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Part I

Tao’s finitizations



What are finitizations

In 2007 and 2008, Terence Tao wrote essays about finitization of
statements in analysis.

Soft analysis

Deals with:
• infinite objects (example: sequences);
• qualitative properties (example: convergence).

Hard analysis

Deals with:
• finite objects (example: finite sets);
• quantitative properties (example: bounds).

Finitization
A finitization of a soft analysis statement is an equivalent hard analysis
statement.



Motivation for finitizations

Exact relations between quantities

• Soft analysis is hard analysis with the relations hidden.
• Hard analysis is soft analysis with the relations made explicit.
Finitizations make the relations explicit.

Example

Consider xn := 1
n2

→ 0.

soft analysis hard analysis

∀ε > 0, ∃N : ∀n > N, |xn − 0| < ε ∀ε > 0, ∀n > 1
√

ε
, |xn − 0| < ε

no relation between N and ε N = 1
√

ε



Motivation for finitizations

Long and short range mathematics

• Soft analysis is good for long range mathematics (it moves faster by
ignoring exact quantities).

• Hard analysis is good for short range mathematics (refining existing
results by relating the exact quantities).

Finitizations refine long range mathematics.

Example

In Green-Tao theorem (establishing arbitrarily long arithmetic progressions
of primes), they used

soft analysis hard analysis

intuitions from ergodic
theory to know how to

proceed

finitizations of ergodic
theory arguments to

actually prove the result



Motivation for finitizations

Best of both worlds
There are connections between soft analysis and hard analysis that allow:
• to use soft analysis in hard analysis;
• to use hard analysis in soft analysis.
Finitizations can be used in both soft and hard analysis.

Examples

soft analysis hard analysis connection

ergodic theory
combinatorial
number theory

Furstenberg
correspondence

principle

ergodic graph
theory

graph theory
graph

correspondence
principle



Examples of finitizations

Infinite convergence principle

Every monotone bounded sequence of real numbers is convergent.

Finite convergence principle

Every long enough (length M) bounded monotone sequence has arbitrary
high-quality (error tolerance ε) long (length F (N)) amounts of stability:

∀ε > 0, F : N → N,

∃M ∈ N : ∀(xn)n=1,...,M ⊆ [0, 1] monotone,

∃N ≤ M : ∀m, n ∈ [N,N + F (N)], |xm − xn| ≤ ε
︸ ︷︷ ︸

xn is stable with error ε in a interval of length F (N)

.



Examples of finitizations

• Denote {1, . . . , k} by k .
• A sequence (An) ⊆ Pfin(N) weakly converges to I ∈ Pinf (N) if for all
k ∈ N eventually we have An ∩ k = I ∩ k .

• A function F : Pfin(N) → N is asymptotically stable near infinite sets
(F ∈ ASNIS) if for all all weakly convergent sequences (An), F (An)
eventually becomes constant.

Infinite pigeonhole principle IPP

Every colouring of N with finitely many colours has an infinite colour class.

Tao’s “finitary” infinite pigeonhole principle FIPPT

Every colouring f of a large enough initial segment k of N with finitely
many colours n has a big colour class A:

∀n ∈ N, F ∈ ASNIS , ∃k ∈ N :

∀f : k → n, ∃c < n, A = f −1(c)
︸ ︷︷ ︸

exists a colour class

: |A| > F (A)
︸ ︷︷ ︸

that is big

.



Examples of finitizations

IPP
Every colouring of N with finitely
many colours has an infinite
colour class.

FIPPT

∀n ∈ N, F ∈ ASNIS ,
∃k ∈ N : ∀f : k → n,
∃c < n, A = f −1(c) : |A| > F (A).

Proof of IPP ⇒ FIPPT.

• Assume IPP and, by contradiction, ∼FIPPT. We have n ∈ N, F ∈ ASNIS
and a sequence fk : k → n such that:
(∗) no Ak = (fk)

−1(c) verifies |Ak | > F (Ak).

• Extend fk to f̄k : N → n. The f̄k ’s are in the sequentially compact nN, so
(a subsequence of) f̄k converges to some f : N → n.

• By IPP, f has an infinite colour class f −1(c).

• Unfolding f̄k → f we see that Ak = (fk)
−1(c) weakly converges to

f −1(c). Then F stabilizes over (Ak) but |Ak | → ∞. So
∃k ∈ N : |Ak | > F (Ak), contradicting (∗).



Summary

• Tao’s finitizations: soft analysis → hard analysis.
• Examples:
- infinite convergence principle → finite convergence principle;
- IPP → FIPPT.

• Contradiction and sequential compactness argument.



Part II

Two logical points



Point 1: Gödel functional interpretation

• PAω is a Peano arithmetic that deals with N, NN, (NN)N, N(NN), . . .

• The axiom of choice AC is ∀x , ∃y : A(x , y) ⇒ ∃f : ∀x , A(x , f (x))
(A without ∀,∃).

Gödel functional interpretation

Is a function A 7→ AG = ∃x : ∀y , AG (x , y) (AG without ∀,∃) such that:
• if PAω + AC proves A, then PAω proves AG (f , y),
for suitable functions f extracted from a proof of A;

• PAω +AC proves A ⇔ AG .

AG (f , y ) is essentially a finitization of A

• AG (f , y) is a hard analysis statement.
• A ⇔ AG .
• PAω proves AG (f , y) if and only if PAω proves AG with x = f .

Point 1
Gödel functional interpretation finitizes systematically.



Point 2: Heine-Borel compactness

Sequential compactness

Every sequence has a
convergent subsequence.

Heine-Borel compactness

Every continuous function is bounded.
Every open cover has a finite subcover.

Reverse mathematics
Seeks to find which axioms are need to prove theorems. The axioms
considered are the big five subsystems of second order arithmetic:

S1 // S2 // S3 // · · ·

PA with
induction for ∃x : A(x , n)

(A without ∀,∃)

PA with
induction for ∃x : A(x , n)

(A without ∀,∃)

PA with
all induction

only
computable

sets

some
non-computable

sets

all arithmetical
sets {n ∈ N : A(n)}

Heine-Borel
compactness

sequential
compactness



Point 2: Heine-Borel compactness

S1 // S2 // S3 // · · ·

Heine-Borel
compactness

sequential
compactness

Assume that AC is true. Then AC finitizes into 1 + 1 = 2:
• AC ⇔ 1 + 1 = 2 (they are both true);
• 1 + 1 = 2 is a hard analysis statement.
The semantic equivalence doesn’t discriminate between true statements.

Let “equivalence” mean “equivalence provable in set theory ZF”. Now
AC < 1 + 1 = 2. We have more discrimination.

S2 is weaker than S3, so S2 discriminates more than S3.

Point 2
We should prefer Heine-Borel compactness.



Summary

• Point 1: Gödel functional interpretation finitizes systematically.
• Point 2: we should prefer Heine-Borel compactness.



Part III

A case study



Point 1: Gödel functional interpretation

A function F : Pfin(N) → N is asymptotically stable (F ∈ AS) if for all
chains A1 ⊆ A2 ⊆ · · · in Pfin(N), F (An) eventually becomes constant.

IPPG is essentially:

Kohlenbach’s “finitary” infinite pigeonhole principle FIPPK

Every colouring of a large enough initial segment of N with finitely many
colours has a big subset of a colour class:

∀n ∈ N, F ∈ AS , ∃k ∈ N :

∀f : k → n, ∃c < n, A ⊆ f −1(c) : |A| > F (A).

Tao’s “finitary” infinite pigeonhole principle FIPPT

Every colouring of a large enough initial segment of N with finitely many
colours has a big colour class:

∀n ∈ N, F ∈ ASNIS , ∃k ∈ N :

∀f : k → n, ∃c < n, A = f −1(c) : |A| > F (A).



Point 2: Heine-Borel compactness

IPP
Every colouring of N with finitely
many colours has an infinite
colour class.

FIPPK

∀n ∈ N, F ∈ AS ,
∃k ∈ N : ∀f : k → n,
∃c < n, A ⊆ f −1(c) : |A| > F (A).

Theorem
S2 proves IPP ⇔ FIPPK.

Proof of IPP ⇒ FIPPK.
• Prove ∀f : N → n, ∃i ∈ N :

B(f ,i)
︷ ︸︸ ︷

∃c < n, A = f −1(c) ∩ i : |A| > F (A).

• Heine-Borel compactness: φ(f ) := min i : B(f , i) is total and continuous
on the compact nN, so it has an upper bound k .

• f only appears in f −1(c) ∩ i with i ≤ k , so f |k suffices.



Summary

Tao’s finitizations
• Tao’s finitizations: soft analysis → hard analysis.
• Examples:
- infinite convergence principle → finite convergence principle;
- IPP → FIPPT.

• Contradiction and sequential compactness argument.

Two logical points

• Point 1: Gödel functional interpretation finitizes systematically.
• Point 2: we should prefer Heine-Borel compactness.

A case study

• Point 1: IPP → FIPPK by Gödel functional interpretation.
• Point 2: S2 proves IPP ⇔ FIPPK by Heine-Borel compactness.
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