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1. INTRODUCTION

These notes are concerned with moduli spaces of bundles on a smooth pro-
jective curve. Over them we consider determinant line bundles and their holo-
morphic Euler characteristics, the Verlinde numbers. The goal is to give a brief
exposition of the two-dimensional topological quantum field theory that cap-
tures the structure of the GL Verlinde numbers, associated with spaces of bun-
dles with varying determinant. Our point of view is to emphasize the close
connection with another TQFT, the quantum cohomology of the Grassmannian.

Two different geometries are related here, the moduli of bundles on a curve
C and the space of maps from C to a suitable Grassmannian. The connection
between them was established in the classic paper [W] where the open and
closed invariants of the GL Verlinde TQFT, in all genera, were exhaustively
written in both geometries. On the mathematical side, it was shown [A] that
the underlying algebras of the two TQFTs are isomorphic, as the genus zero
three-point invariants match. The TQFTs turn up different invariants overall,
due to a discrepancy in the metrics of the associated Frobenius algebras. More-
over, the higher genus GL Verlinde invariants, open or closed, have not been
systematically written down in the mathematics literature although they were
shown in [W] to have compelling closed-form geometric expressions. We found
it useful therefore to render the results of [W] in standard mathematical lan-
guage, also with a view toward future studies of q-deformations of ordinary
two-dimensional Yang Mills theory.

The exposition is organized as follows. After briefly recalling the notion of
a two-dimensional TQFT in the next section, we introduce in our context, on a
smooth projective curve C, the two spaces of interest: the ancestor of all mod-
uli spaces of sheaves, the Grothendieck Quot scheme, and the moduli space of
semistable bundles. We present the former here primarily as compactifying the
space of maps from the curve to a Grassmannian. Relevant aspects of the ge-
ometry and intersection theory of the two spaces are discussed. The last section
studies the relation between them, in the form of the GL Verlinde TQFT, which
we also refer to as the Grassmann TQFT.
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2. GENERALITIES ON TWO-DIMENSIONAL TQFTS

We consider the category 2Cob, in which
(i) the objects are one-dimensional compact oriented manifolds i.e., finite

unions of oriented circles;
(ii) the morphisms are (diffeomorphism classes of) oriented cobordisms;

(iii) composition of morphisms is concatenation of cobordisms;
(iv) there is a tensor structure given by taking disjoint unions of objects.
Let VectC be the category of C-vector spaces. A two-dimensional C-valued

TQFT is a symmetric monoidal functor

F : 2Cob −→ VectC.

There is a basic vector space H in the theory, representing the value of the func-
tor F at the oriented circle S1. In addition, F associates to the empty manifold
the vector space C.

The datum of the functor is equivalent to the structure of a commutative
Frobenius algebra on H. By definition this comprises

(i) a commutative associative multiplication

H ⊗ H •→ H

with identity element, and
(ii) a symmetric nondegenerate pairing

(· , ·) : H ⊗ H → C
satisfying the Frobenius property

(a · b, c) = (a, b · c).

Indeed, if Wt
s(g) is the genus g cobordism with s inputs and t outputs, then

(i) F(W1
2 (0)) : H ⊗ H→H is the algebra multiplication,

(ii) F(W1
0 (0)) : C → H is the identity element,

(iii) F(W0
2 (0)) gives the pairing (· , ·).

Viewed as a cobordism from the empty manifold to the empty manifold, a
closed surface of genus g corresponds under F to a homomorphism from C to
C, thus to a number F(g),

F(g) = F(W0
0 (g)).

Let us assume that H has a preferred basis,

H =
⊕

λ

Ceλ.
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The vector space H⊗s has a basis eλ indexed by multi-indices λ = (λ1, . . . , λs):

eλ = eλ1 ⊗ · · · ⊗ eλs .

We denote by F(g)
µ

λ the matrix entries of the cobordism homomorphism

F(Wt
s(g)) : H⊗s −→ H⊗t

in this basis. We thus have

F(Wt
s(g)) : eλ 7→ F(g)

µ

λ eµ,

where λ, µ are multi-indices (with s and t components respectively). The TQFT

is equivalent to the data of the numbers F(g)
µ

λ satisfying gluing rules which
reflect the functoriality,

(1) ∑
µ

F(g1)
µ

λ F(g2)
ν
µ = F(g1 + g2 + t− 1)ν

λ.

Here t is the number of components of the multi-index µ, which is summed
over.

3. THE QUOT SCHEME QC(G(r, n), d)

Let C be a smooth complex projective curve of genus g. We let QC(G(r, n), d)
denote the Grothendieck Quot scheme parametrizing rank n− r degree d quo-
tients of the rank n trivial sheaf on C. A point in the Quot scheme is given by a
short exact sequence

0 → E → OC ⊗Cn → F → 0.

While the kernel sheaf E is always locally free, the quotient F is in general a sum

F = F⊕ T,

with F locally free and T a torsion sheaf supported at finitely many points of the
curve C.

The quotients F which are locally free form an open locus in QC(G(r, n), d),
and can be regarded as degree d maps

f : C → G(r, n)

from C to the Grassmannian G(r, n) of r planes in Cn. The Quot scheme may be
viewed as compactifying the space Mord(C, G(r, n)) of degree d maps to G(r, n):

Mord(C, G(r, n)) ↪→ QC(G(r, n), d).
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3.1. Examples. When C = P1 and r = 1, the Quot scheme QP1(Pn−1, d) is the
projectivized space of n homogeneous degree d polynomials in C[x, y],

QP1(Pn−1, d) ' Pn(d+1)−1.

In general, when r = 1 and C has arbitrary genus, QC(Pn−1, d) parametrizes
exact sequences

0 → L → OC ⊗Cn → Q → 0
where L is a line bundle of degree −d. Equivalently, dualizing such exact se-
quences, points in the space are degree d line bundles L∨ on C together with n
sections, not all zero:

OC ⊗Cn∨ → L∨.
Let Jacd(C) be the Picard variety of degree d line bundles on C, and let

π : Jacd(C)× C → Jacd(C)

be the projection. For d sufficiently large, d ≥ 2g− 1, the push forward π?P of
the Poincaré line bundle

P → Jacd(C)× C

is locally free, and its fiber over [L] ∈ Jacd(C) is the space H0(C, L) of sections
of L. In this case,

QC(Pn−1, d) ' P((π?P)⊕n) → Jacd(C).

Although for arbitrary r the Quot scheme does not have such a simple de-
scription, it remains true that the space is well-behaved in the regime of large
degrees d:

Theorem 1. [BDW] For d >> r, n, g, the space QC(G(r, n), d) is irreducible, generi-
cally smooth, and has the expected dimension.

3.2. Structures. As a fine moduli space, the Quot scheme carries a universal
sequence

0 → S → O⊗Cn → Q → 0 on QC(G(r, n), d)× C,

with the universal subsheaf S being locally free. The tangent sheaf to QC(G(r, n), d)
is given as

T QC(G(r, n), d) ' Homπ(S ,Q),
where

π : QC(G(r, n), d)× C → QC(G(r, n), d)
is the projection. The obstruction sheaf is Ext1

π(S ,Q). The expected dimension
is

e = nd− r(n− r)(g− 1)
by the Riemann-Roch formula.
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The Chern classes of the universal subsheaf are natural to consider for the
intersection theory of QC(G(r, n), d). Fixing a basis

1, δ1, . . . , δ2g, ω

for the cohomology of the curve C, we write

ck(S∨) = ak ⊗ 1 +
2g

∑
i=1

bi
k ⊗ δi + fk ⊗ω, 1 ≤ k ≤ r,

where

ak ∈ H2k(QC(G(r, n), d), C), bi
k ∈ H2k−1(QC(G(r, n), d), C),

fk ∈ H2k−2(QC(G(r, n), d), C).
Note that

(2) fk = π?ck(S∨),

while for p ∈ C and
Sp = S|QC(G(r,n),d)×{p} ,

we have

(3) ak = ck(S∨p ).

When d is large so that QC(G(r, n), d) is irreducible, top intersections of the
tautological a, b and f classes can be evaluated meaningfully against the fun-
damental class. For arbitrary degrees, the Quot scheme may be reducible and
oversized. However, intersection theory can still be pursued in a virtual sense,
by pairing Chern classes against a virtual fundamental cycle of the expected
dimension, which the Quot scheme possesses:

Theorem 2. [CFK], [MO1] The Quot scheme QC(G(r, n), d) has a two-term perfect
obstruction theory and a virtual fundamental class of expected dimension

[QC(G(r, n), d)]vir ∈ Ae(QC(G(r, n), d)).

Proof. We show that the tangent-obstruction complex for QC(G(r, n), d) ad-
mits a resolution

(4) 0 → Homπ(S ,Q) → A0 → A1 → Ext1
π(S ,Q) → 0,

where the sheaves A0 and A1 are locally free. The virtual fundamental class is
then standardly constructed as described in [LT], using the two vector bundles
A0,A1.

The resolution is easily obtained as follows. LetO(1) be a degree 1 line bundle
on the curve C, and denote by S(m),Q(m) the twists of the tautological sheaves
by the pullback of O(m) on C to the product QC(G(r, n), d)× C. Let m be large
enough so that

R1π?S(m) = R1π?Q(m) = 0,
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and so that the evaluation map

π?
(

R0π?S(m)
)
→ S(m)

is surjective. The pushforward sheaves R0π?S(m), R0π?Q(m) are then locally
free. Further let K be the kernel

0 → K → π?
(

R0π?S(m)
)
⊗O(−m) → S → 0.

Applying the functor Homπ(·,Q) gives

0 → Homπ(S ,Q) →
(

R0π?S(m)
)∨
⊗ R0π?Q(m) → Homπ(K,Q) →

→ Ext1
π(S ,Q) → 0.

Continuing this sequence one more term we get Ext1
π(K,Q) = 0, so the sheaf

A1 =def Homπ(K,Q)

is locally free. Also,

A0 =def

(
R0π?S(m)

)∨
⊗ R0π?Q(m),

is locally free. �

3.3. Intersections. In this section, we will consider the (virtual) intersection
theory of Quot schemes.

We start by pointing out the compatibility of the virtual fundamental class
with the natural embedding, for p ∈ C,

ιp : QC(G(r, n), d) ↪→ QC(G(r, n), d + r),
given by

{E ↪→ OC ⊗Cn} 7→ {E(−p) → E → OC ⊗Cn}.
A degree −d− r subsheaf

E′ ↪→ OC ⊗Cn

comes from QC(G(r, n), d) if the dual map

OC ⊗Cn∨ → E′∨

is zero at p. The image of the degree d Quot scheme inside the degree d + r
space is therefore the zero locus of the dual universal map

O ⊗Cn∨ → S∨p on QC(G(r, n), d + r).

This relationship is reflected on the level of the virtual fundamental classes for
the two spaces. We recall that ar is the top Chern class of the universal subsheaf
S∨p before noting that
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Proposition 1. [MO1] The equality

(5) ιp?
[QC(G(r, n), d)]vir = an

r ∩ [QC(G(r, n), d + r)]vir

holds in A?(QC(G(r, n), d + r)).

The intersection theory of a-classes is well understood. Top intersections are
given in closed form by the Vafa-Intriligator formula. Furthermore, in the large-
degree regime, the intersection numbers express counts of maps from the curve
C to the Grassmannian G(r, n), satisfying incidence constraints. More precisely,
we have:

Theorem 3. (i) [Ber], [ST], [MO1] Let J(x1, . . . , xr) be the symmetric function

J(x1, . . . , xr) = nr · x−1
1 · · · x−1

r ∏
1≤i<j≤r

(xi − xj)−2.

Let P(a1, . . . , ar) be a top degree polynomial in the Chern classes of S∨p . Then∫
[QC(G(r,n),d)]vir

P(a1, . . . , ar) = u · ∑
λ1,...,λr

R(λ1, . . . , λr) Jg−1(λ1, . . . , λr),

where R is the symmetric polynomial obtained by expressing P(a1, . . . ar) in terms of
the Chern roots of S∨p . The sum is taken over all (n

r) tuples

(λ1, . . . , λr)

of distinct n-roots of 1. Here

u = (−1)(g−1)(r
2)+d(r−1).

(ii) [Ber] When QC(G(r, n), d) is irreducible of the expected dimension, the above in-
tersection counts the number of degree d maps from the curve C to G(r, n) sending fixed
distinct points of C to special Schubert subvarieties of the Grassmannian, each Schubert
variety matching an appearance of an a-class in the top monomial P.

The intersection numbers appearing in Theorem 3 were written down in [I].
Mathematical proofs have relied either on degenerations of the Quot scheme
to genus zero, or on equivariant localization. Degeneration arguments use the
enumerativeness of the a-intersections in the large-degree situation.

By contrast, intersections involving f -classes do not give actual counts of
maps, and explicit formulas for them have been relatively little explored. To
describe one such formula, we let

σi(x) = σi(x1, . . . , xr) and σi;k(x) = σi;k(x1, . . . , xr)

be the ith elementary symmetric functions in the variables

x1, . . . , xr and x1, . . . , x̂k, . . . , xr

respectively. In the second set of variables, xk is omitted.
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Theorem 4. [MO1] Letting Dl, 2 ≤ l ≤ r, be the first-order differential operator

Dl = (g− 1)(r− l + 1)(n− r + l − 1) · σl−1(x) +
r

∑
k=1

σl−1;k(x) xk ·
∂

∂xk
,

we have∫
[QC(G(r,n),d)]vir

fl · P(a1, . . . , ar) =
u
n ∑

λ1,...,λr

(DlR)(λ1, . . . , λr) · Jg−1(λ1, . . . , λr).

The sum is over all (n
r) tuples (λ1, . . . , λr) of distinct n-roots of 1.

It would be very interesting to generalize the Vafa-Intriligator formula to in-
clude all intersections of f and a-classes.

We turn now to a discussion of the second geometry of interest.

4. THE MODULI SPACE OF SEMISTABLE BUNDLES

4.1. Basics. We consider vector bundles of rank r and degree d on the smooth
curve C. We recall briefly the main facts in the moduli theory of semistable
vector bundles on C. The family of all vector bundles of fixed topological type
is not bounded, as one can immediately verify looking at vector bundles on
P1. A notion of stability is required to get a bounded problem. For any vector
bundle E, its slope µ(E) is defined as the ratio

µ(E) =
degree(E)
rank(E)

.

A vector bundle E is said stable (semistable) if for all subbundles F ↪→ E,

µ(F) < µ(E) (µ(F) ≤ µ(E)).

It follows easily that

Lemma 1. (i) If E is semistable with µ(E) ≥ 2g− 1, then H1(E) = 0.
(ii) If E is semistable with µ(E) ≥ 2g, then the evaluation map of sections

H0(E)⊗OC → E

is surjective.

Proof: Indeed, by Serre duality, H1(E) ' H0(E∨ ⊗ KC)∨, where KC denotes
the canonical bundle. Let L ↪→ KC be the image of an assumed nonzero homo-
morphism φ : E → KC. E is semistable and L is a quotient of E, so we must
have

µ(E) ≤ µ(L) = deg(L) ≤ deg(KC) = 2g− 2.
This contradicts the assumption, so there are no nonzero such homomorphisms
and H1(E) = 0. Regarding (ii), for any p ∈ C, taking cohomology for the se-
quence

0 → E(−p) → E → Ep → 0,
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and using the vanishing of (i), it follows that the fiber of E at p is generated by
global sections. �

Fixing a line bundle O(1) of degree 1 on C, there is therefore an integer m
such that for all semistable rank r and degree d vector bundles E, we have

H1(E(m)) = 0 and H0(E(m))⊗OC → E(m) → 0.

Any semistable E can be thus realized as a quotient

O⊕q
C (−m) → E → 0, with q = χ(E(m)),

i.e., as a point in the Quot scheme

Quotr,d
C (O⊕q

C (−m))

of quotients of O⊕q
C (−m) of rank r and degree d. The group SL(q) acts on this

Quot scheme, with a standard linearization. On the locus of vector bundle quo-
tients E in Quotr,d

C (O⊕q
C (−m)) for which the quotient map induces an isomor-

phism
H0(O⊕q

C ) ' H0(E(m)),
stability in the geometric invariant theory sense coincides with slope stability.
Restricting further to semistable quotients, we have an SL(q)-invariant sub-
scheme

Quotss ⊂ Quotr,d
C (O⊕q

C (−m)).
The GIT quotient

Quotss//SL(q) =def UC(r, d)

is an irreducible normal projective variety of dimension r2(g− 1) + 1, the mod-
uli space of semistable vector bundles of rank r and degree d. The open subset

Us
C(r, d) ⊂ UC(r, d)

parametrizing isomorphism classes of stable vector bundles is smooth and its
complement has codimension at least 2 in UC(r, d). For details on this standard
construction, we refer the reader to [LeP].

4.2. Line bundles on the moduli space and their Euler characteristics. Twist-
ing vector bundles by a line bundle of degree 1 on C gives an isomorphism

UC(r, d) ∼= UC(r, d + r),

so the dependence on degree is only modulo r. We assume further for simplicity
that

d = 0.
All constructions can be easily duplicated in the arbitrary degree situation.
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When r = 1, we have
UC(1, 0) ' Jac(C),

the Picard variety of degree 0 line bundles on C. Note that for a fixed line bundle
M on C of degree g− 1,

χ(L⊗ M) = 0 for L ∈ Jac(C).

The classical theta divisor relative to M is defined as

Θ1,M = {L ∈ Jac(C) such that h0(L⊗ M) 6= 0}.

Sections of the tensor powers of the line bundle O(Θ1,M) are the classical theta
functions, and

(6) h0(Jac(C),O(k Θ1,M)) = χ(Jac(C),O(k Θ1,M)) = kg

is the dimension of the space of level k theta functions.
For r > 1, we have similarly, when M is as before a line bundle of degree g− 1

on C,
χ(E⊗ M) = 0 for E ∈ UC(r, 0),

and we set

(7) Θr,M = {E ∈ UC(r, 0) such that h0(E⊗ M) 6= 0}.

As in the r = 1 case in fact, the divisor Θr,M has a determinantal scheme struc-
ture: for a family

E → S× C
of semistable rank r degree 0 vector bundles, flat over S, we consider a resolu-
tion

0 → R0π?(E ⊗ p?
C M) → F0

ϕ→ F1 → R1π?(E ⊗ p?
C M) → 0

of the direct image complex

Rπ?(E ⊗ p?
C M),

so that F0,F1 are locally free. Here we denoted by π and pC the projections

S× C π→ S, S× C
pC→ C.

The pullback of Θr,M to S is then the degeneracy locus of ϕ. The line bundle
O(Θr,M) is the descent of the determinant line bundle

det Rπ?(E ⊗ p?
C M)−1

from the Quot scheme Quotr,d
C (O⊕q

C (−m)), with E being the universal quotient.

The Picard group of UC(r, 0), described in [DN], is generated by the theta
line bundles O(Θr,M) as M varies in Picg−1(C), together with classical theta
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line bundles O(Θ1,M) on Jac(C). The latter are pulled back to UC(r, 0) via the
morphism

det : UC(r, 0) → Jac(C)

sending bundles to their determinants. More precisely,

Theorem 5. [DN] (i) Consider

ι : SUC(r,O) ↪→ UC(r, 0)

the moduli space of bundles with trivial determinant. The restriction

L =def ι?O(Θr,M),

is independent of the choice of M in Picg−1(C) and

Pic(SUC(r,O)) ∼= ZL.

(ii)
Pic(UC(r, 0)) ∼= ZO(Θr,M)⊕ det?(Pic (Jac(C))).

As in the classical case, the theta bundles on UC(r, 0) and SUC(r,O) have no
higher cohomology, so their holomorphic Euler characteristics give also the di-
mension of their spaces of sections. Explicit expressions for them, known as Ver-
linde formulas, were derived by several methods, and are significantly more com-
plicated than (6). The formulas are very similar for k powers of L on SUC(r,O)
and of O(Θr,M) on UC(r, 0). A slightly simpler and more convenient expression
arises however for the twist

O(k Θr)⊗ det?O(Θ1) ∈ Pic(UC(r, 0)).

Here we suppressed reference degree g− 1 line bundles for the theta bundles,
as the holomorphic Euler characteristic is independent of these choices. Writing
also, to simplify notation, Θr and Θ1 for the line bundles O(Θr) and O(Θ1), we
have

Vr,k
g =def h0(UC(r, 0), Θk

r ⊗ det?Θ1) = χ(UC(r, 0), Θk
r ⊗ det?Θ1)(8)

= ∑
StT={1,...,r+k}

|S|=r

∏
s∈S
t∈T

∣∣∣∣2 sin π
s− t
r + k

∣∣∣∣g−1

.

The sum is over the (r+k
r ) partitions of the first r + k natural numbers into two

disjoint subsets S and T of cardinalities r and k. Note that the numbers Vr,k
g

depend solely on the genus g of C, the rank r, and the level k.
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4.3. Parabolic counterparts. We would like to formulate degeneration rules for
the Verlinde numbers Vr,k

g . To this end, we turn to decorated moduli spaces of
rank r vector bundles on C. In addition to r, we think of the level k as fixed.
We denote by Pr,k the set of Young diagrams with at most r rows and at most k
columns. Enumerating the lengths of the rows, we write a diagram λ as

λ = (λ1, . . . , λr), k ≥ λ1 ≥ · · · ≥ λr ≥ 0.

Such vectors can also be regarded as highest weights for irreducible representa-
tions of the unitary group U(r), bounded by k.

We consider the curve C together with a finite set I of distinct points on it,
and partitions λp ∈ Pr,k labeled by the points p ∈ I. The lengths of columns in
a partition λ ∈ Pr,k give a flag type on an r-dimensional vector space. A vector
bundle E together with a choice of a flag in each of its fibers over the points in I,

0 ⊂ E1,p ⊂ E2,p ⊂ . . . ⊂ Ek,p = Ep

with flag type given for each p ∈ I by the partition λp, is referred to as a parabolic
vector bundle of type λ = (λp)p∈I .

The lengths of rows in a partition λp add the datum of a set of weights to the
flag type at p, and define a parabolic slope for E,

(9) µpar(E) =
d
r

+
|λ|
rk

,

with |λ| being the total number of boxes in all partitions λp, p ∈ I. As in the
case of undecorated bundles, the slope comes with a notion of semistability,
and there is a coarse projective moduli space UC(r, d, λ) of semistable rank r
degree d parabolic vector bundles of type λ, introduced in [MS].

The construction is similar to that of the undecorated space UC(r, d). Its brief
description here follows [P]. To start, let Ω be the open locus in the Quot scheme
Quotr,d

C (O⊕q
C (−m)) where the universal quotient sheaf

Q → Quotr,d
C (O⊕q

C (−m)) × C

is locally free, and in addition each quotient

O⊕q
C (−m) → E

in Ω gives an isomorphism

H0(O⊕q
C ) ' H0(E(m)).

For each point p ∈ I, consider next the restriction

Qp = Q|Ω×{p}

of the universal quotient bundle, and its associated flag bundle Flλp , where the
flag type is specified by the partition λp. Let R be the product over Ω of the flag
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bundles for each p ∈ I,

R = Flλp1
×Ω · · · ×Ω Flλpn

.

The moduli space of semistable parabolic vector bundles of type λ is the GIT
quotient

UC(r, d, λ) =def Rss//SL(q),

where Rss is the open semistable locus in R defined in terms of the slope (9).
We describe natural theta bundles over UC(r, d, λ). One can consider on Ω

the level k determinant line bundle

(det Rπ?(Q))−k ,
where as usual

π : Ω× C → Ω
is the projection. Furthermore each flag bundle Flλp carries a natural line bundle

Np → Flλp

restricting fiberwise to the Borel-Weil ample line bundle on the fibers. Con-
cretely, these Borel-Weil line bundles are determinants of universal quotients on
the flag bundle. Under the condition

(10) kd + |λ| ≡ 0 mod r

the tensor product

(det Rπ?(Q))−k ⊗
p∈I

Np ⊗ (det Qx)e

descends to a line bundle
Lλ → UC(r, d, λ)

on the GIT quotient. Here x is a point on the curve (which will be omitted from
the notation), and

e =
kd + |λ|

r
+ k(1− g).

When λ consists of empty partitions, and d = 0, we recover the space UC(r, 0)
and the line bundle Θr,M where M = O((g− 1)x).

We set

(11) Vr,k
g,d(λ) = h0(UC(r, d, λ),Lλ ⊗ det?Θ1) = χ(UC(r, d, λ),Lλ ⊗ det?Θ1).

The case of degree d = 0 is particularly important; for simplicity, we write

Vr,k
g (λ) = Vr,k

g,0(λ).
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The parabolic Verlinde numbers Vr,k
g (λ) are given by explicit elementary for-

mulas similar to (8). Refraining from writing these down, we describe next the
relationship between Vr,k

g (λ) and intersections on the Quot scheme.

5. THE GL VERLINDE TQFT AT FIXED RANK AND LEVEL

5.1. Euler characteristics and intersections on the Quot scheme. The theory of
Euler characteristics of determinant line bundles over the moduli space UC(r, 0)
is naturally related to the intersection theory of the space

Mord(C, G(r, k + r))

of degree d maps to G(r, k + r), where

d ≡ 0 mod r.

We discuss this connection, stated and proved in [W], [A], in the next section.
One of its most concrete aspects is the following remarkable formula for the
undecorated Verlinde numbers. Recall the top Chern class ar, defined in (3),
on the Quot scheme QC(G(r, k + r), d) compactifying Mord(C, G(r, k + r)). We
define the integer

t =
d
r
(k + r)− k(g− 1),

so that the expected dimension of QC(G(r, n), d) equals rt. The Verlinde number
Vr,k

g can be expressed as a top intersection

(12) Vr,k
g =

∫
[QC(G(r,k+r),d)]vir

at
r.

Note that although d is arbitrary divisible by r, Proposition 1 ensures that (12)
gives the same answer for different values of d.

It can be easily checked in fact that (12) holds: the Vafa-Intriligator sum giv-
ing the right-hand side integral can be immediately written as the elementary
formula (8). More satisfyingly, geometric arguments [MO2] relate the intersec-
tion theory of the space UC(r, d) with that of the Quot scheme QC(G(r, n), d) in
the large n limit. The particular expression of the Todd class appearing in holo-
morphic Euler characteristic calculations then recasts the Verlinde number Vr,k

g
as the intersection (12) on the finite Quot scheme QC(G(r, k + r), d).

An analogue of (12) holds for the decorated degree 0 Verlinde numbers Vr,k
g (λ),

which are well defined provided that

(13) |λ| ≡ 0 mod r.

To explain the result, we need more notation. To an individual partition λ ∈ Pr,k
we associate the Schur polynomial in the Chern roots x1, . . . , xr of the rank r
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universal sheaf S∨p :

σλ(x1, . . . , xr) =
det(xλj+r−j

i )
V(x1, . . . , xr)

,

where V(x1, . . . , xr) is the Vandermonde determinant. We denote the ensuing
class

aλ = σλ(S∨p ).

For a multipartition λ = (λ1, . . . , λn), we set

aλ = aλ1 · · · aλn .

Next, to a partition

λ : k ≥ λ1 ≥ · · · ≥ λr ≥ 0 in Pr,k,

we associate the conjugate partition λ? ∈ Pr,k,

λ? : k ≥ k− λr ≥ · · · ≥ k− λ1 ≥ 0.

The definition extends naturally to multipartitions λ.
When (13) holds, we have

(14) Vr,k
g (λ) =

∫
[QC(G(r,k+r),d)]vir

aλ? · at
r.

Here the degree d is as before any number divisible by r, and t is then taken to
satisfy the dimension equation

|λ?|+ rt = (k + r)d− rk(g− 1).

The identity (14) can be checked as earlier using the Vafa-intriligator formula
to calculate the right-hand side integral, and the Verlinde formula for parabolic
bundles in [Bea]. Formulas related to (14) were written down in [O] in the pro-
cess of establishing a level-rank duality on moduli of parabolic bundles.

5.2. The Grassmann TQFT. The Verlinde numbers are the closed invariants

F(g) = Vr,k
g

in a TQFT which we now describe. We refer to this theory equally as the GL
Verlinde, or the Grassmann TQFT. The theory was introduced in [W], which we
follow closely, while expressing the main facts in standard mathematical form.
The fundamental vector space of the TQFT, together with a preferred basis, is

H =
⊕

λ∈Pr,k

Cλ.

Considering the Grassmannian G(r, k + r) and its tautological sequence

0 → S → O⊗Cr+k → Q → 0,
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we think of x1, . . . , xr as being the Chern roots of the dual tautological bundle
S∨. In this case, the Schur polynomials σλ(x1, . . . , xr) give a basis for the coho-
mology of the Grassmannian, and we may view

H =
⊕

λ∈Pr,k

C σλ = H?(G(r, k + r), C).

The numbers F(g) were written in the previous section as intersections on a
suitable Quot scheme. The general matrix elements of F(Wu

s (g)) are integrals
on the Quot scheme as well. We consider the Quot schemes for all degrees at
once, setting

QC,r,k = ä
d

QC(G(r, k + r), d).

As explained in the previous subsection, they come equipped with natural co-
homology classes aλ, indexed by multipartitions. To start, for λ a multipartition
with s components, we define the matrix elements F(g)λ of the homomorphism

F(W0
s (g)) : H⊗s → C

by

(15) F(g)λ =
∫

[QC,r,k]vir
aλ · arg+k

r .

We define the matrix elements F(g)
µ

λ in full generality by

(16) F(g)
µ

λ =
∫

[Qr,k]vir
aλ · aµ? · ar(g+u)+k

r ,

where u is the number of components of the multipartition µ. Note that only
one summand contributes to the infinite sum (16), since integration only occurs
over the Quot scheme of degree

(17) d =
|λ| − |µ|

k + r
+ r(g + u).

If this expression does not yield an integer i.e.,

(18) |λ| 6≡ |µ| mod k + r

the matrix element F(g)
µ

λ is 0. Letting µ in (16) consist of no partitions, we
recover (15). When λ and µ both consist of no partitions, we obtain

F(g) =
∫

[Qr,k]vir
arg+k

r

which is a particular case of equation (12) for d = rg.
In the last section we show that the numbers F(g)

µ

λ satisfy the requisite gluing
formula (1) of a TQFT.
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Remark 1. Comparison with the quantum cohomology of G(r, k + r). There is a slight
asymmetry between the roles of λ and µ in (16), with only the number of com-
ponents of the multi-index µ appearing explicitly in the defining integral. This
reflects a twist in the metric F(W0

2 (0)) on the Frobenius algebra H. The metric
is given by

(σλ, σµ) = F(0)λ,µ =
∫

[QP1,r,k]
aλ aµ · ak

r ,

which manifestly differs from the usual Poincaré pairing∫
G(r,k+r)

aλ aµ.

Turning now to the algebra structure on H, we have

σλ · σµ = ∑
ν

F(0)ν
λ,µσν,

where
F(0)ν

λ,µ =
∫

[QP1,r,k]
aλ aµ aν? · ak+r

r =
∫

[QP1,r,k]
aλ aµ aν? .

The last integral gives precisely the structure constants of the quantum multipli-
cation on H?(G(r, k + r), C) in the Schur basis. Therefore, we obtain an algebra
isomorphism with quantum cohomology

H ∼= QH?(G(r, k + r)).

Being based on the Poincaré metric, the quantum cohomology as a TQFT is
different however from the Grassmann TQFT given by the numbers F(g)

µ

λ. This
is accounted for by the disparity between the two metrics.

5.3. Formulation in terms of Verlinde data. The closed invariants F(g) coin-
cide with the undecorated Verlinde numbers Vr,k

g . In general, matrix elements
F(g)λ can be expressed as Verlinde numbers. This is easily checked when

|λ| ≡ 0 mod r(k + r).

Since |λ?| is divisible by r, we have well-defined line bundle

Lλ? ⊗ det?Θ1

over the moduli space UC(r, 0, λ?). Letting

d = rg +
|λ|

k + r
,

we may apply (14) to conclude

F(g)λ = Vr,k
g (λ?).
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For arbitrary λ, the Verlinde number F(g)λ is non-zero when

|λ| ≡ 0 mod k + r,

cf. (18). In this situation, for the degree d given by (17):

d =
|λ|

k + r
+ rg,

we have
kd− |λ| ≡ 0 mod r ⇐⇒ kd + |λ?| ≡ 0 mod r.

Then, there is a well-defined line bundle

Lλ? → UC(r, d, λ?),

and we expect that

(19) F(g)λ = χ
(
UC(r, d, λ?),Lλ? ⊗ det?Θ1

)
.

More generally, we expect the equality

(20) F(g)
µ

λ = χ(UC(r, d, λ?, µ),Lλ?,µ ⊗ det?Θ1),

for the degree d as in (17). The parabolic Verlinde numbers for arbitrary degree
d have been less explored, but it should be possible to check these claims using
the formulas of [J].

Remark 2. Comparison with the SU(r) level k fusion algebra. A closely related
theory is the well-studied SL Verlinde TQFT described in [Bea] [TUY]. The un-
derlying vector space

H̃ =
⊕

ρ

Cρ

is labeled by heighest weight representations ρ of SU(r) at level k. Most con-
cretely, we think of ρ as equivalence classes of partitions λ ∈ Pr,k, where

λ ∼ µ

if λ and µ are obtained from one another by adding or subtracting the same
number of boxes from the rows.

In this basis, the matrix elements F̃(g)
µ

λ of the theory are given as Verlinde
numbers

F̃(g)
µ

λ = χ(Lλ,µ?)

where
Lλ,µ? → SUC(r, λ, µ?)

is the level k determinant bundle over the moduli space of parabolic bundles
with trivial determinant. The degeneration formulas, known as factorization
rules, were famously proved in [TUY] using the connection with conformal
blocks.
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The underlying algebra of the theory F̃ is a quotient of the quantum coho-
mology of G(r, k + r) in the available standard presentation of [ST]. This fact is
explained for instance in [KS].

5.4. Degeneration rules. To prove that the matrix elements F(g)
µ

λ satisfy (1),
we show the two degeneration formulas

(21) F(g)
µ

λ = ∑
ρ∈Pr,k

F(g− 1)
µ, ρ

λ, ρ,

and

(22) F(g)
µ

λ = ∑
ρ∈Pr,k

F(g1)
µ

1
λ1, ρ · F(g2)

µ2, ρ

λ2

for splittings
g = g1 + g2, λ = λ1 + λ2, µ = µ

1
+ µ

2
.

The argument is standard. Suppose first that a smooth curve C of genus g
degenerates to a nodal irreducible curve C0 with one node s, and let C̃ be the
smooth genus g− 1 curve normalizing C0. We write the class of the diagonal

∆ ⊂ G(r, k + r)×G(r, k + r)
as

[∆] = ∑
ρ∈Pr,k

σρ(x1, . . . , xr) σρ?(x′1, . . . , x′r),

where the primed variables are the Chern roots of the tautological bundle S∨ on
the second Grassmannian. We denote by ω the Euler class of G(r, k + r) i.e., the
pullback of the diagonal class under the standard embedding,

ω(x1, . . . , xr) = ∑
ρ∈Pr,k

σρ(x1, . . . , xr)σρ?(x1, . . . , xr).

For any top polynomial P(a1, . . . , ar) and sufficiently large degrees d, it was
shown in [Ber] that∫

QC(G(r,k+r),d)
P(a1, . . . , ar) =

∫
QC̃(G(r,k+r),d)

P(a1, . . . , ar) ω(S∨p )

= ∑
ρ∈Pr,k

∫
QC̃(G(r,k+r),d)

P(a1, . . . , ar) aρ aρ? .(23)

Here we regard ω as a polynomial in the Chern roots of the universal bundle
S∨p on the Quot scheme. Equation (23) expresses the fact that the space of maps
Mord(C0, G(r, k + r)) is embedded in the larger space Mord(C̃, G(r, k + r)) as

Mord(C0, G(r, k + r)) = ev−1
2 (∆),

where ev2 denotes the evaluation map

ev2 : Mord(C̃, G(r, k + r)) → G(r, k + r)×G(r, k + r)
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at the two points s1 and s2 over the node of C0. The intersections are moreover
enumerative in the large degree regime. Proposition 1 then ensures that (23)
holds in arbitrary degree when the integrals are evaluated against the virtual
fundamental class.

If we let C degenerate to a reducible nodal curve with one node and two
smooth irreducible components C1 and C2 of genera g1 and g2, such that

g = g1 + g2,

a similar argument shows∫
[QC(G(r,k+r),d)]vir

P ·Q(a1, . . . ar) = ∑
ρ∈Pr,k

∑
d1+d2=d

∫
[QC1

(G(r,k+r),d1)]vir
P(a1, . . . , ar) aρ

·
∫

[QC2 (G(r,k+r),d2)]vir
Q(a1, . . . , ar) aρ? .(24)

Equation (24) is also argued geometrically in the large degree regime, where the
intersections involved are enumerative. The passage to arbitrary degree and the
virtual fundamental class is again via Proposition 1.

The degeneration rule (21) follows from (23) taking

P(a1, . . . , ar) = aλ · aµ? · ar(g+u)+k
r ,

with u the cardinality of the multi-index µ. Similarly (22) follows from (24) tak-
ing

P = aλ1 · aµ1
? · ar(g1+u1)+k

r , Q = aλ2 aµ2? · ar(g2+u2)
r ,

with u1, u2 being the number of components of µ
1
, µ

2
.
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