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Abstract
Under the multivariate normal setup, the bioequivalence problem is studied, us-

ing the confidence approach. First a confidence set which has smallest expected
effective length at the origin is proposed. For the known variance case, its induced
test can be shown to have constant level α. Also, it is unbiased and uniformly
most powerful among equivariant tests. For the unknown variance case, an approx-
imated confidence set is proposed. The induced test enjoys similar good properties.
Simulation shows that our test substantially outperforms some existing tests, in
general.

Key Words:Average bioequivalence, Confidence set, Effective length, Multivari-
ate bioequivalence testing, Optimal bioequivalence test.
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1 Introduction

Assessment of bioequivalence is important in drug development. In statis-
tical terms, the problem of bioequivalence is to decide if the difference of
two parameters θ = µ− µ0 is close to zero. Formally, it is to test

H0 : θ 6∈ ∆ vs H1 : θ ∈ ∆, (1.1)

where ∆ is a (small) set containing the origin. Often the set ∆ is of the
type {θ ∈ Rp : ||θ|| ≤ δ} for some (small) δ > 0. See Metzler (1972),
Westlake (1972, 1976, 1979) and Anderson and Hauck (1983) for a detailed
discussion.
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Regarding the formulation, existing results have been focusing on the
univariate case, i.e., p = 1. For example, Anderson and Hauck (1983), Pa-
tel and Gupta (1984), Rocke (1984), Schuirmann (1987), Hsu and Ruberg
(1992), Hwang and Liu (1992), Hsu et al. (1994), Brown et al. (1995) and
Berger and Hsu (1996) have proposed tests for this problem in univariate
setup. Also see Bofinger et al. (1993) and Giani and Finner (1991) for other
related results. Besides the theoretical generality, a multivariate formula-
tion of the problem is also of interest in practice. For example, Chow and
Liu (1992) address the issue of design of study, cf. their page 290 for details.
Despite of this, very few results for multivariate formulations are available
in the literature in contrast to those for univariate formulations. The mul-
tivariate bioequivalence problem is certainly an important yet rather un-
derstudied terrain for applied and theoretical statisticians. Recently, Wang
et al. (1999) advanced along this direction. The present study is another
new and interesting addition.

The confidence approach is a popular way to construct tests for the
bioequivalence problem. It generalizes that in Westlake (1972, 1976). In
this approach, H0 is rejected and bioequivalence declared if C(X) ⊂ ∆
where C(X) is a confidence set for θ and the distribution of the observation
vector X depends on θ. This approach is justified by Theorem 2.3 in Hsu
et al. (1994) which applies to univariate and multivariate setups. In short,
if the confidence level of C(X) is at least 1−α then the size of the induced
test is at most α.

In this article, the confidence approach under the multivariate normal
setup is considered, i.e., X follows a Np(θ, σ2I) distribution and σ2 is ei-
ther known or can be estimated by an independent estimator S2 such that
mS2/σ2 has a χ2

m distribution. In terms of testing bioequivalence, the ef-
fective length of the confidence set for θ is a crucial quantity. The effective
length of a confidence set C(X), denoted by ef`(C(X)), is defined as twice
the supremum of the distances of points in C(X) from the origin;

ef`(C(X)) ≡ 2 sup
y∈C(X)

||y||, (1.2)

where ||y|| is the usual Euclidean norm of y. Specifically, a straightforward
generalization of Theorem 2.4 in Hsu et al. (1994) to the multivariate setup
shows that confidence set with shorter effective length induces more pow-
erful test through the confidence approach.
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In light of this, we aim at finding confidence sets with shortest effective
length. These sets in turn induce better bioequivalence tests. In Section 2
we consider the case when σ2 is known. The proposed confidence set is
shown to minimize the expected effective length at the origin. Its associated
test has level exactly α, is unbiased, and is the uniformly most powerful
(UMP) for (1.1) among tests based on ||X|| (a reasonable reduced class
of tests). The comparison between our test and that proposed in Brown
et al. (1995) is provided. It is noticed that although their confidence set
minimizes the expected volume at the origin, its associated test may not
be unbiased for some ∆.

We propose an approximate confidence set for the unknown σ2 case in
Section 3. By simulation, its coverage probabilities and the power compari-
son among its induced test, the two one-sided test proposed by Schuirmann
(1987) and the test induced by RI in Wang et al. (1999) are provided. The
results suggest that our test based on the approximate confidence set gen-
erally substantially outperform those of Schuirmann (1987) and Wang et al.
(1999).

2 Known Variance

Since σ is known, without loss of generality we assume that σ = 1. Let
λ = ||θ||2. The propose confidence set is

C∗(X) =
{
θ : ||X||2 ≥ c(λ)

}
, (2.1)

where c(λ) is the α upper percentile of a non-central chi-squared distri-
bution, denoted by χ2

p(λ), with p degrees of freedom and noncentrality
parameter λ; that is Pθ

{||X||2 ≥ c(λ)
}

= 1− α, for all θ.

Note that

C∗(X) ⊂ ∆ = {θ : ||θ|| ≤ δ} ⇐⇒ ||X||2 ≤ c(δ2).

Hence, for testing (1.1) the associated test of C∗(X) has rejection region
{x : ||x||2 ≤ c(δ2)}, and, by the definition of c(δ2), power function satisfying
Pθ

(||X||2 ≤ c(δ2)
) ≥ α, for all θ with ||θ|| ≤ δ; which means that the test

is unbiased. Note that when ∆ = {θ : ||θ|| ≤ δ}, problem (1.1) is invariant
under G = {g : g is an p× p orthogonal matrix} and ||X|| is a maximal
invariant statistic under G. Intuitively, a reasonable procedure should make
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it harder to declare bioequivalence as the observed ||x|| increases and this
means that we should focus on invariant tests under G, i.e., those depending
on X only through ||X||. With this reduction, problem (1.1) becomes that
of testing

H0 : λ > δ2 vs H1 : λ ≤ δ2, (2.2)

from an observation Y = ||X||2 following a χ2
p(λ) distribution (λ = ||θ||2).

As a consequence of the monotone likelihood ratio property of the non-
central χ2 distribution, the UMP size α test for (2.2) has rejection region
{y : y ≤ c(δ2)}. Therefore, the associated test of C∗(X) is the UMP invari-
ant size α test for (1.1).

It is interesting to notice from the above mentioned properties of the as-
sociated test of C∗(X) that by choosing an appropriate confidence set, the
confidence approach to testing bioequivalence can lead to the known opti-
mal solution of testing standard hypotheses (2.2). As mentioned previously,
however, for testing (1.1) confidence sets with shorter effective length in-
duce more powerful bioequivalence tests. In the following theorem, as in the
works of Brown et al. (1995) and Tseng and Brown (1997), the Ghosh-Pratt
identity (Ghosh (1961), Pratt (1961)) is utilized to establish the optimality
of C∗(X) in terms of effective length.

Theorem 2.1. Let p ≥ 1. Among all 1−α confidence sets whose effective
length depends on X only through ||X||, C∗(X) minimizes the expected
effective length at the origin.

Proof. Let C(X) be any 1−α confidence set for θ and K(X) = K(||X||) =
ef`(C(X)). Note for all θ, Pθ [θ ∈ C ′(X)] ≥ Pθ [θ ∈ C(X)] ≥ 1 − α,
where C ′(X) =

{
θ : ||θ|| ≤ 1

2K(||X||)}. Also, ef`(C ′(x)) = ef`(C(x)) for
all x. It suffices to consider, therefore, only 1 − α confidence sets of the
form C(X) = {θ : ||θ|| ≤ k(||X||)} , for some function k(||X||).
Note that by the Ghosh-Pratt identity

E0 {ef`(C(X))} = E0{2k(||X||)}
= 2

∫

Rp

∫

I{||θ||:||θ||≤k(||x||)}
d||θ||( 1

2π )p/2e−
1
2
||x||2dx

= 2
∫ ∞

0

∫

I{x:||θ||≤k(||x||)}
( 1
2π )p/2e−

1
2
||x||2dxd||θ||

= 2
∫

P0 {||θ|| ≤ k(||X||)} d||θ||
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Figure 1: Comparison of C∗(x) (solid lines) with Cbch(x) (dashed lines).

≥ 2
∫

P0

{||X||2 ≥ c(||θ||2)} d||θ||
= E0 {ef`(C∗(X))}

where the inequality is implied by the Neyman-Pearson fundamental lemma
and the monotone likelihood property of the non-central chi-squared dis-
tribution family.

As a result, the associated tests are more powerful than the related
tests in the literature. For example, in comparing to the usual confidence
set C0(X) and Cbch(X), proposed in Brown et al. (1995), which minimizes
the expected volume at the origin among all 1−α confidence sets for θ (see
Brown et al. (1995) for details), we have

Corollary 2.1. For p ≥ 1, C∗(X) induces more powerful bioequivalence
test than both C0(X) and Cbch(X).

Proof. It is easy to see that ef`(Cbch(x)) = 2(||x||+ zα) and ef`(C0(x)) =
2(||x|| + k), where k2 is the 1 − α cutoff point of a chi-square distribution
with p degrees of freedom. The proof is complete since as tests for (1.1),
they are both based on ||X||.
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Figure 2: Power Functions of C∗(x) (solid lines) and Cbch(x) (dashed lines) for

testing bioequivalence when p = 1, α = 0.1 and zα = 1.28 with values of δ as

indicated. The horizontal dotted line denotes Power = α line.

Figure 1 compares the one-dimensional 90% confidence interval C∗(X)
with Cbch(X) which, when p = 1, is

Cbch(X) = {θ : min(0, X − zα) ≤ θ ≤ max(0, X + zα)} .

For an observation x0, the limits of C∗(x0) (Cbch(x0)) are given by the
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intersection of the solid lines (dashed lines) and the line x = x0. It is
obvious from the graph that for very small values of x, C∗(x) is narrower
than Cbch(x). For larger values of x, however, it is not surprising to see
that C∗(x) is wider. Nevertheless, we can see from the picture that for
most of the x values ef`(C∗(x)) ≤ ef`(Cbch(x)). That is C∗(x) is better
than Cbch(x) in terms of effective length. In fact, Corollary 2.1 proves that
bioequivalence test induced by C∗(X) is more powerful than that associated
with Cbch(X). In Figure 2, the power functions of the associated tests of
C∗(X) and Cbch(X) when p = 1, α = 0.1 and ∆ = [−δ, δ] are graphed for
various values of δ. Note that the power function corresponding to Cbch(X)
is Pθ(|X|+ zα ≤ δ), and that corresponding to C∗(X) is Pθ

(|X|2 ≤ c(δ2)
)
.

It is noticed that the improvement can be substantial for small |θ| and,
especially, for small δ. In fact, when δ ≤ zα, Cbch(X) will never be entirely
contained in ∆ and, hence, in this case the test using Cbch(X) has power
zero for all θ. As a result, using Cbch(X) does not even give an unbiased
bioequivalence test. While, as we noted previously, using C∗(X) always
induce a unbiased bioequivalence test, regardless of the value of δ. One
remark before we leave this section:

Remark 2.1. From Figure 1, we see that sometimes C∗(x) is an empty set,
an ill conditional property as a confidence set. However, a better confidence
set per se is not our major concern. Instead, we aim at finding better tests
for (1.1) induced by confidence sets through the confidence approach. The
fact that C∗(x) is an empty set when ||x||2 < c(0) implies that the induced
test will declare average bioequivalence whenever the observation is very
near the origin. As we have seen, the induced test rejects H0, i.e., declares
bioequivalence, when ||x||2 ≤ c(δ2) which properly contain the region where
||x||2 < c(0). Hence, the possibility that C∗(x) being empty does not seems
to have a detrimental effect in terms of test.

3 Unknown Variance

Here, we first consider in Section 3.1 the case when ∆ is specified in terms
of the parameter η = θ/σ. In other words, drug products are declared
to be bioequivalent if their mean differences after “normalizing” by the
common variance lie within the pre specified set. There are many instances
in practice, especially in engineering science, where the “signal-to-noise
ratio”, η, is of interest and for such cases this formulation is naturally
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called for.

However, this is not what is currently suggested by the FDA (see
FDA 1992 for details) for drug companies’ conducting bioequivalence trials.
Hence, in Section 3.2 we propose an approximate confidence set, generalized
from (3.1), for the usual FDA formulation and present simulation results in
supporting its use. However, it is our strong belief that the “signal-to-noise
ratio” formulation should also be considered in the assessment of bioequiv-
alence for drug products. Of course, different settings may lead to distinct
optimal confidence sets.

3.1 Equivalence based on θ/σ

Here, assume that ∆ = {η : ||η|| ≤ δ}. To test (1.1) through the confidence
approach, our proposed confidence set for η is

C∗(X, S2) =
{

η :
||X||2
pS2

≥ c∗(||η||2)
}

(3.1)

where c∗(||η||2) is the α cutoff point of a noncentral F distribution with
degrees of freedom p and m and the noncentrality parameter ||η||2.

The following results are very similar to those in Section 2, hence their
proofs are omitted.

Theorem 3.1. Let p ≥ 1. Suppose that ∆ = {η : ||η|| ≤ δ} with a constant
δ > 0. Then, the test induced by C∗(X,S2) is uniformly most powerful for
(1.1) among tests based on ||X||/S, regardless of δ.

Theorem 3.2. Among all η’s 1− α confidence sets whose effective length
depends on X, S2 only through ||X||/S , C∗(X,S2) minimizes the expected
effective length at θ = 0 for every σ2 > 0.

Remark 3.1. Brown et al. (1995) also propose a 1−α confidence interval
for η and their interval is proved to minimize the expected volume at θ = 0
and any σ > 0. While, the set C∗(X, S2) presented here minimizes the
expected effective length at θ = 0 and any σ > 0. Since the effective
length is the right measure for testing bioequivalence, the associated test
of C∗(X,S2) is more powerful. Comparisons in power between these two
tests are expected to be similar as those we have in Figure 2, hence are not
provided.
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3.2 Equivalence based on θ

We now present the approximated confidence region for testing average
bioequivalence under the FDA formulation. Simulations on its coverage
probabilities and the power comparison between its associated test and
that proposed by Schuirmann (1987) and RI in Wang et al. (1999) are pro-
vided, respectively. All results are based on 10000 simulations.

Modifying the set in Section 3.1, we propose an approximated confi-
dence region, denoted by Ca(X, S2), for bioequivalence testing. Define

Ca(X, S2) =
{

θ :
||X||2
pS2

≥ c∗(||θ||2/S2)
}

.

Note that Ca(X,S2) is an approximated confidence set for θ since its cov-
erage probability is now no longer a constant 1− α.

Table 3.2 provides the simulated coverage probabilities of Ca(X, S2)
when p = 1 with α = 0.1 and 0.05. Note that the coverage probabilities
are not very far off the nominal one 1− α except possibly for |θ| near the
value δ. We also notice that for small σ, Ca(X, S2) seems to have coverage
probabilities larger than 1− α.

Figure 3 gives the simulated power function of Ca(X, S2) and the nu-
merically calculated power function of Schuirmann’s test for δ = 1, m = 20,
α = 0.1 or 0.05 and σ = 0.3, 0.55, or 0.8. Since the power functions of
Ca(X, S2) are simulated curves, due to possible simulation errors solid lines
in Figure 3 are not as smooth as those dashed lines which are calculated
by numerical integrations. Nevertheless, it is clear from these power curves
that Ca(X, S2) improves upon Schuirmann’s two one-sided test. In par-
ticular, when σ = 0.55 or 0.8, for smaller values of θ we see a noticeable
improvement in power of our test over the two one-sided tests procedure.
This range of σ is not unusual in testing bioequivalence, as best explained
in Brown et al. (1997). We also notice that Schuirmann’s test can have
very poor power for large σ; while for |θ| ≤ δ, Ca(X, S2)′s power seems to
remain being above α. We also did simulations corresponding to σ < 0.3.
The powers of the two tests are quite similar in these cases, hence no figures
are reported for σ < 0.3. Simulations we had for the case when m = 10
show similar comparison results, hence are not reported, either.

In Wang et al. (1999) Schuirmann’s test is generalized for multivariate
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bioequivalence. More precisely, for testing the hypotheses

H0 : max
1≤i≤p

|θi| ≥ ∆0 vs H1 : max
1≤i≤p

|θi| < ∆0 (3.2)

the generalized test has the rejection region

RI =
p⋂

i=1

Ri = {|Xi| < ∆0 − tm(α)S, for all i = 1, . . . , p} ,

where tm(α) is the upper α quantile of Student’s t−distribution with m
degrees of freedom. Note that the hypotheses (3.2) differ from (1.1) in that
they have different regions for bioequivalence. Table 2 provides simulated
powers at θ = 0 of Ca(X, S2) and RI for cases where δ = ∆0, δ =

√
p∆0,

or volume of ∆ = (2∆0)p volume of the region for bioequivalence in (3.2)
with various values of ∆0, and p = 2, 3. It is quite evident that for most
cases Ca(X, S2) has a higher power than RI . In many cases the power
improvements in Table 2 are larger or much larger than 0.10. Exceptions
are the cases when δ = ∆0 = 1 where RI has a higher power. But, when
δ = ∆0 = 1 the region for bioequivalence in (3.2) is much larger in size than
that in (1.1), as a result, such way of power comparison is in favor of RI . We
also notice from Table 2 that RI is biased for several cases, while the power
of Ca(X, S2) are all larger than α. Based on our simulation, the associated
test of Ca(X,S2) seems to be unbiased. If so, unlike RI , its power function
cannot be decreasing with respect to each |θi|. Otherwise, it would be
a trivial test as implied by Theorem 2 of Wang et al. Straightforward
derivations show that the power function of our test is decreasing with
respect to ||θ||, instead. Both tests associated with Ca(X, S2) and RI have
maximum power at θ = 0 – a desirable property. Seemingly, better unbiased
tests for either (1.1) or (3.2) can be obtained when considering tests whose
power is a decreasing function of ||θ||, rather than |θi| for all i.

As a closing note: Wang et al. (1999) compares the simulated power of
the tests based on RI and RI

U , a generalization based on Wang et al. (1999).
With few exceptions in extreme cases, the powers are comparable. They
hence conclude “Drastically different methods have to be considered in order
to improve upon RI substantially.” (cf. page 401, Wang et al.) Interestingly,
our study suggests otherwise: Based on the confidence approach (still), the
simulation shows our tests have substantially better power performance
than theirs – maybe a suitable choice of the test statistic will just do the
trick.
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α = 0.1/α = 0.05
m = 10 m = 20

|θ| σ = 0.3 σ = 0.55 σ = 0.8 σ = 0.3 σ = 0.55 σ = 0.8
0 .899/.950 .903/.948 .901/.947 .900/.950 .899/.946 .902/.950

0.1 .894/.945 .905/.945 .900/.950 .900/.949 .902/.949 .897/.948
0.2 .892/.949 .903/.949 .895/.948 .900/.950 .903/.945 .904/.950
0.3 .889/.946 .898/.948 .897/.948 .897/.948 .899/.946 .899/.950
0.4 .886/.939 .896/.949 .894/.948 .894/.944 .901/.948 .899/.950
0.5 .881/.935 .899/.947 .895/.947 .895/.937 .895/.948 .899/.945
0.6 .885/.936 .885/.944 .892/.946 .893/.942 .884/.949 .893/.948
0.7 .894/.937 .878/.941 .893/.947 .896/.940 .892/.948 .895/.948
0.8 .892/.937 .876/.933 .886/.942 .895/.946 .893/.946 .899/.950
0.9 .897/.942 .877/.931 .889/.943 .905/.943 .886/.946 .889/.945

1 .904/.947 .885/.935 .887/.937 .903/.946 .891/.940 .893/.943
1.1 .908/.948 .882/.932 .884/.937 .902/.947 .887/.940 .888/.946
1.2 .915/.958 .891/.933 .883/.936 .907/.948 .894/.943 .892/.940
1.3 .919/.960 .885/.933 .885/.932 .909/.955 .892/.939 .893/.940
1.4 .931/.963 .892/.938 .883/.932 .919/.960 .895/.946 .892/.942
1.5 .931/.971 .893/.935 .880/.931 .920/.957 .898/.943 .886/.942
1.6 .941/.972 .898/.944 .881/.930 .923/.966 .898/.940 .889/.944
1.7 .944/.977 .901/.945 .891/.931 .927/.965 .905/.942 .894/.941
1.8 .953/.980 .903/.949 .889/.938 .931/.971 .901/.947 .896/.942
1.9 .954/.980 .906/.947 .890/.937 .937/.971 .901/.949 .896/.940

Table 1: Simulated coverage probabilities of Ca(X,S2)
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Figure 3: Power Functions of Ca(X, S2) (solid line) and Schuirmann’s test (dashed

line) when m = 20 and δ = 1 with α = 0.1 or 0.05 and various values of σ.
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δ = ∆0 = ln(1.25)
p = 2

α = 0.05 α = 0.1
σ = 0.2 0.4 0.6 0.2 0.4 0.6
Ca(X,S2) 0.0944 0.0564 0.0563 0.1863 0.1210 0.1022
RI 0.0911 0.0196 0.0119 0.1886 0.0530 0.0341
p = 3

α = 0.05 α = 0.1
σ = 0.2 0.4 0.6 0.2 0.4 0.6
Ca(X,S2) 0.0872 0.0583 0.0513 0.1673 0.1131 0.1029
RI 0.0295 0.0040 0.0012 0.0848 0.0146 0.0068

δ = ∆0 = 1, α = 0.1
p = 2 p = 3

σ = 0.2 0.4 0.6 0.2 0.4 0.6
Ca(X,S2) 0.9989 0.6670 0.3239 0.9975 0.5973 0.2861
RI 0.9994 0.7719 0.4001 0.9994 0.6845 0.2665

δ =
√

p∆0, ∆0 = 1, α = 0.1
p = 2 p = 3

σ = 0.2 0.4 0.6 0.2 0.4 0.6
Ca(X,S2) 1.0000 0.9423 0.6175 1.0000 0.9841 0.7438
RI 0.9996 0.7736 0.4040 0.9997 0.6852 0.2797

Volume of ∆ = (2∆0)p, ∆0 = 1, α = 0.1
p = 2 p = 3

σ = 0.2 0.4 0.6 0.2 0.4 0.6
Ca(X,S2) 0.9998 0.7802 0.4116 1.0000 0.8073 0.4222
RI 0.9995 0.7671 0.4143 0.9992 0.6840 0.2708

Table 2: The simulated power at θ = 0 of the test induced from Ca(X, S2) and

the test RI in Wang et al. (1999) when m = 20, p = 2, 3, α = 0.05, 0.1 and

σ = 0.2, 0.4, 0.6
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