block-diagonal. Interestingly, when a single common factor is estimated by IBFA, the

6 Note that, unlike Rodrigues (1997), we do not investigate the covariations across principal components estimated

from a separate PCA in each country. Indeed, comparing components estimated from several PCA may be less meaning-

ful since the factor loadings are not identical in different countries.
7 A joint analysis of the common structure of US, German, and Japanese bond returns is proposed in Section 3.4.
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residual covariance matrices appear to be block-diagonal. This result indicates that most of the
comovements between bond returns across countries can be captured by a single common fac-
tor. On the other hand, when the first principal component is used as the common factor, the
residual covariance matrices are far from being block-diagonal. These results indicate that
while the primary concern of PCA is the estimation of factors that maximize the explained var-
iance, these factors are not necessarily common.

We now turn to the interpretation of the common factor. Driessen et al. (2003) regress
each of their five common factors on the three country-specific factors, which are estimated
by running separate PCA. In this paper, we perform an IBFA directly on the common prin-
cipal components. We then use the estimated loadings to interpret the multi-country factors
in terms of country-specific factors. Note that we use the all five standardized common prin-
cipal components in each country since a common principal component that explains a minor
part of bond return covariations within a specific country may explain a large part of bond
return covariations between two countries. In both samples, we find that the single common
factor is associated most notably with changes in the level of domestic term structures
(see Table 5).

Finally, we investigate the country-specific or local factors in each country. Since all com-
mon influences have been captured by the common factor, country-specific factors can be es-
timated from the residual covariance matrices. By using a standard PCA, we extract factors that
only affect securities within each country. Table 6 presents the variance captured by one com-
mon factor and one country-specific factor for each individual excess bond return series. The
explained variance is defined as one minus the ratio between the residual variance and the total
variance. We first remark that the explained variance is an increasing function of the maturity of
the bonds. The two-factor model, with one common factor and one country-specific factor, pro-
vides a good fit of the average bond returns, as measured by the explained variance for each

Table 3

Test for the number of common factors

Number �2 ln D df p-Value c2 (a¼ 5%)

Panel A: USeGermany

0 172.405 25 0.000 37.653

1 16.909 16 0.392 26.296

2 6.719 9 0.666 16.919

3 2.549 4 0.636 9.488

4 0.010 1 0.922 3.842

Panel B: USeJapan

0 54.047 25 0.001 37.653

1 23.750 16 0.095 26.296

2 10.056 9 0.346 16.919

3 2.717 4 0.606 9.488

4 0.047 1 0.829 3.842

Note: This table displays the results of the statistical test that permits to simultaneously (1) evaluate whether the bond re-

turns are generated by an inter-battery factor analysis model and (2) find the appropriate number of common factors (in

bold) for the US and Germany (Panel A) and the US and Japan (Panel B). The statistic �2 ln D is equal to ¼
�ðT � 1Þln

QM
j¼cþ1ð1� br2

j Þ. The appropriate number of common factors is the smallest number of factors for which

the overall covariance matrix can be written as S ¼ BB0 þJ where J is a block-diagonal residual covariance matrix

and B is the matrix of the loadings on the common factors. The columns indicate, respectively, the number of common fac-

tors, the value of the statistic where D denotes the likelihood ratio, the number of degrees of freedom, the associated p-value,

and the critical value of a chi-square distribution at the 5% confidence level.



Table 4

Residual covariance matrices

Panel A: USeGermany

Inter-battery factor analysis

0.0368 0.0710 0.0866 0.1015 0.1207

0.0710 0.1483 0.1869 0.2241 0.2743

0.0866 0.1869 0.2456 0.3015 0.3814

0.1015 0.2241 0.3015 0.3842 0.5032

0.1207 0.2743 0.3814 0.5032 0.7413

0.0029 0.0022 0.0009 �0.0002 0.0070 0.1538 0.1661 0.1876 0.1842 0.2072

0.0038 0.0039 0.0022 0.0013 0.0078 0.1661 0.2182 0.2260 0.2461 0.2870

0.0043 0.0042 0.0031 0.0014 0.0072 0.1876 0.2260 0.2957 0.3061 0.3594

0.0022 0.0010 �0.0001 �0.0013 0.0066 0.1842 0.2461 0.3061 0.3856 0.4181

0.0066 0.0072 0.0046 0.0028 0.0122 0.2072 0.2870 0.3594 0.4181 0.8744

Principal component analysis

0.0194 0.0331 0.0355 0.0362 0.0297

0.0331 0.0656 0.0759 0.0826 0.0776

0.0355 0.0759 0.0970 0.1121 0.1186

0.0362 0.0826 0.1121 0.1430 0.1689

0.0297 0.0776 0.1186 0.1689 0.2786

�0.0191 �0.0479 �0.0684 �0.0900 �0.1202 0.1351 0.1325 0.1430 0.1217 0.1087

�0.0265 �0.0635 �0.0895 �0.1167 �0.1576 0.1325 0.1677 0.1618 0.1650 0.1588

�0.0333 �0.0788 �0.1094 �0.1428 �0.1943 0.1430 0.1618 0.2151 0.2074 0.2031

�0.0423 �0.0953 �0.1287 �0.1648 �0.2197 0.1217 0.1650 0.2074 0.2749 0.2425

�0.0639 �0.1453 �0.1993 �0.2565 �0.3469 0.1087 0.1588 0.2031 0.2425 0.5958

Panel B: USeJapan

Inter-battery factor analysis

0.0491 0.0993 0.1270 0.1547 0.1987

0.0993 0.2121 0.2783 0.3445 0.4511

0.1270 0.2783 0.3765 0.4739 0.6345

0.1547 0.3445 0.4739 0.6113 0.8366

0.1987 0.4511 0.6345 0.8366 1.2306

�0.0019 �0.0028 �0.0011 �0.0024 0.0116 0.1809 0.2223 0.2405 0.2585 0.2745

�0.0001 0.0001 0.0025 0.0018 0.0216 0.2223 0.3446 0.3738 0.4230 0.4513

0.0015 0.0028 0.0073 0.0085 0.0315 0.2405 0.3738 0.4643 0.5247 0.5910

0.0008 0.0017 0.0065 0.0078 0.0321 0.2585 0.4230 0.5247 0.6627 0.7367

�0.0034 �0.0050 �0.0010 �0.0019 0.0161 0.2745 0.4513 0.5910 0.7367 1.0142

Principal component analysis

0.0247 0.0442 0.0504 0.0556 0.0568

0.0442 0.0889 0.1072 0.1234 0.1343

0.0504 0.1072 0.1389 0.1669 0.1946

0.0556 0.1234 0.1669 0.2146 0.2682

0.0568 0.1343 0.1946 0.2682 0.4162

�0.0313 �0.0711 �0.0965 �0.1263 �0.1651 0.1505 0.1644 0.1681 0.1657 0.1596

�0.0490 �0.1102 �0.1509 �0.1968 �0.2626 0.1644 0.2472 0.2520 0.2740 0.2730

�0.0597 �0.1354 �0.1848 �0.2401 �0.3244 0.1681 0.2520 0.3118 0.3382 0.3677

�0.0735 �0.1642 �0.2239 �0.2899 �0.3945 0.1657 0.2740 0.3382 0.4393 0.4732

�0.0920 �0.2011 �0.2730 �0.3530 �0.4874 0.1596 0.2730 0.3677 0.4732 0.7068

Note: These tables display the residual covariance matrices for US and Germany (Panel A) and US and Japan (Panel B).

Each residual covariance matrix is estimated using one common factor estimated either using an inter-battery factor

analysis or a principal component analysis. If all common factors were correctly estimated the residual covariance ma-

trices should be block-diagonal.
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sample (92.08% for USeGermany and 93.68% for USeJapan). The performance of our model
is slightly better than a two-factor principal component model (91.61% for USeGermany and
93.40% for USeJapan). This empirical evidence supports the assumption made in affine
models in an international setting that domestic term structures are driven by one common fac-
tor and one country-specific factor.

3.4. Common factors with more than two countries

Existing factor extraction methods have both advantages and limitations when applied to
multi-country datasets. In particular, PCA can handle datasets with more than two countries
but fails to disentangle common and local influences. On the other hand, IBFA accounts for
the presence of local factors when estimating common factors but cannot be applied to more
than two countries at the same time. Below, we propose a methodology that permits common
factors to be extracted from bond returns in more than two countries, while allowing for local
factors.8 We refer to this model as the multi-country common factor analysis.

We present the model for the special case of three countries.9 The only parameters that need
to be estimated are the loadings on the common factor, B. The residual covariance matrix of
country k is denoted by JkkðBkÞ ¼ Eðeke0kÞ and can be expressed as:

JkkðBkÞ ¼ Skk �BkB
0
k; ð14Þ

where Skk is the sample covariance matrix of Rk. The overall residual covariance matrix is
block-diagonal:

JðBÞ ¼

2
4J11ðB1Þ 0 0

0 J22ðB2Þ 0
0 0 J33ðB3Þ

3
5: ð15Þ

Table 5

Loadings on the single common factor

CPC1 CPC2 CPC3 CPC4 CPC5

Panel A: USeGermany

US 2.0609 �0.0159 0.0012 0.0000 �0.0003

Germany 1.2502 �0.0874 0.0123 �0.0042 0.0028

Panel B: USeJapan

US 1.2477 �0.0080 0.0015 �0.0001 �0.0004

Japan 0.8424 �0.0312 0.0085 �0.0051 �0.0007

Note: This table displays the estimated loadings on the common factor estimated using an inter-battery factor analysis.

In order to interpret the common factor in terms of domestic factors, the analysis has been performed on the five stan-

dardized common principal components (CPCi, i¼ 1, 2, 3, 4, 5).

8 We thank a referee for suggesting that we extend IBFA in the heteroscedastic case and in the case of more than two

countries. We present these extensions in Sections 3.4 and 3.5.
9 This model, as well as the one proposed in the next section, can straightforwardly be extended to more than three

countries.



296 C. Pérignon et al. / Journal of International Money and Finance 26 (2007) 284e304
We ensure that each residual covariance matrix is nonnegative definite by using the algorithm
of Sharapov (1997).10 The overall covariance matrix is then given by S¼ BB0 þJ(B). This
model preserves the intuition of IBFA since the covariance between bond returns in different
countries is only determined by the loadings on the common factor. The covariance between
bond returns in the same country also depends on the unmodeled residual factor structure
within that country.

We numerically estimate the parameters in B by maximizing the log-likelihood of bond
returns:

LLðB; RÞ ¼
XT

t¼1

log f ðRt; EðRÞ;BB0 þJðBÞÞ; ð16Þ

where f ($; M, C ) is the probability density function of a multivariate normal random vari-
able with mean M and covariance matrix C. In our application, we consider only one com-
mon factor although the model can accommodate multi-factor structures. As in IBFA, we
extract in a second step the country-specific factor from the residual covariance matrices
using PCA.

Table 6

Variance explained by two factors

Inter-battery factor analysis Principal component analysis

USeGermany USeJapan USeGermany USeJapan

US 1e3 0.8031 0.7990 0.7921 0.7950

US 3e5 0.9145 0.9105 0.9093 0.9106

US 5e7 0.9669 0.9652 0.9647 0.9653

US 7e10 0.9897 0.9892 0.9889 0.9893

US >10 0.9766 0.9773 0.9769 0.9773

Germany 1e3 0.6399 e 0.5508 e

Germany 3e5 0.7855 e 0.7558 e

Germany 5e7 0.8623 e 0.8457 e

Germany 7e10 0.8848 e 0.8787 e
Germany >10 0.8977 e 0.9030 e

Japan 1e3 e 0.6344 e 0.5878

Japan 3e5 e 0.8384 e 0.8304

Japan 5e7 e 0.9392 e 0.9323

Japan 7e10 e 0.9562 e 0.9559

Japan >10 e 0.9162 e 0.9151

Total 0.9208 0.9368 0.9161 0.9340

Note: This table displays the variance captured by two factors. In the column headed ‘‘Inter-battery factor analysis’’, we

use one common factor extracted using an inter-battery factor analysis and one country-specific factor obtained by run-

ning a principal component analysis on each country-specific residual covariance matrix. In the column headed ‘‘Prin-

cipal component analysis’’, the two factors are the first two principal components of the overall covariance matrix for

each pair of countries. We present the explained variance for each individual bond return series and for each sample

(USeGermany and USeJapan).

10 This algorithm finds the positive-definite matrix which is ‘‘closest’’ to some indefinite matrix but has the same

strictly positive principal diagonal. Distance is measured using the Frobenius matrix norm. This algorithm has been

used in a related context by Ledoit et al. (2003) to estimate multivariate GARCH models.
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We report the estimated loadings on the common factor (15 parameters) and the country-
specific factors (15 parameters) in Table 7. We also display the loadings on the first two
factors estimated by PCA and IBFA. The most striking result in the table is the remarkable
similarity between the IBFA and multi-country common factor analysis loadings. It appears
that the dual nature of IBFA is not a serious limitation. The estimated loadings are positive
and increase with the bond maturities. However, there are some interesting variations in the
results. The US loadings on the common factor are higher when estimated using multi-
country common factor analysis than the USeJapan IBFA loadings and lower than the
USeGermany IBFA loadings. The results of multi-country common factor analysis
are thus a hybrid of the two IBFA results. Moreover, the loadings of Japanese bonds on
the common factor are moderately lower than their IBFA counterparts. It appears that
the relationship between US and German bonds is most relevant in defining the common
factor structure.

3.5. Time-varying covariance matrix

All the factor extraction techniques previously used in this paper maintain the assumption
that the covariance matrix of bond returns is constant through time. We now present a method,
which we call GARCH common factor analysis, that allows for time-variation in the covariance
matrix of bond returns. Furthermore, it is flexible enough to model the common factor structure
of more than two countries and to estimate common and country-specific factors.

Table 7

Estimated factor loadings

IBFA USeGermany IBFA USeJapan PCA MCFA GARCH CFA

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

US 1e3 0.134 0.161 0.074 0.195 0.166 �0.102 0.119 0.171 0.180 0.143

US 3e5 0.321 0.356 0.198 0.435 0.385 �0.225 0.289 0.382 0.429 0.259

US 5e7 0.458 0.480 0.281 0.601 0.537 �0.305 0.412 0.519 0.624 0.263

US 7e10 0.604 0.614 0.371 0.777 0.699 �0.395 0.543 0.667 0.826 0.237

US >10 0.873 0.840 0.523 1.094 1.003 �0.535 0.784 0.922 1.240 0.166

Germany 1e3 0.032 0.313 e e 0.166 0.074 0.035 0.320 0.027 0.346

Germany 3e5 0.161 0.407 e e 0.298 0.049 0.182 0.398 0.102 0.477

Germany 5e7 0.242 0.497 e e 0.389 0.023 0.268 0.483 0.174 0.546

Germany 7e10 0.431 0.566 e e 0.552 �0.023 0.482 0.525 0.300 0.597

Germany >10 0.675 0.859 e e 0.824 �0.158 0.704 0.834 0.468 0.761

Japan 1e3 e e 0.009 0.339 0.162 0.287 0.010 0.328 0.006 0.345

Japan 3e5 e e 0.133 0.535 0.303 0.455 0.097 0.540 0.064 0.587

Japan 5e7 e e 0.166 0.659 0.371 0.558 0.118 0.666 0.087 0.691

Japan 7e10 e e 0.277 0.794 0.480 0.676 0.201 0.816 0.128 0.798

Japan >10 e e 0.395 0.957 0.567 0.831 0.223 1.009 0.128 0.857

Note: This table displays estimates of the loadings on the first two factors (F1 and F2) for bond returns in US, Germany,

and Japan with maturities in 1e3 years, 3e5 years, 5e7 years, 7e10 years, and more than 10 years. For inter-

battery factor analysis (IBFA), multi-country and GARCH common factor analysis (MCFA and GARCH CFA), F1

denotes the common factor and F2 the country-specific factor. For principal component analysis (PCA), F1 and F2 are

common factors and their loadings are given by the first two eigenvectors of the overall covariance matrix of bond

returns.
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With three countries, we can rewrite Eq. (2) as:

St ¼ BB0 þ

2
4C1C01þU11t 0 0

0 C2C02 þU22t 0
0 0 C3C03þU33t

3
5; ð17Þ

where B is a 3M� 1 matrix that contains the loadings on the common factor and Ck is a M� 1
matrix that contains the loadings on the country k-specific factor and Ukt is:

2
4uk1 þ ak1e2

k1t þ bk1hk1t 0
1

0 ukM þ ak1e2
kMt þ bk1hkMt

3
5 ð18Þ

for k¼ 1, 2, 3.11 We model the residual variance of each bond return as a GARCH process
where hkm is the conditional residual variance of bond return m, m¼ 1, ., M, and
k¼ 1, 2, 3. The residual covariance matrix is block-diagonal but, unlike in IBFA, it is time-
varying. We can rewrite Eq. (17) as:

St ¼ DD0 þUt; ð19Þ

where D is a 3M� 4 matrix that contains the loadings on the common and country-specific fac-
tors and Ut is a diagonal matrix:

Ut ¼

2
4U11t 0 0

0 U22t 0
0 0 U33t

3
5: ð20Þ

The model parameters are estimated using maximum likelihood as in the previous model but
allowing for a time-varying covariance matrix St (see Appendix 2 for details). When estimating
the model, we assume that akm¼ a and bkm¼ b in order to reduce the number of parameters.

This model is both more general and more restrictive than aforementioned models. In all
other models, the covariance between bonds in different countries is driven exclusively by
the common factor. Furthermore, the covariance between two bonds in the same country is de-
termined by the loadings on the common factor and the residual country-specific covariances.
While in both IBFA and multi-country common factor analysis, the country-specific factor
structure is left unmodeled, it needs to be explicitly modeled when we incorporate heterosce-
dasticity. As a result, the loadings on the common factor will be influenced by the form of the
country-specific residual volatility while in IBFA and multi-country common factor analysis,
the common and local factor structures are extracted sequentially.

The loadings on the common and country-specific factors are displayed in Table 7
(see column headed GARCH CFA). The general pattern exhibited by the loadings in GARCH
common factor analysis is consistent with the one exhibited by the loadings in IBFA and multi-
country common factor analysis. There are some interesting differences though. The loadings in
GARCH common factor analysis for US bonds are higher than in the other two common-local
factor models. Also, the common factor loadings of German and Japanese bonds are lower in

11 This model can easily be extended to more than one common and one country-specific factors.
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GARCH common factor analysis. It is apparent that accounting for residual heteroscedasticity
strengthens the US dominance of the common factor structure of international bond returns.

3.6. International price of risk

We estimate the price of risk of the common factor on US, German, and Japanese bond mar-
kets. The arbitrage pricing theory predicts that the expected returns are given by:

EðRÞ ¼ Bl; ð21Þ

where B contains the loadings on the common factor and l is the price of risk. It is common in
asset pricing to estimate the price of risk using a regression of sample mean returns on the load-
ings. Cochrane (2001, p. 239) shows how the standard errors from this regression can be ad-
justed to account for the fact that the loadings have been estimated. However, this correction
is derived under the assumption that the loadings were initially estimated by regressing asset
returns on the factor returns. Such a correction is not appropriate here because we are extracting
the factor loadings from the covariance matrix of returns using maximum likelihood estimation.
Our procedure, which is based on the multi-country common factor analysis, solves this prob-
lem by jointly estimating the factor loadings and the price of risk.

To test the adequacy of the linear factor pricing model we introduce an intercept for each
bond:

EðRÞ ¼ aþBl ð22Þ

and test the null hypothesis that H0: a¼ 0 using a Lagrange multiplier test. When the factor load-
ings are estimated using multi-country common factor analysis, the estimate of the price of risk is
0.0680, with a standard error of 0.0541. The value of the Lagrange multiplier test is equal to
29.3849, which corresponds to a p-value of 0.0143. This result provides weak evidence against
the linear global factor pricing model. Therefore, we cannot reject at the 1% confidence level
that the US, German, and Japanese bond markets are integrated over our sample period.

To investigate the possibility of a time-varying price of risk, we estimate a model that treats
the risk premium as a latent AR(1) process:

lt ¼ l0 þ dt; ð23Þ

where dt¼ fdt�1þ ht. We estimate this time-varying price of risk model using the Kalman
filter. There is no evidence that this extended model is superior to a model with a constant
price of risk. Even though this model has two extra parameters (f and s2

h), the log-likeli-
hood improves by less than one and the point estimate of s2

h is less than one standard error
from zero.

3.7. Application: hedging long-term bonds

We illustrate the economic usefulness of the different factor extraction techniques with a sim-
ple hedging example. Consider hedging a long-term bond using a portfolio of shorter-term
bonds. This is done using alternatively domestic and foreign bonds. The hedged portfolio
has to satisfy the following constraints.
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uM ¼ 1;

u1þu2 þu3þuM ¼ 0;

u1b1;1þu2b1;2þu3b1;3þuMb1;M ¼ 0;

u1b2;1þu2b2;2þu3b2;3þuMb2;M ¼ 0;

where um is the fraction of the hedged portfolio invested in maturity-m bond, b1,m is the load-
ing on the first factor for maturity-m bond, and b2,m is the loading on the second factor for
maturity-m bond. The first equation reflects that we are hedging a long position in the long-
term bond, the second equation constrains the strategy to be self-financing, while the last two
equations state that the portfolio is immunized against the first two sources of risk. To hedge
one bond against two sources of risk, we need a total of four bonds: the 10-year bond that is
hedged and three other bonds with maturities in 1e3 years, 3e5 years, and 5e7 years,
respectively.

Using matrix notations, we get:2
664

0 0 0 1
1 1 1 1

b1;1 b1;2 b1;3 b1;M

b2;1 b2;2 b2;3 b2;M

3
775
2
664

u1

u2

u3

uM

3
775¼

2
664

1
0
0
0

3
775

XW ¼ Y
W� ¼ X�1Y:

ð24Þ

The W* matrix contains the weights of the self-financing hedged portfolio. We estimate the
loadings on the risk factors using successively domestic and multi-country PCA, IBFA,
multi-country and GARCH common factor analysis. For each method, we build a hedged port-
folio and we report its volatility computed over our sample period.12

Table 8 presents the variances of the hedged portfolio returns for various target bonds and
for, alternatively, domestic and foreign hedging strategies. The key point to take from this table
is that hedging strategies developed using common and local factors dominate purely domestic
and international PCA. Interestingly, when hedging long-term bonds using domestic bonds,
strategies based on IBFA or multi-country common factor analysis dominate the other strate-
gies. When hedging a long-term bond using foreign bonds, the best hedging performance is ob-
served with either IBFA, multi-country or GARCH common factor analysis. PCA turns out to
be systematically dominated, although this method allows hedging a long-term bond against
two sources of risk with three other bonds vs. one source of risk with two other bonds with
alternative methods. Accounting for country-specific factors improves the performance of do-
mestic and international hedging strategies.

The models that account for both common and local factors also dominate domestic PCA.
As reported in Table 2, the three shorter-term bonds in all three countries load positively on the
first factor and negatively on the second factor, while the long-term bond loads positively on

12 When hedging a long-term bond using foreign bonds and a common-local factor model, the hedging strategy has to

be amended. Indeed, by construction, a foreign bond does not load on other country’s domestic factors. As a result, for

IBFA, multi-country and GARCH common factor analysis, we only hedge the long-term bond against one common

factor using the shortest two foreign bonds.
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both factors, leading to extreme positions in the shorter-term bonds. This is a particularly severe
problem for Germany since the loadings on the second factor for the three shorter-term bonds
are virtually identical, leading to a near singular factor-loading matrix that produces such a poor
performance.

4. Conclusion

In this paper, we analyze the common factor structure of Government bond returns of
different maturities in several countries by formally accounting for the presence of country-
specific factors. Unlike previous studies that use principal component analysis, we conclude
that US bond returns share only one common factor with German and Japanese bond returns.
Our result justifies the use of only one common factor in affine models in a multi-country set-
ting. We find that the single common factor is associated most notably with changes in the level
of the domestic term structures.

We also contribute to the literature on the extraction of common factors by extending the
standard methodology to the case of more than two countries and by allowing for time-variation
in the covariance matrix of bond returns. These extensions preserve the intuition of the
inter-battery factor analysis of Tucker (1958) since they allow for the presence of common
and country-specific factors. We show that accounting for country-specific factors improves
the performance of domestic and international hedging strategies.

Future research may benefit from the framework presented in the present paper. It may be
used to estimate common factor structures in presence of several countries or currency areas.
Moreover, it may also be suitable to study comovements between bond returns from different
credit classes, hedge-fund performances grouped by fund types, measures of asset liquidity in
different market segments, or implied volatilities arranged by option maturities.

Table 8

Hedging long-term bonds

Domestic PCA PCA IBFA MCFA GARCH CFA

Panel A: Long-term US bond

US 0.511 0.440 0.351 0.350 0.367

Germany e 16.556 1.654* 1.438* 3.615*

Japan e 23.303 2.422* 2.968* 6.580*

Panel B: Long-term German bond

US e 5.246 1.205* 1.286* 1.067*

Germany 12.132 3.500 0.719 0.936 1.569

Japan e 15.931 e 2.752* 2.719*

Panel C: Long-term Japanese bond

US e 19.706 1.166* 1.103* 1.082*

Germany e 32.482 e 1.090* 1.094*

Japan 1.260 0.568 0.747 0.531 0.623

Note: We hedge a long-term bond (more than 10-years) in country k using shorter-term bonds from country k or country

l (1e3 years, 3e5 years, 5e7 years). For each factor extraction method, i.e., domestic principal component analysis

(Domestic PCA), principal component analysis (PCA), inter-battery factor analysis (IBFA), multi-country and GARCH

common factor analysis (MCFA and GARCH CFA), we present the volatility of the hedged portfolio computed over our

sample period. *Denotes a hedging strategy where we only hedge a long-term bond against the common factor using the

shortest two foreign bonds.
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Appendix 1. Common principal component analysis

The problem of estimating common principal components in K groups can be translated to
the problem of diagonalizing jointly several positive-definite covariance matrices:

Sk ¼ ALkA
0; k ¼ 1;.;K:

Following Flury (1988), estimates of bA and bLk can be obtained taking advantage of the
Hadamard inequality, which states that for any positive-definite symmetric matrix H, one has
det H� det diag(H ), with equality if and only if H is diagonal. Diag(H ) means the diagonal
matrix with the same diagonal elements as H. Consequently det diag(H ) is the product of all
diagonal elements of H. A can be estimated by minimizing the following function:

FðAÞ ¼
YK

k¼1

�
det diagðA0SkAÞ

detðA0SkAÞ

�
:

Minimizing F(A) can be viewed as trying to find a matrix A which diagonalizes jointly the
K covariance matrices Sk as much as it can. This result means that the common principal com-
ponent transformation can be viewed as a rotation yielding variables that are as uncorrelated as
possible simultaneously in K groups. Moreover, Flury (1988) has proved that the A
matrix which minimizes F(A) is the maximum likelihood estimate of A in the common
principal component model under the assumption that Sk follows a Wishart distribution. The
FG-algorithm executes this numerical minimization and Fortran routines have been provided
by Flury (1988, Appendix C). A detailed description and proof of convergence can be found in
Flury (1988, p. 178). Robust common principal components are derived in Boente et al. (2002).

Appendix 2. GARCH common factor analysis

This appendix details the estimation of the factor loadings in the GARCH common factor
analysis presented in Section 3.5. Denote by xt the vector of all factor returns in period
t: xt¼ [Ft, F1t, F2t, F3t] where Ft is the return on the common factor and Fkt is the return on
the local factor for country k. We posit a GARCH process for the residual volatility from the
factor model:

Rt ¼ EðRÞ þDxt þ et;

where the latent factors are i.i.d. multivariate normal and uncorrelated with the residuals:

xtwMVNð0; IÞ; E
�
xtx
0
t�i

�
¼ 0; is0

I; i¼ 0;
and E

�
xte
0
t�1

�
¼ 0:

Inference about D can be derived by noting that RtjIt�1wMVNðm;SÞ, where m ¼
Et�1ðRtÞ ¼ EðRÞ is the mean vector and the covariance matrix is given by
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S ¼ Et�1½ðRt � mÞðRt � mÞ0 ¼ DD0 þ U� . Because Rt and xt are multivariate normal, inference
about the latent state variable is easily obtained:

bxtjt ¼ D0ðDD0 þUÞ�1ðRt � mÞ; bPtjt ¼ I�D0ðDD0 þUÞ�1
D;

where bxtjt ¼ EðxtjRtÞ is the conditional expected value of xt given the asset returns Rt and bPtjt ¼
E½ðbxtjt � xtÞðbxtjt � xtÞ ;� its associated mean-squared-error. An interesting limiting case is when
D has full column rank and U¼ 0, such as in principal component analysis, in which case bxtjt ¼
D0ðRt � mÞ and mean-squared-error 0.

We incorporate heteroscedasticity by modeling the conditional residual volatility of bond re-
turns in country k as a GARCH process:

hkt ¼ uk þake
2
kt�1þ bkhkt�1:

Unfortunately, because the factor returns are latent we do not observe the residuals and we
therefore use the unobserved components GARCH model of Harvey et al. (1992). We define
the conditional volatility as hkt ¼ Et�1ðe2

ktÞ and replace the unobserved lagged squared
residual with its expectation. We decompose the unobserved true residual into its expected
and unexpected components ekt�1 ¼ bekt�1 þ ðekt�1 �bekt�1Þ, noting that ekt�1 �bekt�1 ¼ Dk

ðxt�1 � bxt�1jt�1Þ, giving:

Et�1

�
e2

kt�1

�
¼be2

kt�1þDk
bPt�1jt�1D0k;

where Dk is the kth column of D. Conditional volatility is then given by the recursion:

hktjt�1 ¼ uk þ ak

�be 2
kt�1þDk

bPt�1jt�1D0k

�
þ bkhkt�1jt�2:

Note that we use hkt�1jt�2 rather than hkt�1jt�1 for lagged conditional variance which preserves
the recursive nature of volatility and dramatically simplifies model estimation. We initialize each
volatility process using the unconditional volatility s2

k ¼ EðhkÞ ¼ uk=ð1� ak � bkÞ. The log-
likelihood is constructed as LLðq; RÞ ¼

PT
t¼1 log f ðRt; m; bStjt�1Þwhere q is the parameter vector,

Ŝ tjt�1 ¼ DD0 þ bUtjt�1 is the conditional covariance matrix of Rt, and bUtjt�1 is the conditional co-
variance matrix of the residuals. The updating equations for the latent state variables are given by:

bxtjt ¼ D0
�
DD0 þUtjt�1

��1ðRt � mÞ; bPtjt ¼ I�D0
�
DD0 þUtjt�1

��1
D:
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