
Dynamical Systems
in General Relativity
and Modified Gravity
Theories
Vitor Emanuel Moreira Bessa
Doutoramento em Matemática Aplicada
Departamento de Matemática, Faculdade de Ciências, Universidade do Porto
2022

Orientadores
Artur Alho, Investigador, Centro de Análise Matemática, Geometria e Sistemas
Dinâmicos, Instituto Superior Técnico, Universidade de Lisboa
Filipe Mena, Professor Associado com Agregação, Departamento de
Matemática, Instituto Superior Técnico, Universidade de Lisboa
Jorge Carvalho, Professor Associado, Departamento de Matemática, Faculdade
de Ciências, Universidade do Porto





Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /





University of Porto

Doctoral Thesis

Dynamical Systems in General
Relativity and Modified Gravity

Theories

Author:
Vitor Bessa

Supervisor:
Artur Alho

Filipe Mena
Jorge Carvalho

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

at the

Faculdade de Ciências, Universidade do Porto

September 2022

https://www.up.pt/portal/pt/
up201000387@fc.up.pt
filipecmena@tecnico.ulisboa.pt
filipecmena@tecnico.ulisboa.pt
filipecmena@tecnico.ulisboa.pt
https://sigarra.up.pt/fcup/pt/web_page.inicial




“If you wait on luck to turn up, life becomes very boring.”

Mikhail Tal, 1960-61 Chess World Champion

“Not only is the Universe stranger than we think, it is stranger than we can think”

Werner Heisenberg, 1932 Nobel Prize Winner

“Compromise where you can. Where you can’t, don’t. Even if everyone is telling you that
something wrong is something right. Even if the whole world is telling you to move, it is your
duty to plant yourself like a tree, look them in the eye, and say ’No, you move’”

Steve Rogers - Captain America

“Try not to become a man of success. Rather become a man of value.”

Albert Einstein, 1921 Nobel Prize Winner

“A lot of people say they want to be great, but they’re not willing to make the sacrifices
necessary to achieve greatness. They have other concerns, whether important or not, and they
spread themselves out. That’s totally fine. After all, greatness is not for everybody.”

Kobe Bryant
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Abstract
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Doctor of Philosophy

Dynamical Systems in General Relativity and Modified Gravity
Theories

by Vitor Bessa

The scope of this thesis is the analysis of cosmological models arising from Einstein’s theory of
General Relativity. Motivated by cosmological models of the early universe we focus on mat-
ter models such as nonlinear scalar and vector fields in co-evolution with perfect-fluids with
linear equations of state in spatially homogeneous spacetimes. We consider three different
scenarios: Massless and massive Yang-Mills fields with perfect-fluids in flat Robertson-Walker
spacetimes; Monomial scalar-field potentials interacting with perfect fluids in flat Robertson-
Walker spacetimes with a friction-like interaction term; Monomial scalar field potentials in
Bianchi type I spacetimes. The analysis rely on the introduction of new regular dynamical sys-
tems formulation of the Einstein field equations on compact (or future invariant) state spaces,
and the use of dynamical systems tools such as monotone functions, quasi-homogeneous blow-
ups, and averaging methods involving a time-dependent perturbation parameter. This allow
us to give proofs concerning the global dynamics of the models, and their past and future
asymptotics. In particular we discuss the issues of asymptotic self-similarity and self-similarity
breaking as well as asymptotic source dominance, i.e., if the model is scalar/vector field dom-
inated or fluid dominated towards the asymptotic regimes.
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Resumo
Faculdade de Ciências, Universidade do Porto

Doctor of Philosophy

Dynamical Systems in General Relativity and in Modified
Gravity Theories

por Vitor Bessa

O âmbito desta tese é a análise de modelos cosmológicos decorrentes da teoria da Rela-
tividade Geral de Einstein. Motivados por modelos cosmológicos do universo primordial,
concentramo-nos em modelos de matéria tais como campos escalares não lineares e vectoriais
em co-evolução com fluidos perfeitos com equações de estado lineares num espaço-tempo ho-
mogéneo. Consideramos três cenários diferentes: Campos Yang-Mills massivos e sem massa
com fluidos perfeitos num espaço-tempo plano de Robertson-Walker; Potenciais de campos
escalares monomiais interagindo com fluidos perfeitos num espaço-tempo plano de Robertson-
Walker com um termo de interacção do tipo fricção; Potenciais de campos escalares monomiais
em espaços-tempo de Bianchi tipo I. A análise baseia-se na introdução de uma nova formulação
regular de sistemas dinâmicos das equações de campo de Einstein em espaços de estado com-
pactos (ou invariantes futuros), e na utilização de ferramentas de sistemas dinâmicos tais como
funções monótonas, blow-ups quase-homogéneos e de averaging envolvendo um parâmetro de
perturbação dependente do tempo. Isto permite-nos dar provas rigorosas relativamente à
dinâmica global dos modelos, e ao seu passado e futuro assimptóticos. Em particular, dis-
cutimos as questões da auto-semelhança assimptótica bem como da dominância assimptótica
da fonte, ou seja, se o modelo é dominado por um campo escalar/vectorial ou por fluido nos
regimes assimptóticos.
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Chapter 1

General Relativity and Standard
Cosmology

Cosmology concerns the study of the universe as a whole, in particular of large structures
and their dynamics which is ruled by the laws of gravity. The most used theory to describe
the physics of such large scales is General Relativity (GR). In this chapter we review some
aspects about GR and cosmology that will be useful in the thesis, with a special focus on
cosmological inflation (for more details see [2–4]). We end the chapter revising applications
of dynamical systems theory to cosmology.

1.1 General Relativity

The success presented in a variety of experimental tests made GR the principal theory to study
gravity and cosmological models [2–7]. GR is a geometric theory where the main features of
gravity are encoded in a four-dimensional metric tensor gµν on a Lorentzian manifold that
models spacetime.

An important aspect in GR is spacetime curvature which is encoded in the Riemann tensor
defined as

Rλσµν = ∂µΓλνσ − ∂νΓλµσ + ΓλµρΓρνσ − ΓλνρΓρµσ, (1.1)

where Γαβγ are the Christofel symbols that can be derived from the metric and are given by

Γµαβ = 1
2g

µσ (∂αgβσ + ∂βgασ − ∂σgαβ) . (1.2)

From this equation we can define the Ricci tensor

Ric = Rµν = Rλµλν (1.3)

1



2 Dynamical Systems in General Relativity and Modified Gravity Theories

and the Ricci scalar
R = gµνRµν . (1.4)

The action of General Relativity reads

S = SEH + Sm =
∫
d4x

√
−gR+

∫
d4x

√
−gLm, (1.5)

where g is the determinant of the metric and Lm is the Lagrangian of the matter. This action
combines the Einstein-Hilbert action and the matter action that is minimally-coupled with
gravity. In this thesis we use geometrized units with c = 8πG = 1 following the convention of
[8].

Taking the variation of (1.5) we get the Einstein field equations (EFE)

Rµν − 1
2gµνR = Tµν (1.6)

where the stress-energy tensor, Tµν , is defined as

Tµν = − 2√
−g

δ
√

−gLm
δgµν

= gµνLm − 2 δLm
δgµν

. (1.7)

The left-hand side of (1.6) is the Einstein tensor and is denoted by Gµν . From (1.6) we see
that the geometry of spacetime affects the dynamics of the matter (Tµν), but also the reverse is
true, i.e. the presence of matter modifies the geometry of the spacetime. From the contracted
Bianchi identities it follows that ∇µR

µν = 1
2∇νR, which leads to the conservation of the

Einstein tensor and consequentially to the conservation of the total stress-energy tensor, i.e,

∇µG
µν = 0, ∇µT

µν = 0. (1.8)

The system of equations (1.6) is highly non-linear in the metric and its derivatives which can
be challenging when trying to find an exact solution.

Although GR went through numerous validity tests, there are some concerns that need to be
addressed such as the strong gravity regime that arises from the gravitational collapse or even
the fact that GR is not suitable to be formulated as a quantum theory. This indicates that
GR is not complete and modified theories of gravity might be relevant [9–11]. Some important
modified theories of gravity are F (R)-theories [12–15] and scalar-tensor theories [16–18] for
example, but in this thesis we will focus on GR only.
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1.2 Principles of FLRW Cosmology

Modern cosmology is based on two important assumptions, the fact GR gives a valid spacetime
description and the so-called cosmological principle that states:

• At sufficiently large scales the universe is spatially homogeneous and isotropic.

This basically implies the so-called Copernican principle that states:

• Earth does not occupy a special place in the universe.

This means that the universe, from a statistical point for view, is equivalent to any observer
regardless of observation location (homogeneity) or observation direction (isotropy) on a suf-
ficiently large scale.

The cosmological principle statement seems to be a simple, however it presents important con-
sequences when dealing with the theoretical modeling of cosmology implying that the universe
is highly symmetric. This leads to the Friedman-Lemâıtre-Robertson-Walker (FLRW) class
of universes that in spherical coordinates (r, θ, ϕ) can be described by the Robertson-Walker
metric (RW).

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
)

(1.9)

where k the Gaussian spatial curvature which is agreement with the cosmological principle. In
particular, k can present three different values k = 1 (positive curvature) which corresponds
to a spherical space, k = 0 (null curvature) that corresponds to the flat space and, k = −1
(negative curvature) that corresponds to a hyperbolic space. The evolution function a(t) > 0
is called the scale factor and physically describes the evolution of the spacetime.

1.3 Evolution in a FLRW Universe

As mentioned in Sec 1.1 the dynamics of the metric tensor gµν is described by (1.6). We can
describe the matter inside the universe as a perfect fluid which means that the stress-energy
tensor is solely determined by the energy density ρpf(t) and isotropic pressure ppf(t) and takes
the form

Tpfµν
= (ρpf + ppf)uµuν + ppfgµν , (1.10)

where uµ denotes the 4-velocity of the fluid. The stress-energy tensor for the perfect fluid also
satisfies the Euler equation (1.8).
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We also need to prescribe a relation between the energy and pressure density given by an
equation of state (EoS). For a barotropic perfect fluid,

ppf = (γpf − 1)ρpf , (1.11)

where γpf is the adiabatic index. It is assumed that γpf ∈ (0, 2) in order to satisfy the
dominant energy conditions, however, there exist some phenomenological models that rely
on values outside of this range to match astronomical observations. There are also some
important values for γpf such as γpf = 1 corresponding to a dust-like fluid, γpf = 4

3 to a
radiation fluid. The extreme case γpf = 0 corresponds to matter content described by the
cosmological constant i.e, ρpf = Λ, while γpf = 2 describes the a stiff fluid.

We use Einstein field equations (1.6) alongside the metric ansatz (1.9) to obtain the so-called
cosmological equations that consist of two coupled differential equations for the scale factor
a(t) and for the matter (ρpf(t) and ppf(t)). These two equations are given by

H2 = ρpf
3 − k

a2 (1.12a)

3H2 + 2Ḣ = −ppf − k

a2 . (1.12b)

The first equation is called Friedmann equation [19, 20] and the second acceleration equation,
where the Hubble function is defined as

H = ȧ

a
(1.13)

with an over-dot that denotes the differentiation with respect to the time, t. Using the
Friedmann equation (1.12a), the acceleration equation (1.12b) can be rewritten as

ä

a
= −1

6 (ρpf + 3ppf) , (1.14)

which is referred as the Raychaudhuri equation [21]. As we can see from (1.14): If ρpf +
3ppf > 0(< 0) the universe is decelerating (accelerating). So if (1.11) holds, this implies that
γpf >

2
3(< 2

3) for deceleration (acceleration) for a universe only containing a perfect fluid.
From the equation (1.8), we can obtain the energy conservation equation for the perfect fluid

ρ̇pf + 3H(ρpf + ppf) = 0 (1.15)

Using (1.11) together with (1.15) it is possible to obtain a solution for ρpf in terms of the
scale factor, i.e.

ρpf ∝ a−3γpf . (1.16)
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It is useful to introduce, the so-called deceleration parameter, that will be used later on and
is defined via the equation

Ḣ = −(1 + q)H, q = − äa

ȧ2 (1.17)

As one may see the sign of (1.17) will depend on the sign of ä and this will have direct
implications when analyzing ȧ and therefore the Hubble function. In the next section, we will
explore the consequences of the sign of H(t) and we will provide some special solutions for
the scale-factor a(t).

1.4 The Big Bang: A Theory of Universe Expansion

In 1929 Hubble observed that galaxies were moving away from each other, which lead to the
conclusion that the universe was expanding. For expanding cosmologies we have H > 0 or
equivalently ȧ > 0. Taking this condition into consideration and using (1.14) and (1.15) leads
to the following singularity theorem [22]:

Theorem 1.1. (Singularity)

Consider a FLRW cosmological model with a perfect fluid. Let ρpf > 0 and ρpf +3ppf > 0 ∀ t

and ȧ(t0) > 0 that represents the scale-factor in the present day, then their exists a time
tBB < t0 such that a(tBB) = 0 and limt→t+BB

ρpf = +∞.

This theorem tells us that, at the beginning, under those conditions the universe is in a state
of extremely high density and temperature due to constraints in space. This state allowed
primordial nucleosynthesis to take place leading to the creation of the lighter elements present
in the universe (Hydrogen, Helium,...). After the primordial nucleosynthesis, the universe
started to cool down enabling the creation of complex cosmological structures (galaxies, stars,
planets,...). The Big Bang theory is, in the modern era, the most accurate model to describe
the beginning of the universe.

Recent observations, in particular of the cosmic microwave background radiation (CMB)1

tell us that the spatial curvature k ≃ 0. We now introduce the density parameter Ωpf that
describes the dynamical effect of the matter density as

Ωpf = ρpf
3H2 . (1.18)

So using (1.18) into (1.12a) we get
Ωpf − 1 = k

ȧ2 (1.19)

1CMB is an electromagnetic radiation that exists since the early stage of the universe that fills all space.
The CMB was discovered accidentally by Penzias and Wilson in 1964 .
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that has a dependence in the spatial curvature

Ωpf > 1, corresponds to closed 3-spaces, (k = +1), (1.20a)

Ωpf = 1, corresponds to flat 3-spaces, (k = 0), (1.20b)

Ωpf < 1, corresponds to open 3-spaces, (k = −1). (1.20c)

As we mentioned before, the CMB observations tell us that k ≃ 0 which implies that Ωpf ≃ 1,
in agreement with the observational measurements of the density matter of the universe today.

Bearing this in mind we can calculate ρpf (using (1.16)) and subsequently a (using (1.12a)) for
a variety of values of γpf that can be found in Table 1.1. It is important to notice that the Big

γpf energy density scale factor
0 ρpf ∝ const a(t) ∝ eκ

√
const

2 t

2/3 ρpf ∝ a−2 a(t) ∝ t

1 ρpf ∝ a−3 a(t) ∝ t2/3

4/3 ρpf ∝ a−4 a(t) ∝
√
t

2 ρpf ∝ a−6 a(t) ∝ t1/3

Table 1.1: Energy density of the universe depending on the values of the adiabatic index
γpf .

Bang theory requires that in the early stages of the universe the radiation will dominate and
will be followed by a matter-dominated epoch. This happens since in high-energy situations
the radiation dominates over matter, however in low-energy situations it is the other way
around.

1.5 Problems in the Big Bang Model

Despite the Big Bang being the most accurate theory given observational experiments ( since
it explains: The expansion of the universe , the age of the universe, the origin and spectrum
of CMB and the origin and abundance of light elements in the universe), there are still some
problems inherent in this model. The most crucial problems are the Horizon problem, the
Flatness problem and the Magnetic Monopole problem [2–4]. In the next subsections, we will
provide some explanations regarding these problems.

The Flatness Problem

As we mentioned before, nowadays Ωpf ≃ 1, more precisely |Ωpf − 1| < 0.01 and since Ωpf

would be closer to one in the beginning of the universe (|Ωpf − 1| < 10−62) [23] it suggests one
of two things. First, the universe could be perfectly flat with k = 0. Alternatively, k ̸= 0 will
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not be, at any point in the history of the universe, identically to zero. In fact experimental
observations of the Plank measurements [24] show that today k = 0 ± 10−2.

The later scenario is the one that presents a problem, since it shows that if the curvature
of the universe is small, as allowed today, this implies that the primordial curvature of the
universe had to be extremely finely tuned to be very close to zero. So the Flatness Problem
is in reality a fine-tuning problem and it is not resolved for the Big Bang model.

The Horizon Problem

The cosmological principle tells us that the universe, on large-scales, is homogeneous and
isotropic which is in agreement with the CMB measurements. In fact, ∆T/T ≃ 10−5, where
∆T is the CMB temperature variation. So apparently causality disconnected regions in the
universe have the same temperature. This is a remarkable feature since we know that infor-
mation cannot travel faster than the speed of light. So two photons that are coming from a
distance that is greater than the maximum angular distance between two correlated points
have never been causally connected which should imply a inhomogeneity in the CMB. So
basically the Horizon Problem is a Causality problem that the Big Bang theory cannot solve.

The Magnetic Monopole Problem

If we accept the idea that in the early stages of the universe the laws of physics are described
by the so-called Ground Unified Theories (GUT)2 it would be expected that objects with
few orders of magnitude of the Plank mass should be produced [25]. These are topological
defects, like magnetic monopoles, that are commonly called ”relics” of the universe. This
presents a problem in the Big Bang scenario since it implies that they should dominate the
universe [26] and as we mentioned, a radiation-dominated epoch is needed until the primordial
nucleosynthesis takes place.

1.6 Inflation

In order to solve the previous problems while still having the Big Bang as the main model
for the origin of the universe, the theory of inflation was developed in the late 1970s and
early 1980s. This theory had the contribution of several theoretical physicists having as main
pioneers Guth [27], Starobinsky [28] and Linde [25, 29]. The inflationary theory states that
the universe underwent a fast period of accelerated expansion that lasted from 10−36 seconds

2GUT is part of the Standard Model and consists in the merger of three forces, electromagnetic, weak and
strong forces.
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until 10−32 seconds after the Big Bang. This model can be viewed as an extension of the Big
Bang model and solves the problems stated in the previous section:

• The Flatness Problem

The exponential expansion of the universe in the early times will flatten out any irreg-
ularity in the geometry of the universe.

• The Horizon Problem

When entering the inflationary epoch the universe was in equilibrium, i.e. different
regions of the universe were in casual contact with each other. The rapid expansion
of the universe allows regions to maintain thermal equilibrium obtained prior to the
inflationary epoch.

• The Magnetic Monopole Problem

The inflationary theory allows the existence of magnetic monopoles, however, they
needed to be created before the inflationary period. During inflation, the density of
the monopoles drops exponentially leading to a drop in the abundance of such ”relics”
to a current undetected level.

We define inflation as a phase of accelerated expansion of the early universe, i.e ä > 0 which is
equivalent to say that in the inflationary epoch the Hubble radius (aH)−1 shrinks ( ddt(aH)−1 <

0). Then, equation (1.14) implies
ρ+ 3p < 0. (1.21)

Since ρ is always positive then inflation must be generated by negative pressure.

The question that now emerges is: What can drive inflation?

For many years numerous theories were developed to understand what can drive inflation and
we will consider two types of inflationary categories: Scalar Field Inflation and Vector Field
Inflation.

1.6.1 Scalar Field Inflation

Scalar fields provide a simple mechanism to implement the inflationary theory [25, 27, 30].
Let us assume a RW metric described in (1.9). The simplest action that we can write the
scalar field in GR is given by

S = SEH + Sϕ =
∫
d4x

√
−gR+

∫
d4x

√
−g

(
−1

2∂
µϕ∂µϕ− V (ϕ)

)
. (1.22)

where V (ϕ) os the scalar field potential.
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The stress-energy tensor for the scalar field is

T (ϕ)
µν = ∂µϕ∂νϕ− gµν

(1
2∂

λϕ∂λϕ+ V (ϕ)
)
. (1.23)

From the (1.23) we get the wave-equation

□gϕ+ Vϕ(ϕ) = 0, (1.24)

where □g is the usual D’Alembertian operator associated to the metric g and Vϕ(ϕ) denotes
the derivative of the potential with respect to the field ϕ. This leads to the equation of motion

ϕ̈+ 3Hϕ̇+ Vϕ(ϕ) = 0. (1.25)

The EFE for the scalar field are given by

3H2 = 1
2 ϕ̇

2 + V (ϕ), (1.26a)

Ḣ = −1
2 ϕ̇

2, (1.26b)

0 = ϕ̈+ 3Hϕ̇+ Vϕ(ϕ). (1.26c)

Assuming that ∂µϕ is timelike, it is possible to write the stress-energy tensor for the scalar
field in a perfect-fluid form using the identifications uµ(ϕ) = (∂µϕ)/

√
−(∂ϕ)2 and

ρϕ = 1
2 ϕ̇

2 + V (ϕ) (1.27a)

pϕ = 1
2 ϕ̇

2 − V (ϕ) (1.27b)

We can define, as well, the effective equation of state parameter γϕ via

γϕ = 1 + pϕ
ρϕ

= 1 +
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
= ϕ̇2

1
2 ϕ̇

2 + V (ϕ)
. (1.28)

It is important to notice that if the scalar field is the only contribution to the total energy
density in early universe then the spacetime stress-energy tensor violates the Strong Energy
Condition (SEC)

3γϕ − 2 > 0, (1.29)

if 1
2 ϕ̇

2 < V (ϕ). The inflationary period can only happen if the rolling of the scalar field on
the slope of its potential is not too fast. The velocity of the scalar field can be parameterized
by the first Hubble slow-roll parameter, ϵ, defined via

ϵ = − Ḣ

H2 = −d logH
d logN = ϕ̇

2H2 (1.30)
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where N :=
∫
Hdt is the number of e-folds of inflation. From (1.30) it is possible to see that

the necessary condition for violating SEC and having inflation is ϵ < 1. Moreover, in order
for inflation to last long enough to solve the flatness and horizon problems ϵ should remain
smaller than one during the inflationary period. So we can define the logarithmic rate of
evolution for ϵ called the second slow-roll parameter given by

η = ϵ̇

ϵH
= − Ḧ

ḢH
= 2

(
ϵ+ ϕ̈

Hϕ̇

)
, (1.31)

where |η| < 1. For deeper intricacies of the scalar field inflation we refer the reader to [31].

Inflation can thus be achieved by a scalar field which we call inflaton. The nature of this
process can be divided two possibilities: cold and warm inflation.

1.6.1.1 Cold Inflation

Cold inflation is also commonly known as the slow-roll inflation since it is assumed that the
field rolls down in the potential very slowly compared to the expansion of the universe. This
can be physically translated into the fact that the acceleration of ϕ in (1.26c) is small compared
to the friction-like term that is proportional to ϕ̇. This leads to the following approximations

1
2 ϕ̇ << V (ϕ) (1.32a)

|ϕ̈| << 3H|ϕ̇|, (1.32b)

called the slow-roll conditions, which allows to set

ϕ̇ ≃ −Vϕ(ϕ)
3H . (1.33)

We can now express the Hubble function as:

H = d ln a
dt

= ϕ̇
d ln a
dt

≃ −Vϕ(ϕ)
3H

d ln a
dϕ

(1.34)

So integrating over the scalar field ϕ we get

a = a0e
∫
dϕ(∂ϕ lnV )−1

. (1.35)
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We can also define the slow-roll parameter for the potential, from which we can extract the
inflation behavior, via

ϵϕ := 1
2

(
Vϕ(ϕ)
V (ϕ)

)2
(1.36a)

ηϕ := Vϕϕ(ϕ)
V

, (1.36b)

where Vϕϕ(ϕ) = d2V (ϕ)
dϕ2 . These slow-roll parameters are different from the ones defined in

(1.30) and (1.31). However, it is possible to relate them as: ϵϕ ≈ ϵ and ηϕ ≈ 2ϵ− 1
2η.

1.6.1.2 Warm Inflation

A drawback from the cold inflation models is the separation between the inflationary and the
reheating periods3. Since the process of reheating is crucial a question that arises is: How can
one have a smooth transition between the inflationary and reheating period? One of the most
successful answers to this question is the warm inflation model that was first introduced by
Berera [33, 34]. The main idea of warm inflation is that the interaction between the inflaton
and the other fields (thermal bath) can lead to the dissipation of the inflaton energy to other
degrees of freedom. This implies that particle production (radiation) can occur simultaneously
with the inflationary expansion as long the vacuum energy density dominates the energy
budget of the universe. This model allows a smooth transition between the inflationary
period and the radiation-dominated era.

The difference between cold and warm inflation is that radiation and inflaton are coupled to
the scalar curvature. This coupling is introduced by an ad hoc term, Γϕ̇2. So the equation of
motion for inflation is given by

ϕ̈+ (3H + Γ) ϕ̇+ Vϕ(ϕ) = 0, (1.37)

and the energy density equation for radiation reads:

ρ̇pf + 4Hρpf = Γϕ̇,2 (1.38)

where Γ is called the dissipation coefficient. It is important to notice, as pointed out in
[33], that the damping coefficient Γϕ̇ is only a suitable description for the dissipation and
energy transfer from the inflaton to the thermal bath if the system is not far from thermal
equilibrium. The dissipation coefficient Γ can have a dependence in the scalar field ϕ, in the

3During the inflationary period, depending on the model, the temperature of the universe drops typically
by a factor of 105K. When inflation ends, the temperature will rise again and return to the pre-inflationary
temperature, this is what we call the reheating period.[32]
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temperature T or both [35–39]. The shape of Γ will be highly dependent on the model that
we choose. We are interested only in the polynomial interaction between the scalar field and
the thermal bath, in this case, we may consider Γ with a power-law dependence [40] in ϕ.

It is also possible in this scenario to define the slow-roll parameters for the warm inflation
model. In this case, in the slow regime we have:

ϕ ≃ − Vϕ
3H + Γ , (1.39a)

ρpf ≃ Γ
4H ϕ̇2. (1.39b)

The cold inflation can be seen as the limit of the warm inflation when Γ → 0 . We can also
have two other distinct scenarios for the warm inflation model, the week dissipative regime
(Γ < H),

3Hϕ̇ ≃ −Vϕ(ϕ), 4Hρpf ≃ Γϕ̇2, (1.40)

and the strong dissipative regime (Γ > H),

3(1 + Γ
3H )Hϕ̇ ≃ −Vϕ(ϕ, T ), 4Hρpf ≃ Γϕ̇2. (1.41)

The strong dissipative scenario leads to the dependence on the temperature for some observ-
able. The warm inflation model can then be characterized by four parameters:

ϵϕ < 1 + Γ
3H , |ηϕ| < 1 + Γ

3H , βΓ := ΓϕVϕ
ΓV < 1, δT := TVϕ,T

Vϕ
< 1. (1.42)

Building a realist warm inflation model is actually a challenge because of the explicit form of
the dissipation coefficient. Explicit formulations have been obtained in the following works:
for the approach in particle production [41, 42], linear response theory [43], and the Schwinger-
Keldysh [44–47]. In Fig. 1.1 we can see a schematic comparison between the two inflationary
models.

Figure 1.1: Comparison between cold and warm inflation as far of potential energy [1].
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1.6.2 Vector Field Inflation

Despite the success achieved by both cold inflation and warm inflation and due to the difficulty
in finding the proper scalar field that drives inflation, vector fields can present an interesting
alternative.

It is natural to think of vector fields as they are present in the Standard Model and multiple
ideas were proposed for vector fields to drive inflation [48–50].

Two main ideas that present some success when considering the vector field inflation are the
Einstein-Æther and the Bumblebee model.

The Einstein-Æther theory can be seen as a modification of GR that contains a vector field
called Æther non-minimal coupled to curvature. One of the main result of this model is
the appearance of the Nambu-Goldstone Bosons, [51–53] leading to new kinds of Cherenkov
radiation.

The Bumblebee model arises in the context of the Standard Model Extension theory, which
contains the Standard Model, GR and a vector field (Bumblebee) that break Lorentz symme-
try. This vector field has a non-zero expectation value and when coupled to gravity can lead
to a de-Sitter type of inflation [54].

Although these vector field theories have their merit in achieving great results, in this par-
ticular work we are interested in another type of vector field, namely the Yang-Mills (YM)
field. This field describes the dynamics of elementary particles and plays an important role
in cosmology, string theory and particle physics. Although some results regarding the infla-
tionary possibility of the Yang-Mills field were already found [50], a detailed and rigorous
mathematical analysis of the global dynamics is scarce.

1.6.2.1 Introducing the Yang-Mills Field

We assume a universe that is spatially homogeneous and isotropic (FLRW) of the type

M = R × E3/SO(3) (1.43)

where the euclidean group E3 is the isometry group of the spatial hypersurfaces. Since in
FLRW, single vector fields are not allowed we will consider a multiplet of vector fields Aaµ,
a = 1, ...N , more precisely, a triplet of massive vector fields with global SOI(3) symmetry.
Although it is true that Aaµ is not E3-invariant, it is possible to use relations between the asym-
metries of different vector fields in such a way that the stress-energy tensor is E3-invariant. As
already shown in [55–57], in the non-Abelian case, the SU(2)4 triplet of the YM fields admits

4SU(n), the special unitary group, is a Lie group of n × n matrices with determinant 1.
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a non-Abelian configuration whose stress-energy tensor has a 3-dimensional homogeneity and
isotropy group.

To be able to define this multiplet one needs to consider the generators of the internal group
SOI(3), La that obey the following relation [58]

[La, Lb] = LaLb − LbLa = ϵabcLc. (1.44)

where ϵabc is the Levi-Civita symbol.

In the fundamental representation, the Lie algebra generators are normalized via

Tr[LaLb] = −1
2δ

ab (1.45)

where we use the minus sign convention.

For each element of the algebra, it is possible to introduce a gauge field Aaµ that can be related
to the multiplet vector field by the equation

Aµ = AaµLa. (1.46)

From the gauge potential it is possible to construct the gauge field strength [58]

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (1.47)

1.6.2.2 Yang-Mills Action

The action for the massive YM field takes the form

SYM =
∫
M
d4x

√
−g

( 1
8e2 Tr[FµνFµν ] + 1

2µ
2 Tr[AµAµ]

)
, (1.48)

where e > 0 is the gauge coupling and µ ≥ 0 is the mass of the gauge field. From this, we can
obtain the Yang-Mills stress-energy tensor (TYM ) that is given by

TYMµν = − 1
2e2 Tr

[
FµλF

λ
ν − 1

4gµνFλσF
λσ
]

− µ2

2
[
2AµAν − gµνAλA

λ
]

(1.49)

If we minimize the action with respect to each gauge field Aaµ we obtain the classical equation
of motion, called the Yang-Mills equation

∇µFαβ + [Aµ, Fαβ] = 0. (1.50)
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1.6.2.3 Yang-Mills And Perfect Fluid

In this work we are particularly interested in understanding the dynamics of the massless
and massive YM field in co-evolution with a perfect fluid with a linear equation of state,
on Robertson-Walker geometries. As we shall see, this results in the problem of analyzing a
nonlinear ODE system of Einstein-Euler-Yang-Mills equations.

The most general form of g which is invariant under the E3 group is the flat Robertson-
Walker metric that is obtained by making the Gaussian spatial, k = 0, in (1.9). In Cartesian
coordinates it takes the form

g = −dt2 + a2(t)(dx2 + dy2 + dz2). (1.51)

In this particular case, we will consider the action

S = SEH + SYM + Spf =
∫
M
d4x

√
−g

(
1
2R+ 1

8e2 Tr[FµνFµν ] + µ2

2 Tr[AµAµ] + Lpf

)
(1.52)

We have now two types of fields that are encoded in

Tµν = Tpfµν + TYMµν (1.53)

and satisfy the Euler equation

∇µTpfµν = 0, ∇µTYMµν = 0. (1.54)

In our coordinate system, uµ = δµ0 , we simply get Tpfµν = diag(ρpf , ppf , ppf , ppf).

Following [59], we assume that the vector fields A⃗ have global SO(3) symmetry, and fixing
the gauge freedom with the temporal (Hamiltonian) gauge leads to

A0 = 0, Aai (t) = χ(t)δai , (1.55)

where χ(t) is a C2 function of t and we denote space indices with i =, 1, 2, 3.

It turns out that, under our symmetry assumptions, the Yang-Mills field has only a single
”scalar” degree of freedom [50, 59, 60] and, using the relations

Tr[FµνFµν ] = 3
(
χ̇2

a2 − χ4

4a4

)
, (1.56a)

Tr[AµAµ] = −3χ2

2a2 , (1.56b)

Tr[F0iF
0i] = −3χ̇2

2a2 , (1.56c)
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then the tensor TYMµν can also be decomposed with respect to u⃗ on a ”perfect fluid” form as
in (1.10):

TYMµν = (ρYM + pYM)uµuν + pYMgµν , (1.57)

for appropriate identifications of the quantities in (1.49) with ρYM = TYM00 and pYM =
(1/3)T iYMi

, as we shall see later.

1.7 Anisotropic Universes

As mentioned in Sec. 1.6 the Flatness and Horizon problems are basically problems of fine-
tuning. It is generally assumed that the universe can be modelled by a flat FLRW spacetime.
However observations are compatible with small anisotropies [8]. Bianchi cosmologies are
spatially homogeneous and anisotropic models that generalise FLRW cosmologies. The first
studies about Bianchi models were presented by Taub [61] and Ellis, and MacCallum [62].

A Bianchi spacetime (M, g) is endowed with a metric g that admits a 3-dimensional isometry
group acting simply transitively on spacelike hypersurfaces which are surfaces of homogeneity.
These spacetimes then admit a Lie algebra of Killing vectors field which has been classified
according to the isometry group structure into different types [62]. Bianchi type I is the
simplest case when, in an appropriate basis, the structure constants are zero and the group
is Abelian.

We consider that the unit vector field normal to the orbits of the isometry group is the 4-
velocity vector u of the spacetime fluid matter field. In that case one can project spacetime
quantities into the 3-spaces orthogonal to u with the projection tensor

hµν = gµν + uµν ,

where h α
µ h

ν
α = h ν

µ , h
ν
µ uν = 0 and h α

α = 3. One can make the decomposition of the covariant
derivative of the 4-velocity as (see e.g. [8])

∇µuν = σµν +Hhµν + uµu
α∇αuν

where we assumed that the fluid has no vorticity. The symmetric and trace-free tensor σµν is
called shear and satisfies uµσµν = 0 and

σµν = ∇(µuν) −Hhµν + u(µu
α∇αuν)

H = 1
3∇αuα

(1.58)

where H is the expansion scalar or Hubble function.



1. General Relativity and Standard Cosmology 17

It is also useful to define
σ2 = 1

2σµνσ
µν .

1.7.1 Bianchi algebras and Classification

The Lie Algebra of Killing Vector Fields with basis ξα, α = 1, 2, 3 satisfies

[ξα, ξβ] = Cµαβξµ, (1.59)

where Cµαβ are the structure constants and can be decomposed as [8]

Cµαβ = ϵαβνn
µν + aαδ

µ
β − aβδ

µ
α, (1.60)

where nµν = nνµ and aα are constants.

nαβaβ = 0. (1.61)

It turns out that by choice of frame one can diagonalize nµν and choose aα = (a, 0, 0). The
classification of the Bianchi groups in GR takes into consideration the sign of nµν and the
value of a. This classification was first introduced by Ellis and MacCallum [62] and divides
the spacetime into two classes: Class A and Class B. Later on in 1973 Collins and Hawking
[63] introduced an additional parameter, h defined via

h = a2

n2n3
. (1.62)

The Bianchi classification can be seen in Table. 1.2.

Group class Group type n1 n2 n3 Contains RW?
I 0 0 0 k = 0
II + 0 0 −

A(a = 0) V I0 0 + − −
V II0 0 + + k = 0
V III − + + −
IX + + + k = +1
V 0 0 0 k = −1

B(a ̸= 0) IV 0 0 0 −
V Ih 0 + − −
V IIh 0 + + k = −1

Table 1.2: Bianchi models divided into two classes (A and B) alongside with the parameter
h. We also indicate the possibility of admitting a RW metric.
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1.7.2 Bianchi I Model

The Bianchi I model has n1 = n2 = n3 = 0 (see Table 1.2) and the metric for this model in
Cartesian coordinates (t, x, y, z) takes the form

ds2 = −dt2 + b1(t)2dx2 + b2(t)2dy2 + b3(t)2dz2 (1.63)

where bi are C2 functions of time that represent the scale factor in each direction. We can
also define the Hubble function

H(t) = ȧ

a
, (1.64)

where the dot denotes the derivative with respect to time and

a = (b1, b2, b3)1/3.

In this case σµν is diagonal and since it is also trace-free it has only two degrees of freedom
which can be written as

σ+ = 1
2 (σ22 + σ33) , σ− = 1

2
√

2(σ22 − σ33). (1.65)

Using the shear equation and (1.64) we can obtain the non-vanishing components of σµν as

σ11 = 4
3
ḃ1
b1

− 2
3

(
ḃ2
b2

+ ḃ3
b3

)
(1.66a)

σ22 = 4
3
ḃ2
b2

− 2
3

(
ḃ3
b3

+ ḃ1
b1

)
(1.66b)

σ33 = 4
3
ḃ3
b3

− 2
3

(
ḃ1
b1

+ ḃ2
b2

)
(1.66c)

In turn the shear scalar σ2 can be written as

σ2 = 1
3

(
ḃ2

1
b2

1
+ ḃ2

2
b2

2
+ ḃ2

3
b2

3
− ḃ1ḃ2
b1b2

− ḃ2ḃ3
b2b3

− ḃ1ḃ3
b1b3

)
. (1.67)

and taking the time derivative in (1.67) we obtain the evolution equation

σ̇

σ
= −

(
ḃ1
b1

+ ḃ2
b2

+ ḃ3
b3

)
= −3H. (1.68)

1.8 Dynamical Systems in Cosmology

The EFE are partial differential equations but in the case of spatially homogeneous spacetimes
they become ordinary differential equations. In that case one can use dynamical system’s
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theory in order to study the qualitative behaviour of the solutions5. This has been particularly
successful in cosmology where far reaching rigorous results have been achieved using dynamical
systems [8, 66, 67]. The most common procedure in those approaches is to replace the metric
variables with dimensionless variables using some form of conformal rescalings as well as
suitable normalization factors to compact the state-space that allows us to write the system
as an autonomous system.

The majority of studies in this context are restricted to the linear analysis of hyperbolic fixed
points, overlooking cases where the linearization gives zero eigenvalues. However many cases
of interest in cosmology lead precisely to non-hyperbolic fixed points in the space of solutions.
Then, more advanced methods need to be used and further developed for each problem at
hand. Recent works using central manifold theory include Alho et. al [68], Escobar et. al
[69], Bohemer et. al [70], Cid et. al [71] and Miritzis [72, 73].

Works developing other methods using monotone functions and a careful asymptotic analysis
include Heinzle & Uggla [74, 75], Norman et. al [76], Sandin & Uggla [77], Heinzle & Calogero
[78] and Rendall & Uggla [79] and Alho & Uggla [80].

In turn the existence of asymptotic period orbits has also recently been studied using averaging
methods in the works of Leon et al [81–83], Fajman et al [84] and Alho et al [68, 85].

Motivated by the previews reviews and works we will use a compactification of the state space
that will produce a regular and compact global dynamical system that will allow us to obtain
a global dynamics for a variety of cosmological models. Regarding the study of dynamical
systems in cosmology, the most common way is to introduce the so-called Poincaré compactifi-
cation on the plane. However this method does not consider some important features inherent
to each cosmological model such as the natural geometry of the space and may lead to ex-
pensive computations [50]. To avoid this complications, we will use, dimensionless, expansion
normalized variables that will provide a natural compactification of the state-space. We will
consider a variety of cosmological models in which we will infer the possibility of inflation.

These cosmological scenarios include the study of global dynamics of a scalar field and a
perfect fluid in both an isotropic and anisotropic universes. We will also study the dynamics
inherent to the Yang-Mills field with a perfect fluid in a flat, homogeneous, and isotropic
spacetime.

5In appendix we revise some of the relevant techniques of dynamical systems.





Chapter 2

Global Dynamics of Yang-Mills
Field and Perfect-Fluid
Robertson-Walker Cosmologies

In this chapter we apply a new global dynamical systems formulation to flat Robertson-
Walker cosmologies with a massless and massive Yang-Mills field and a perfect-fluid with
linear equation of state as the matter sources. This allows us to give proofs concerning the
global dynamics of the models including asymptotic source-dominance towards the past and
the future time directions. For the pure massless Yang-Mills field, we also contextualize
well-known explicit solutions in a global (compact) state space picture.

The chapter is structured as follows: In Sec. 2.1 we will introduce the basic dynamics inher-
ent to the interaction between scalar field and perfect-fluid. in Section 2.2, we consider the
simplest model of a massless Yang-Mills field and a fluid with linear equation of state. We
reformulate the Einstein field equations to a 3-dimensional dynamical system on a compact
state-space, followed by an analysis of the flow which yields a global description of the so-
lution space including its asymptotic behavior. For the pure massless Yang-Mills invariant
subset (ρpf = 0), the field equations can be further reduced to an analytical 2-dimensional
unconstrained dynamical system which is integrable in terms of elliptic functions, thus con-
textualizing this well-known explicit solutions in a global (compact) state-space picture. In
Section 2.3, we consider the massive Yang-Mills field together with the fluid matter model.
In this case, the field equations are reformulated as a 4-dimensional dynamical system with
a constraint1. We make a global analysis of the flow and give rigorous proofs concerning the
asymptotic behavior of general solutions both in the past and future time directions.

1For a study of constraint systems in cosmology see [8, 87].

21
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2.1 Dynamics and Einstein Field Equations for the Yang-Mills

Field and Perfect Fluid in Robertson-Walker

We assume that (M, g) is spatially homogeneous and isotropic and given by (1.43). The most
general form for g which is invariant under the E3 group is the flat RW metric, which in
Cartesian coordinates is given by (1.51). We consider scalar fields as well as vector fields
defined on M which are compatible with our symmetry assumptions. In particular, we shall
consider perfect fluid (scalar) matter with density ρpf(t) and pressure ppf(t) and Yang-Mills
(4-vector) fields that was already described in Sec. 1.6.2. These two types of fields will be
encoded in two tensors Tpf and TYM defined on M that can be seen in (1.53).

Considering a globally defined timelike vector field u⃗ corresponding, physically, to the 4-
velocity of the fluid, we may decompose Tpfµν with respect to u⃗ as seen in (1.10), which must
satisfy the Euler equations, eq. (1.54).

It turns out that, under our symmetry assumptions, the Yang-Mills field has only a single
”scalar” degree of freedom [59, 60] which allows us to write the stress-energy tensor TYMµν

similar to the one of the perfect fluid as we can see in (1.57). In particular the level sets of χ
coincide with the surfaces of simultaneity of observers comoving with the fluid.

For the (conformal invariant) massless Yang-Mills field (µ = 0), the resulting stress-energy
tensor is trace-free, so that its effective equation of state is that of a radiation fluid and
the model is explicitly solvable [59, 60]. The massive case, µ ̸= 0, has been studied in [59]
using a dynamical systems approach, and the inclusion of a dust and radiation fluid has been
discussed in [88].

The evolution and constraint equations are then obtained from (1.6), using (1.51) on the
left-hand-side (which gives the Ricci tensor (Rµν) and the scalar of curvature R), and using
(1.53) on the right-hand-side satisfying (1.8) and (1.50), under the above assumptions. So,
the Einstein-Euler-Yang-Mills system in a flat Robertson-Walker geometry reduces to the
following system of nonlinear ODEs:

H2 =
(

χ̇

2
√

2ae

)2
+
(

χ

2 1
4 2a

√
e

)4

+
(
µχ

2a

)2
+ ρpf

3 . (2.1a)

χ̈ = −Hχ̇− χ3

2a2 − 2µ2e2χ (2.1b)

ρ̇pf = −3Hγpfρpf (2.1c)

Ḣ = −
(
χ̇

2ae

)2
−
(

χ

2a
√
e

)4
−
(
µχ

2a

)2
− γpf

2 ρpf (2.1d)

ȧ = Ha (2.1e)
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where the overdot denotes a derivative with respect to t and H(t) := ȧ/a is the Hubble
function.

Regarding χ̇ as a new dependent variable, the first equation can be seen as a constraint for
the variables (χ, χ̇, ρpf , H, a). By further introducing

ϕ(t) := χ√
2a

and ψ(t) := χ̇√
2ae

, (2.2)

the equation for a(t) decouples, and leaves a reduced dynamical system for the state vector
(ϕ, ψ, ρpf , H) given by

ϕ̇ = −Hϕ+ eψ (2.3a)

ψ̇ = −2Hψ − ϕ3

e
− 2µ2eϕ (2.3b)

ρ̇pf = −3Hγpfρpf (2.3c)

Ḣ = −ψ2

2 − ϕ4

4e2 − µ2ϕ
2

2 − γpf
2 ρpf , (2.3d)

with constraint
H2 = ψ2

4 + ϕ4

8e2 + µ2

2 ϕ
2 + ρpf

3 . (2.4)

The Yang-Mills field generates an effective energy density ρYM ≥ 0 and pressure pYM, given
by

ρYM(t) := 3
[ψ2

4 + ϕ4

8e2 + µ2

2 ϕ
2
]

(2.5a)

pYM(t) := ψ2

4 + ϕ4

8e2 − µ2

2 ϕ
2, (2.5b)

from which we define the function

γYM(t) := 1 + pYM
ρYM

. (2.6)

In (1.6), we have fixed physical units such that 8πG = c = 1, where G is the Newton
gravitational constant and c the speed of light. With this choice, we have that [t] = L, [H] =
L−1, [e] = L−1, [ϕ] = L−1, [ψ] = L−1, whereas µ is dimensionless.

Our aim is to apply a new global dynamical systems formulation adapted from the problem
of a minimally coupled scalar field having a zero local minimum of the potential, such as the
Klein-Gordon field [80] or more general monomial potentials [68]. Similar methods have also
been applied to α-attractor E and T-models of inflation in [89] as well as to the Starobinsky
model of modified f(R) gravity theory [15].

The new formulation has several advantages with respect to the original variables and which
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are commonly used in the literature, see e.g. [50, 59]. To see this, consider for simplicity the
state vector (ϕ, ψ,H), i.e. with no fluid matter content. The state space consists of a surface
defined by the constraint (2.4) with the fixed point M located at (0, 0, 0), which is the only
fixed point of system (2.3)-(2.4), see Figure 2.1. This fixed point joins the two disconnected
parts, having either H > 0 or H < 0, i.e., preserving the sign of H. We are interested in
expanding cosmologies so, from now on, we will restrict the analysis to the upper half of
the state space where H > 0. By solving for H in (2.4) and inserting the positive root in
the evolution equations, leads to an unconstrained two-dimensional dynamical system on the
plane. This system might have differentiability problems at the origin, where lies the full
degenerated Minkowski fixed point M. The blow up of such fixed point can be found in [59]
where it was shown that it is a local focus.

However, as it will be shown here, in the present formulation this fixed point appears naturally
as a periodic orbit and provides indeed the correct picture 2. This fact is related to the
existence of a conserved quantity for the system: the expansion normalized effective energy
density due to the Yang Mills field

ΩYM := ρYM
3H2 . (2.7)

Another relevant aspect of this formulation concerns the compactification of the state space
on the plane, in which Poincaré method is usually the standard approach which presents some
problems as mentioned in section 1.8. Instead, the use of (dimensionless) expansion normalized
variables, gives a very natural compactification of the state space (where H → +∞), in which
self-similar solutions appear as hyperbolic fixed points.

Furthermore, when introducing matter in the form of a perfect fluid with a linear equation
of state, the state space becomes the region limited by a quartic surface (see Figure 2.1),
and the old formulation would also lead to difficulties when discussing asymptotic source
dominance since all orbits tend to a single degenerated fixed point M. Instead, the correct
picture of attractors being periodic orbits leads naturally to the use of averaging techniques
from dynamical systems theory, see e.g. [90]. This, in turn, allows us to give rigorous proofs
concerning the asymptotics when matter models other than the Yang-Mills field are present.

Finally, this framework is the starting point for considering less restrictive geometries like
in the spatially homogeneous but anisotropic spacetimes, an issue we shall discuss further in
Section 2.4.

2This also clarifies the issue of asymptotic self-similarity and manifest self-similarity breaking as discussed
in [68].
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Figure 2.1: The state-space of system (2.3) defined by the constraint (2.4).

2.2 Massless Yang-Mills field (case µ = 0)

For the massless Yang-Mills field, the ratio pYM/ρYM is constant and the function γYM(t),
defined in (2.6), is simply given by

γYM = 4
3 . (2.8)

Hence, the massless Yang-Mills field can be view as an effective radiation fluid, which basically
turns the problem into that of a two-fluid cosmology. However, it is instructive to consider
first this simple model, since it allows us to introduce some basic definitions and illustrate
how a global dynamical systems formulation of the original equations can be constructed. It
will also allow us to situate well-known explicit solutions in a global state space picture, as
well as emphasizing the differences that arise in the more complicated case of the massive
Yang-Mills field.

We assume an expanding cosmologyH(t) > 0, and introduce the (dimensionless)H-normalised
variables

X1 = ϕ

2 3
4
√
eH

, ΣYM = ψ

2H , T̃ =

√√
2e
H

, Ωpf = ρpf
3H2 , (2.9)

together with the number of e−folds N = ln (a/a0), where a0 is some reference epoch at which
N = 0, and

dN

dt
= H. (2.10)

Then, the system of equations (2.3)-(2.4), in the new variables, reduces to a local 3-dimensional
dynamical system

dX1
dN

= −1
2
[
(1 − q)X1 − 2T̃ΣYM

]
(2.11a)

dΣYM
dN

= −
[
(1 − q)ΣYM + 2T̃X3

1

]
(2.11b)

dT̃

dN
= 1

2(1 + q)T̃ , (2.11c)
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where we make use of the fact that the constraint

1 − Ωpf = X4
1 + Σ2

YM (2.12)

is linear in Ωpf , to solve for Ωpf , and where we introduced the so-called deceleration parameter
q, defined via (1.17), i.e.

q = −1 + 2
(
Σ2

YM +X4
1

)
+ 3

2γpfΩpf

= 1 + 3
2

(
γpf − 4

3

)(
1 − Σ2

YM −X4
1

)
.

(2.13)

Since Ωpf ≥ 0, the constraint equation (2.12) implies that

−1 ≤ X1 ≤ 1, −1 ≤ ΣYM ≤ 1, 0 ≤ Ωpf ≤ 1. (2.14)

Moreover, since 0 < γpf ≤ 2, it follows from (2.13) that

−1 < q ≤ 2 . (2.15)

Hence, the right-hand side of (2.11) becomes unbounded only when T̃ → +∞ (H → 0). In
order to obtain a global dynamical systems formulation on a compact state space, we further
introduce

T = T̃

1 + T̃
(2.16)

so that T → 0 as T̃ → 0, and T → 1 as T̃ → +∞. We also introduce a new independent
variable τ defined by

dτ

dt
= H

1 − T
. (2.17)

The τ variable is constructed such that it interpolates between the two asymptotic regimes
described by the different scales inherent to the model, i.e. the Hubble scale H, when H →
+∞, and the scale associated with gauge-coupling constant e, when H → 0, see [80] for more
details on this issue. This leads to a global 3-dimensional dynamical system

dX1
dτ

= −1
2 [(1 − q)(1 − T )X1 − 2TΣYM] (2.18a)

dΣYM
dτ

= −
[
(1 − q)(1 − T )ΣYM + 2TX3

1

]
(2.18b)

dT

dτ
= 1

2(1 + q)T (1 − T )2, (2.18c)

where the constraint (2.12) is used to globally solve for Ωpf and q is given by (2.13). It is
also useful to consider the auxiliary evolution equation for ΩYM := ρYM/(3H2) = Σ2

YM +X4
1
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(equivalently Ωpf = 1 − ΩYM), which is given by

dΩYM
dτ

= 3(1 − T )(γpf − 4
3)ΩYM(1 − ΩYM). (2.19)

The state space S is a 3-dimensional space consisting of a deformed solid cylinder of height
0 < T < 1. The outer shell of the cylinder corresponds to the pure Yang-Mills invariant subset
Ωpf = 0 (ΩYM = 1) which we denote by SYM. The axis of the cylinder is a straight line with
Ωpf = 1 (ΩYM = 0) and corresponds to the invariant subset associated with the (self-similar)
flat Friedmann-Lemâıtre (FL) spacetime. The state space S can be analytically extended to
include its closure, i.e., the invariant boundaries T = 0 and T = 1, and form the extended
state space S, while the extension of SYM to T = 0 and T = 1 will be denoted by SYM. This
extension is crucial since all attracting sets are located on these boundaries as shown by the
following simple lemma:

Lemma 2.1. The α-limit set of all interior orbits in S is located at T = 0, while the ω-limit
set of all interior orbits in S is located at T = 1.

Proof. Since 1 + q > 0, then T is strictly monotonically increasing in the interval (0, 1). By
the monotonicity principle (see proposition.A.23), it follows that there are no fixed points,
recurrent or periodic orbits in the interior of the state space S, and the α and ω-limit sets of
all orbits in S are contained at T = 0 and T = 1, respectively.

We now give a detailed description of the invariant boundaries T = 0, associated with the
asymptotic past (H → +∞), and T = 1, associated with the asymptotic future (H → 0),
as well as the pure massless Yang-Mills invariant subset SYM and the Friedmann-Lemâıtre
invariant subset.

2.2.1 The invariant boundary T = 0

The flow induced on the T = 0 boundary is given by

dX1
dτ

= 3
4

(
γpf − 4

3

)
ΩpfX1, (2.20a)

dΣYM
dτ

= 3
2

(
γpf − 4

3

)
ΩpfΣYM (2.20b)

with the constraint Ωpf = 1 − ΩYM = 1 −X4
1 − Σ2

YM. For γpf = 4/3, this subset consists only
of fixed points, forming the deformed disk:

DR : 0 ≤ Σ2
YM +X4

1 ≤ 1, for T = 0.
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X1

LR

ΣYM

FL0

(a) Invariant boundary
T = 0 for γpf = 1 < 4/3.

X1

LR

ΣYM

FL0

(b) Invariant boundary
T = 0 for γpf = 3

2 > 4/3.

Figure 2.2: The invariant boundary T = 0 of phase-space S for two different values of γpf .
The picture for γpf = 4/3 consists of a disk of fixed points.

For γpf ̸= 4/3, the invariant subset Ωpf = 0 consists of a deformed circle of fixed points given
by

LR : Σ2
YM +X4

1 = 1, for T = 0,

and there is one more isolated fixed point FL0 located at ΩYM = 0, i.e.

FL0 : ΣYM = X1 = 0, for T = 0.

At the invariant boundary T = 0, the trajectories of the solutions are easily found by quadra-
ture giving

ΣYM = CX2
1 , (2.21)

where C is a real constant that parametrizes the solutions. This equation clearly shows that
the flow is invariant under the transformation (X1,ΣYM) → (−X1,ΣYM). Moreover, since
Ωpf > 0, a straightforward inspection of the flow, shows that, if γpf >

4
3 (resp. γpf <

4
3),

then LR is a sink (resp. source) of a 1-parameter set of solutions with a single solution ending
(resp. originating) from each fixed point and FL0 is a source (resp. sink) of a 1-parameter set
of solutions, see Figure 2.2.

2.2.2 The invariant boundary T = 1

On the T = 1 invariant boundary, the system (2.18a)-(2.18b) reduces to

dX1
dτ

= ΣYM, (2.22a)
dΣYM
dτ

= −2X3
1 , (2.22b)
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ΣYM

X1

P1
1
2
P

1
4
P

FL1

(a) Invariant boundary
T = 1.

(b) Invariant subset Ωm =
1.

Figure 2.3: Representation of the invariant boundary T = 1 and the invariant subset
Ωpf = 1.

which has a single fixed point:

FL1 : ΣYM = X1 = 0, for T = 1.

In this case, it also follows that dΩYM/dτ = 0, implying

ΩYM = C, (2.23)

where C ∈ [0, 1]. The T = 1 boundary is then foliated by a 1-parameter set of periodic
orbits PΩYM and, therefore, the fixed point FL1 (corresponding to C = 0) is a center (see
Figure 2.3a). Note that C = 1 gives the outer periodic orbit P1 with ΩYM = 1 (Ωpf = 0).

2.2.3 The Friedmann-Lemâıtre invariant subset: FL0 → FL1

The invariant subset Ωpf = 1 consists of a straight heteroclinic orbit connecting the FL0 fixed
point, located at the origin, to the fixed point FL1 located at (X1,ΣYM, T ) = (0, 0, 1). This
orbit is associated with the flat Friedmann-Lemâıtre solution, where T describes the evolution
of H, see Figure 2.3b.

2.2.4 The pure massless Yang-Mills subset SYM

On the invariant set Ωpf = 0, it follows that the deceleration parameter q is constant, with
q = 1, and the dynamical system simplifies to

dX1
dτ

= TΣYM ,
dΣYM
dτ

= −2TX3
1 ,

dT

dτ
= T (1 − T )2, (2.24)
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subject to the constraint
Σ2

YM +X4
1 = 1. (2.25)

This constraint can be globally solved by introducing the angular variable θ as

X1 = cos θ, ΣYM = G(θ) sin θ, (2.26)

where
G(θ) =

√
1 + cos2 θ. (2.27)

This leads to a 2-dimensional unconstrained dynamical system for the state vector (θ, T ),
given by

dθ

dτ
= −TG(θ) (2.28a)

dT

dτ
= T (1 − T )2. (2.28b)

The intersection with the invariant boundary T = 0, consists of the circle of fixed points
LR whose linearisation yields the eigenvalues 1 and 0, with the center manifold being the line
itself, i.e., the circle of fixed points is normally hyperbolic, so that a unique solution originates
from each fixed point (θ0, 0), θ0 ∈ [0, 2π), and a one-parameter set of solutions (parameterised
by θ0) originates from the circle into the interior of the state space SYM. At T = 1, it follows
that

dθ

dτ
= −G(θ) < 0, (2.29)

which corresponds to the periodic orbit P1. From the monotonicity of T , see Lemma 2.1, it
follows that all solutions originate from the circle of fixed points at T = 0 and end at the
periodic orbit at T = 1 which, therefore, constitutes a limit cycle. In fact, using (2.28a)-
(2.28b), we find that, in this case, the orbits are the solutions to the equation

dθ

dT
= − G(θ)

(1 − T )2 , (2.30)

and which are given by

θ(T ) = F

(√
2
( 1

1 − T0
− 1

1 − T

) ∣∣∣ 1√
2

)
, (2.31)

where F (x|k) is the Jacobi elliptic amplitude, satisfying F (0|k) = 0. This 1-parameter set of
solutions parameterised by T0, corresponds to the well-known solutions for the pure massless
Yang-Mills field in a flat Robertson-Walker geometry found in [59, 60] by solving d2χ/dη2 =
−χ3/2, where η is the conformal time dη = dt/a(t). These solutions are depicted in Figure
2.4 for different initial conditions.
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(a) Dynamics on the in-
variant boundary SYM.

0
π
2

π
3 π
2

2 π
0.0

0.2

0.4

0.6

0.8

1.0

T

θL
R

P1

(b) ‘Unwrapped’ solution
space, corresponding to so-
lutions (2.31) for different

values of θ0.

Figure 2.4: Dynamics on the invariant set SYM.

2.2.5 Global dynamics for massless Yang-Mills field and perfect fluid

We now make use of the previous analysis to prove the following result:

Proposition 2.2. Consider solutions of the system (2.18) with 0 < Ωpf < 1:

(i) If γpf >
4
3 , then all solutions converge, for τ → −∞, to the fixed point FL0 with Ωpf = 1

and, for τ → +∞, to the outer periodic orbit P1 with Ωpf = 0.

(ii) If 0 < γpf <
4
3 , a 1-parameter set of solutions converges, for τ → −∞, to each point on

the circle of fixed point LR with Ωpf = 0, while all solutions converge, for τ → +∞, to
the fixed point FL1 with Ωpf = 1.

(iii) If γpf = 4
3 , a unique solution converges, for τ → −∞, to each point on the disk of fixed

points DR, while a 1-parameter set of solutions converges, for τ → +∞, to each inner
periodic orbit PΩYM.

This means that in case γpf >
4
3 (resp. γpf <

4
3), the model is past (resp. future) asymptotic

fluid dominated and future (resp. past) asymptotic Yang-Mills field dominated. In the critical
case, γpf = 4

3 , the model in neither fluid nor Yang-Mills dominated towards the asymptotic
past nor the asymptotic future, see Figure 2.5 for representative solutions.

Proof. The proof makes use of Lemma 2.1 and the simple orbit structure on the invariant
boundaries, given in the subsections 2.2.1-2.2.4, which imply that the only possible α-limit
sets are fixed points on T = 0, while the ω-limit sets can be either periodic orbits or the fixed
point FL1 on T = 1.
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In order to prove the general asymptotic behavior, we make use of the auxiliary equation (2.19)
for ΩYM. Since γYM = 4/3 is constant, then equation (2.19), together with the evolution
equation for T , can be easily solved for ΩYM in terms of T . For solutions with 0 < ΩYM < 1,
and γpf ̸= 4

3 , we get  Ω
3γpf

4
YM

1 − ΩYM


1

3γpf −4

= C
T

1 − T
,

where C > 0 is a real constant parameterising the solutions. The last equation clearly shows
that if γpf >

4
3 , then ΩYM → 0 as T → 0, and ΩYM → 1 as T → 1, i.e. all solutions with

0 < ΩYM < 1 start at FL0 and end at P1. In turn, if γpf <
4
3 , then ΩYM → 1 as T → 0, and

ΩYM → 0 as T → 1, i.e. all solutions start at LR and end at FL1. If γpf = 4
3 , then ΩYM = C,

with C ∈ (0, 1) for all T , i.e. the solutions start at DR and end at PΩYM .

Now, we give a more precise description of the flow near the invariant boundaries T = 0 and
T = 1. The linearisation of the system (2.18) around the fixed points located at T = 0 yields
(see A.8):

• FL0: eigenvalues 3
4

(
γpf − 4

3

)
, 3

2

(
γpf − 4

3

)
and 3

4γpf , with associated eigenvectors (1, 0, 0),
(0, 1, 0) and (0, 0, 1).

• LR: eigenvalues 0, −3
(
γpf − 4

3

)
and 1, with associated eigenvectors (ΣYM,−2X3

1 , 0),
(X1, 2ΣYM, 0) and (0, 0, 1) where Σ2

YM +X4
1 = 1.

• DR: eigenvalues 0, 0 and 1, with eigenvectors (1, 0, 0), (0, 1, 0) and (0, 0, 1).

For all interior orbits in S̄: When γpf > 4/3, FL0 is a source of a 2-parameter set of orbits
and, from LR, originates a 1-parameter set of orbits lying on SYM. All these solutions end
up at P1, except the heteroclinic orbit FL0 → FL1. When γpf < 4/3, only this heteroclinic
orbit originates from FL0, while each point on LR has a center manifold (LR itself) and a
two dimensional unstable manifold, being the source of a 1-parameter set of interior orbits (a
2-parameter set from the whole circle LR). In this case, all solutions end at FL1 except the
ones on SYM which end at P1. If γpf = 4/3, each fixed point on the disk DR is the source of
a unique interior orbit. Since ΩYM = const., each periodic orbit PΩYM , at T = 1, attracts a
1-parameter set of interior orbits, i.e. those solutions which originate from the circle of fixed
points on the intersection of DR with ΩYM = const..
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(a) Solution space for
γpf = 1.

(b) Solution space for
γpf = 4

3 .
(c) Solution space for

γpf = 3
2 .

Figure 2.5: Qualitative global evolution of dynamical system (2.18) in S for the three
different cases γpf <

4
3 , γpf = 4

3 and γpf >
4
3 , illustrating the results of Proposition 2.2.

2.3 Massive Yang-Mills field (case µ ̸= 0)

In this section, we analyse the system (2.3)-(2.4), with µ ̸= 0. We, therefore, introduce a new
dimensionless variable associated with the mass parameter µ,

X2 = µϕ√
2H

. (2.32)

Using e-fold time N as defined in (2.10), we obtain the local dynamical system

dΣYM
dN

= −
[
(1 − q)ΣYM + 2T̃X3

1 + µT̃ 2X2
]

(2.33a)
dX1
dN

= −1
2
[
(1 − q)X1 − 2T̃ΣYM

]
(2.33b)

dX2
dN

= qX2 + µT̃ 2ΣYM (2.33c)

dT̃

dN
= 1

2(1 + q)T̃ , (2.33d)

subject to the constraint
X2 = µT̃X1, (2.34)

and where we use
1 − Ωpf = Σ2

YM +X4
1 +X2

2 (2.35)

to solve for Ωpf . The deceleration parameter q is given by

q = 1 −X2
2 + 3

2

(
γpf − 4

3

)
Ωpf . (2.36)
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As in the massless case, the constraint (2.35) implies that X1, ΣYM, Ωpf , and X2 are bounded.
In particular, the bounds in (2.14) hold and, in addition,

−1 ≤ X2 ≤ 1, (2.37)

which, given 0 < γpf ≤ 2 and (2.36), yields

−1 < q ≤ 2 . (2.38)

Since the constraint (2.34) is linear in X2, it can be used to solve for X2 giving a local 3-
dimensional dynamical system for (X1,ΣYM, T̃ ), which is particularly useful for analysing
the asymptotics when H → +∞ (T̃ → 0), where X2 → 0. One could, as well, construct a
local dynamical systems formulation appropriated to study the dynamics when T̃ becomes
unbounded, i.e. H → 0. This can be achieved by replacing T̃ with T̄ = T̃−1, together with
a new time variable Ñ defined via d/dÑ = T̄ 3d/dN and where, now, the constraint becomes
linear in X1 = µ−1T̄X2 and, hence, can be solved for X1 to obtain a local dynamical system
for (X2,ΣYM, T̄ ), with X1 → 0 as T̄ → 0.

To obtain a global dynamical systems formulation on a compact state space, we proceed as in
the massless case, and introduce the bounded variable

T = T̃

1 + T̃
, (2.39)

which satisfies 0 < T < 1. By introducing a new independent variable τ̄ , such that

d

dτ̄
= (1 − T )2 d

dN
, (2.40)

we obtain, from (2.33)-(2.34), a global dynamical system

dΣYM
dτ̄

= −
[
(1 − q)(1 − T )2ΣYM + 2(1 − T )TX3

1 + µT 2X2
]

(2.41a)
dX1
dτ̄

= −1
2
[
(1 − q)(1 − T )2X1 − 2(1 − T )TΣYM

]
(2.41b)

dX2
dτ̄

= q(1 − T )2X2 + µT 2ΣYM (2.41c)
dT

dτ̄
= 1

2(1 + q)(1 − T )3T, (2.41d)

subject to the constraint
(1 − T )X2 = µTX1, (2.42)
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and where we use (2.35) to globally solve for Ωpf . The deceleration parameter q is, then, given
by

q = 1 −X2
2 + 3

2

(
γpf − 4

3

)
(1 − Σ2

YM −X4
1 −X2

2 ). (2.43)

It is also useful to consider the auxiliary evolution equation for the effective energy density of
the Yang-Mills field which, in the present case, reads

ΩYM := ρYM
3H2 = Σ2

YM +X4
1 +X2

2 , (2.44)

with ΩYM = 1 − Ωpf . From (2.5)-(2.6), we can write

γYM := 1 + pYM
ρYM

= 1 + 1
3

Σ2
YM +X4

1 −X2
2

ΩYM
= 4

3 − 2
3
X2

2
ΩYM

. (2.45)

Furthermore, rewriting (2.43) as

q = −1 + 3
2 (γYMΩYM + γpfΩpf) , (2.46)

we obtain
dΩYM
dτ̄

= 3(1 − T )2(γpfΩYM − γYMΩYM)(1 − ΩYM). (2.47)

The price to pay, in order to have a global relatively compact state space picture, is that the
constraint (2.42) cannot be solved globally. However, it forms an invariant set for the flow.
This can be seen by writing G(X1, X2, T ) = (1 − T )X2 − µTX1 = 0 and noticing that

dG

dτ̄
=
(
q − 1

2(1 + q)T
)

(1 − T )2G . (2.48)

The state-space S for the variables (ΣYM, X1, X2, T ) is, therefore, the subset defined by G = 0
on the set {0 ≤ Σ2

YM +X4
1 +X2

2 ≤ 1∧0 < T < 1}. The state-space S contains other important
invariant subsets: the pure Yang-Mills subset Ωpf = 0 and the Friedmann-Lemâıtre invariant
subset for which Ωpf = 1. In addition, it can be regularly extended to include the invariant
boundaries T = 0 and T = 1 to obtain the compact state-space S.

As a starting point for our analysis, we study the past and future limit sets:

Lemma 2.3. Consider the system (2.41)-(2.42). The α-limit set of all interior orbits in S is
located at the invariant boundary T = 0, with X2 = 0, and the ω-limit set is at the invariant
boundary T = 1, with X1 = 0.

Proof. We make use of the monotonicity principle. Due to 1 + q > 0, a quick inspection of
equation (2.41d) reveals that T (τ̄) is monotonically increasing in S and, therefore, there are
no periodic nor recurrent orbits in the interior of the state space. We conclude that the α-limit
set of all solutions is located at the T = 0 invariant boundary associated to the asymptotic
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past H → +∞, while the ω-limit set is located on the T = 1 invariant boundary, associated
with the asymptotic future H → 0. Moreover, the constraint (2.42) implies that X1 → 0 as
T → 1, and X2 → 0 as T → 0.

Remark 2.4. This lemma implies, in particular, the result in [59], that for the pure Yang-
Mills field, the past asymptotics is dominated by the ”massless potential”, while the future
asymptotics it is dominated by the ”mass potential”.

We now proceed with a detailed analysis of the past and future asymptotics.

2.3.1 Past asymptotics for massive Yang-Mills fields and perfect fluids

Since along G = 0, we have X2 → 0 as T → 0, then the invariant boundary T = 0 coincides
with the T = 0 boundary of the massless Yang-Mills state space. It follows that there exist
the fixed points FL0, as well as the deformed circle LR and the disk DR of fixed points now
for:

DR : 0 ≤ Σ2
YM +X4

1 ≤ 1, T = 0, X2 = 0 (2.49)

LR : Σ2
YM +X4

1 = 1, T = 0, X2 = 0 (2.50)

FL0 : ΣYM = X1 = 0, T = 0, X2 = 0 . (2.51)

The goal of this subsection is to prove the next theorem which gives a description of the past
asymptotics of the model.

Theorem 2.5. Consider solutions of the system (2.41)-(2.42) with 0 < Ωpf < 1. For τ̄ →
−∞:

(i) If 0 < γpf <
4
3 , all solutions converge to the circle of fixed points LR. More precisely,

each fixed point on LR is the α-limit point of a 2-parameter set of solutions.

(ii) If γpf = 4
3 , all solutions converge to the disk of fixed points DR. More precisely, each

fixed point on DR is the α-limit point of a unique solution.

(iii) If γpf >
4
3 , all solutions converge to the fixed point FL0.

Proof. The proof uses Lemma 2.3 and the fact that X2 = 0 at T = 0, which means that
the orbit structure on this boundary coincides with that of the massless case studied in
Subsection 2.2.2. In fact, this boundary consists of heteroclinic orbits when γpf ̸= 4

3 , or only
of fixed points when γpf = 4

3 , see Figure 2.2. Therefore, the possible past attracting sets are
fixed points located at T = 0. In order to deduce the stability properties of the fixed points,
we need to solve the constraint (2.42). Although it is not possible to solve this constraint
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globally, we can uniquely solve it locally at the points where ∇G ̸= 0 by making use of the
implicit function theorem. Since ∂X2G|T=0 = 1, in a neighbourhood of the T = 0 boundary,
then we can eliminate the variable X2 from the eigenvalue analysis of the fixed points on
T = 0. This yields the same results as the linearisation around the corresponding similar
fixed points of the massless case.

The physical interpretation of the above theorem is that, if γpf < 4/3, the dynamics are past
asymptotically dominated by the massless Yang-Mills field while, if the fluid content has an
equation of state stiffer than radiation, the past asymptotics is governed by the Friedmann-
Lemâıtre solution. If γpf = 4/3, then the model is neither fluid of massless Yang-Mills
dominated towards the past.

2.3.2 Future asymptotics for massive Yang-Mills fields and perfect fluids

We start by describing the future invariant subset T = 1. Since X1 = 0 at T = 1, the induced
flow on this boundary is given by

dΣYM
dτ̄

= −µX2 (2.52a)
dX2
dτ̄

= µΣYM , (2.52b)

where now
1 − Ωpf = Σ2

YM +X2
2 . (2.53)

The T = 1 boundary is foliated by periodic orbits PΩYM , parameterised by constant values of
ΩYM = Σ2

YM +X2
2 , with the fixed point FL1 given by

FL1 : ΣYM = X2 = 0, T = 1, X1 = 0 (2.54)

and located at the center, see Figure 2.6. The objective of this subsection is to prove the

P1
1
2
P

1
4
P

FL1

ΣYM

X2

Figure 2.6: Representation of the invariant boundary T = 1 when µ > 0.

following result:
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Theorem 2.6. Consider solutions of the system (2.41)-(2.42) with 0 < Ωpf < 1. For τ̄ −→
+∞:

(i) If γpf > 1, then all solutions converge to the outer periodic orbit P1 with Ωpf = 0.

(ii) If γpf < 1, then all solutions converge to fixed point FL1 with Ωpf = 1.

(iii) If γpf = 1, then a 1-parameter set of solutions converge to each inner periodic orbit
PΩYM.

Proof. The proof is based on Lemma 2.3 together with averaging techniques and consists of an
adaptation of the methods used in [68]. An important difference with respect to the standard
averaging theory is that the perturbation parameter ε will not be a constant, but a function
of time here. We start by recalling that each periodic orbit on T = 1 has an associated time
period P (ΩYM), so that, for a given function f , its average over a time period characterized
by ΩYM is given by

⟨f⟩ΩYM = 1
P (ΩYM)

∫ τ̄0+P (ΩYM)

τ̄0
f(τ̄) dτ̄ . (2.55)

Differentiating (2.52b) and using (2.52a) gives

d

dτ̄

(
X2

dX2
dτ̄

)
−
(
dX2
dτ̄

)2
+ µ2X2

2 = 0. (2.56)

Taking the average for a periodic orbit gives,〈(
dX2
dτ̄

)2〉
= µ2⟨X2

2 ⟩, (2.57)

which implies
⟨Σ2

YM⟩ = ⟨X2
2 ⟩. (2.58)

Thus, on the T = 1 invariant subset

⟨γYM⟩ = 4
3 − 2

3
⟨X2

2 ⟩
⟨Σ2

YM⟩ + ⟨X2
2 ⟩

= 1, (2.59)

which does not depend on ΩYM and, on average, the Yang-Mills field behaviour resembles
that of dust.

We now set ε(τ̄) = 1 − T (τ̄) and consider the system

dΩYM
dτ̄

= 3ε2 (γpfΩYM − γYMΩYM) (1 − ΩYM) := ε2f(ΩYM, τ̄ , ε) (2.60a)
dε

dτ̄
= −1

2(1 + q)ε3(1 − ε), (2.60b)
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where
γYMΩYM = 4

3ΩYM − 2
3X

2
2 , 1 + q = 3

2(γpf − (γpf − γYM)ΩYM) (2.61)

and (X1, X2,ΣYM) solves (2.41)-(2.42) with the equation for T replaced by the equation for
ε. Recall that 1 + q > 0 and, therefore, ε is monotonically decreasing, so that, ε(τ̄) → 0 as
τ̄ → +∞. Moreover, since ∂X1G|T=1 = µ ̸= 0, we can use the implicit function theorem to
solve (2.42) uniquely for X1, in a neighbourhood of the T = 1 boundary.

We start by applying the near-identity transformation depending on ε,

ΩYM(τ̄) = y(τ̄) + ε2(τ̄)w(y, τ̄ , ε). (2.62)

The evolution equation for y is obtained using (2.60a) and (2.60b), which gives

dy

dτ̄
=
(

1 + ε2∂w

∂y

)−1 [dΩYM
dτ̄

−
(

2εw + ε2∂w

∂ε

)
dε

dτ̄
− ε2∂w

∂τ̄

]
= ε2

1 + ε2 ∂w
∂y

[
3(γpf − 1)y(1 − y) + 3(1 − γYM)y(1 − y) + 3wε4(γpf − γYM) + 3ε6(γpf − γYM)−

− ∂w

∂τ̄
+
(

2w + ε
∂w

∂ε

)(1 + q

2

)
(1 − ε)ε2

]
(2.63)

and where we used (2.59). Setting

∂w

∂τ̄
= f(y, τ̄ , ε) − ⟨f(y, ·, 0)⟩

= 3(1 − γYM)y(1 − y)

=
(
−y + 2X2

2

)
(1 − y)

(2.64)

and expanding (2.63) in powers of ε, for ε sufficiently small, the equation for ΩYM is trans-
formed into the full averaged equation

dy

dτ̄
= ε2⟨f⟩(y) + ε4h(y, w, τ̄ , ε) + ε5(1 + q)

(1
2
∂w

∂ε
− w

)
+ O(ε6), (2.65)

where

⟨f⟩(y) = ⟨f(y, ·, 0)⟩ = 3(γpf − 1)y(1 − y) (2.66)

h(y, w, τ̄ , ε) = w(1 + q) + 3w(1 − 2y)(γpf − γYM)(1 − 2y) − 3(γpf − γYM)∂w
∂y

y(1 − y).(2.67)

Note that, due to the previous analysis of the invariant set T = 1, i.e. ε = 0, the right-hand-
side of (2.64) is, for large times, almost-periodic and has zero mean, which, in particular,
implies that w is bounded. Then, it follows from (2.62) that y is also bounded. Moreover, for
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sufficiently small ε, equation (2.65) implies that y is monotonic, either increasing or decreasing
depending on the sign of γpf − 1 ̸= 0 and, hence, y has a limit when τ̄ → +∞.

Now, we study the evolution of the truncated averaged equation, which is obtained by dropping
all higher order terms in (2.65) as

dȳ

dτ̄
= 3ε2(γpf − 1)ȳ(1 − ȳ) (2.68)

dε

dτ̄
= −1

2(1 + q)(1 − ε)ε3. (2.69)

In this system, the ε = 0 axis consists of a non-hyperbolic line of fixed points. Making the
change of time variable

1
ε2

d

dτ̄
= d

dτ̃
,

which does not affect the behavior of interior orbits, i.e. orbits with ε > 0, we get

dȳ

dτ̃
= 3(γpf − 1)ȳ(1 − ȳ) (2.70)

dε

dτ̃
= −1

2ε(1 + q)(1 − ε). (2.71)

For γpf − 1 ̸= 0, the above dynamical system has the two fixed points P1 = (ȳ = 0; ε = 0)
and P2 = (ȳ = 1; ε = 0), where the ε = 0 axis consists now of the heteroclinic orbit P1 → P2

(resp. P2 → P1), in case γpf − 1 > 0 (resp. γpf − 1 < 0). Thus, for γpf > 1 (resp. γpf < 1),
solution trajectories of the system (2.68)-(2.69) will converge to the fixed point P2 (resp. P1),
tangentially to the ε = 0 axis.

Next, we show that solutions y, of the full averaged equation (2.65), have the same limit as
the solutions ȳ of the truncated averaged equation when τ̄ → +∞. For this, we define the
sequences {τ̄n} and {εn} such that εn = ε(τ̄n), with n ∈ N, and

τ̄n+1 − τ̄n = 1
ε2
n

(2.72)

τ̄0 = 0 (2.73)

ε0 > 0, (2.74)

where lim τ̄n = +∞ and lim εn = 0, since ε(τ̄) → 0 as τ̄ → +∞. We estimate |η(τ̄)| =
|y(τ̄) − ȳ(τ̄)| as follows

|η(τ̄)| =
∣∣∣∣∫ τ̄

τ̄n

(
3ε2(γpf − 1)y(1 − y) + ε4h(y, w, ε, s)

)
ds−

∫ τ̄

τ̄n

3ε2(γpf − 1)ȳ(1 − ȳ)ds+ O(ε5)
∣∣∣∣

≤ ε2
∫ τ̄

τ̄n

3 |γpf − 1|︸ ︷︷ ︸
|·|≤C

|(y − ȳ) (1 − (y + ȳ))︸ ︷︷ ︸
|·|≤1

|ds+ ε4
∫ τ̄

τ̄n

|h(y, w, ε, s)|︸ ︷︷ ︸
|·|≤M

ds+ O(ε5)

≤ 3Cε2
n

∫ τ̄

τ̄n

|η(s)|ds+ ε4
nM(τ̄ − τ̄n) + O(ε5

n),
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where C and M are some positive constants. By Gronwall’s inequality

|η(τ̄)| ≤ ε2
nM

3C (e3Cε2
n(τ̄−τ̄n) − 1) + O(ε3

n), (2.75)

and using the fact that τ̄ − τ̄n ∈ [0, 1/ε2
n], we find

|η(τ̄)| ≤ Kε2
n, (2.76)

with K a positive constant. As εn → 0, then |η(τ̄)| → 0, and so y and ȳ have the same limit.
Finally, from equation (2.62), the triangular inequality, and the fact that ε → 0 as τ̄ → +∞,
it follows that ΩYM has the same limit as ȳ and, therefore, converges to 0 or 1, depending on
the sign of γpf − 1 ̸= 0. This proves cases (i) and (ii) of the theorem.

Now, we analyse the case when γpf = 1. In that case, the equation for y is given by

dy

dτ̄
= ε4h(y, w, ε, τ̄) + O(ε5). (2.77)

Taking the average of h, given in (2.67), at ε = 0,

⟨h⟩(y, w) = ⟨h(y, ·, 0)⟩ = 1
P

∫ P

0
h(y, w, 0, τ̄)dτ̄

= 1
P

∫ P

0
w(y, τ̄ , 0)(1 + q)dτ̄

= 1
P

∫ P

0

3
2w(y, τ̄ , 0)(1 + (γYM − 1)y)dτ̄

= 3
2⟨w(y, ·, 0)⟩ = 3

2⟨w⟩(y), (2.78)

we consider the truncated averaged equation

dz̄

dτ̄
= 3

2ε
4⟨w⟩(z̄) (2.79)

dε

dτ̄
= −3

4ε
4(1 − ε) . (2.80)

To resolve the non-hyperbolicity of the line of fixed points at ε = 0, we make the change of
time variable ε−3d/dτ̄ = d/dτ̃ , to obtain

dz̄

dτ̃
= 3

2ε⟨w⟩(z̄) (2.81)
dε

dτ̃
= −3

4ε(1 − ε). (2.82)

In this case, the ε = 0 axis consists of a line of fixed points with z̄0 ∈ [0, 1], whose linearisation
yields the eigenvalues λ1 = 0 and λ2 = −3

4 with associated eigenvectors v1 = (z̄ = 1; ε = 0)
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and v2 = (z̄ = −2⟨w⟩(z̄0); ε = 1). Therefore, the line is normally hyperbolic and each point
on the line is exactly the ω-limit point of a unique interior orbit. This means that there also
exists an orbit of the dynamical system (2.79)-(2.80) with ε > 0 initially, that converges to
(z̄0, 0), for each z̄0, as τ̃ → +∞.

Just as in the proof of cases (i) and (ii), we can estimate the term O(ε5) that provides
bootstrapping sequences. This defines a pseudo-trajectory Ωn

YM(τ̄n) = z̄(τ̄n) of system (2.60a)-
(2.60b), with

|Ωn
YM(τ̄) − z̄(τ̄)| ≤ Kε2

n , (2.83)

where τ̄ ∈ [τ̄n, τ̄n+1] and K is a positive constant. Compactness of the state space and the
regularity of the flow implies that exists a set of initial values whose solution trajectory ΩYM(τ̄)
shadows the pseudo-trajectory Ωn

YM(τ̄), in the sense that

∀n ∈ N, ∀τ̄ ∈ [τ̄n, τ̄n+1] : |Ωn
YM(τ̄) − ΩYM(τ̄)| ≤ Kε2

n . (2.84)

Finally, using the triangle inequality, we get

|ΩYM(τ̄) − z̄(τ̄)| = |ΩYM(τ̄) − Ωn
YM(τ̄) + Ωn

YM(τ̄) − z̄(τ̄)|

≤ |Ωn
YM(τ̄) − ΩYM(τ̄)|︸ ︷︷ ︸

≤Kε2
n

+ |Ωn
YM(τ̄) − z̄(τ̄)|︸ ︷︷ ︸

≤Kε2
n

≤ 2Kε2
n →︸︷︷︸
τ̄n→∞

0 , (2.85)

and, therefore, for each z̄0 ∈ [0, 1], there exists a solution trajectory ΩYM(τ̄) that converges
to a periodic orbit at ε = 0 i.e. T = 1, characterized by ΩYM = z̄0, which concludes the proof
of (iii).

2.4 Concluding Remarks

This chapter considered spatially homogeneous and isotropic massless and massive Yang-Mills
field cosmologies with perfect fluid. In particular the well-known explicitly solvable massless
Yang-Mills isotropic cosmologies [59, 60] have been contextualized in a global state-space
picture. The dynamical systems formulations introduced here can be used to shed light on the
dynamics of more general anisotropic cosmological models, where massless Yang-Mills fields
are known to exhibit past asymptotic chaotic behaviour reminiscent of the Mixmaster universe
as well as future asymptotic oscillatory behaviour similar to Yang-Mills field in Minkowski
space [88, 91–94]. General spatially homogeneous Yang-Mills fields under the Hamiltonian
gauge can be written in diagonal form Aai = χ(i)(t)δai , where for the diagonal Bianchi class
A, if the off-diagonal components are zero initially, then they will remain so for the whole
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evolution. Isotropy requires all diagonal components χ(i) to be equal, thus reducing the
Yang-Mills field degrees of freedom to a single scalar field with a quartic potential, which
excludes its chaotic behaviour. A general treatment of diagonal Yang-Mills Bianchi class A
spacetimes using an orthonormal frame approach and expansion normalized variables can be
found in [94]. However, a lack of suitable renormalized matter variables has prevented so
far to obtain a global dynamical systems formulation on a compact state-space suitable for
asymptotic description of those models. The present formulation can be extended to more
general Bianchi models, where the isotropic case treated here appears as a special invariant
set. The physical interpretation of Theorem 2.6 is as follows: In if γpf < 1, then the general
solutions of the massive system behave like the Friedmann-Lemâıtre solution asymptotically
towards the future. However, if the fluid content has an equation of state stiffer than dust,
then the future asymptotics is governed by the pure massive Yang-Mills solution, which, in
particular, exhibits oscillatory behaviour. If γpf = 1, then the model is neither fluid of massive
Yang-Mills dominated towards the future.





Chapter 3

Dynamics of interacting monomial
scalar field potentials and perfect
fluids

In this chapter we investigate the dynamical interaction between scalar fields and perfect
fluid. We consider the Einstein equations for a spatially homogeneous and isotropic metric
(1.51) having a scalar field with monomial potentials interacting with perfect fluids with linear
equation of state. Our main goal is to obtain a global dynamical picture of the resulting non-
linear ODEs and in particular about is past and future asymptotics. Our analysis relies on
the introduction a new set of dimensionless variables which results on a regular dynamical
system on a compact state-space consisting of a 3-dimensional cylinder. This allow us to
describe the global evolution of these cosmological models identifying all possible past and
future attractors set which, as will see, in many situations, can be isolated non-hyperbolic
fixed points, non-normally hyperbolic lines of fixed points or even bands of periodic orbits. So,
our analysis will require on one hand center manifold theory and blow-up techniques around
the non-hyperbolic fixed points and, on the other hand, averaging methods involving a time
dependent perturbation parameter.

The chapter is mostly self-contained and is organized as follows: In Section 3.1 we explain
how the non-linear system of ODEs is obtain from physical principles. In Section 3.2 we find
the appropriate dimensionless variables that transform the ODE system into a 3-dimensional
regular autonomous dynamical system on relatively compact state space. This construction
naturally shows that a significant bifurcation occurs for p = n

2 . We therefore split the analysis
into three cases according to the different exponents of the scalar field potential and the
interaction term: Section 3.3 treat the case p < n/2, where the analysis is further split in
two distinct subcases corresponding to p = 1

2(n − 1) and p < 1
2(n − 1). The case p = n/2 is

45
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treated in Section 3.4, and when p > n/2 in Section 3.5. Interestingly, in some situations we
encounter non-hyperbolic fixed points whose exceptional divisor of the blow-up space consists
of generalised Liénard systems. We provide proofs as well as conjectures about the global
dynamics complemented by numerical pictures of representative cases.

3.1 Non-linear ODE system

Motivated by the warm inflation scenario of the early universe, here we assume a minimally
coupled scalar field ϕ with self-interaction potential V (ϕ) interacting with a perfect fluid. The
evolution equations can be derived from an action principle and the most general action for
this case is given by

S =
∫
M

(R
2 + 1

2(∂ϕ)2 − V (ϕ) + Lpf + Lint
)√

− det (g)d4xµ, (3.1)

where as standard, we use Greek indices µ, ν, ... = 0, 1, 2, 3 for each coordinate in spacetime.
Here (∂ϕ)2 := ∂µϕ∂

µϕ, Lpf is the Lagrangian density of the perfect fluid and Lint describes
the interaction between the scalar field and the thermal bath. Varying the Lagrangian density
with respect to the metric we obtain the Einstein equations (1.6) with stress-energy tensor
components

Tµν = T (ϕ)
µν + T (pf)

µν (3.2)

with

T (pf)
µν = (ρpf + ppf)uµuν + ppfgµν + gµνLint (3.3a)

T (ϕ)
µν = ∂µϕ∂νϕ− (1

2(∂ϕ)2 − V (ϕ))gµν − gµνLint (3.3b)

where uµ denotes the unit 4-velocity vector field of the perfect fluid, with ρpf > 0 and ppf

being the fluid energy density and pressure, respectively.

The stress-energy tensor for the scalar field can be written in a perfect-fluid form, with the
identifications uµ(ϕ) = (∂µϕ)/

√
−(∂ϕ)2, that lead to eq. (1.27).

The total stress-energy tensor Tµν obeys the conservation law ∇νT ν
µ = 0. However each

component of the total stress-energy tensor, T (ϕ)
µν and T (pf)

µν , is not conserved, in contrast to
the case when the scalar field does not interact with the thermal bath. In the presence of
interactions

∇νT (ϕ)
µν = Q(ϕ)

µ , ∇νT (pf)
µν = Q(pf)

µ (3.4)
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where Q(ϕ)
µ and Q

(pf)
µ describe the energy exchange between the scalar field and the perfect-

fluid. It follows from the conservation equation that

∇νTµν = Q(ϕ)
µ +Q(pf)

µ = 0. (3.5)

In this work we consider a phenomenological friction-like interaction term for which

Q(ϕ)
µ = −Q(pf)

µ = −Γ(ϕ)uν∂µϕ∂νϕ. (3.6)

where we assume that Γ = Γ(ϕ) is a function of the scalar field ϕ only. In more general
warm inflationary models, the function Γ can also depend on the thermal bath temperature
[38, 95–98], although, as mentioned in sec. 1.6.1.2, recent studies suggest that temperature
dependence is redundant [40]. Equation (3.3a) then gives the modified energy ”conservation”
equation and the Euler equation

−uµ∇µρpf + (ρpf + ppf)∇µ(uµuν) = Γ(ϕ)∂µϕ∂µϕ (3.7a)

(ρpf + ppf)uµ∇µu
ν + uνuµ∇µppf + ∇νppf = 0. (3.7b)

The above system is closed once an equation of state relating the pressure and the energy
density is given. Here we assume that the fluid obeys a linear equation of state (1.11) with
γpf ∈ (0, 2). Equation (3.3b) yields the wave-equation

□gϕ = −dV

dϕ
+ Γ(ϕ)uµ∂µϕ, (3.8)

Motivated by the current cosmological models, we will use a flat spatial homogeneous and
isotropic metric g, called Robertson-Walker (RW) metric, that in the Cartesian coordinates
(t, x, y, z) ∈ (t−, t+) × R3 takes the form given in eq. (1.51). A solution is said to be global
to the past (future) if t− = −∞ (t+ = +∞). Then the Einstein equations coupled to
the nonlinear scalar field equation (3.8), and the energy conservation equation for the fluid
component (3.7a), form the following non-linear ODE system for the unknowns {a,H, ϕ, ρpf}:

ȧ = aH (3.9a)

Ḣ = −1
2γpfρpf − ϕ̇2

2 (3.9b)

ϕ̈ = −(3H + Γ(ϕ))ϕ̇− dV

dϕ
(3.9c)

ρ̇pf = −3γpfHρpf + Γ(ϕ)ϕ̇2 (3.9d)
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together with the Gauss (Hamiltonian) constraint

H2 = ρpf
3 + ϕ̇2

6 + V (ϕ)
3 , (3.10)

where H is the Hubble function (see eq.(1.13)). For expanding cosmologies H > 0. Note also
that the equation for the scale factor a(t) decouples leaving a reduced system of equations for
the unknowns {H,ϕ, ρpf}. The scale-factor can then be obtained by quadrature a = a0e

∫
Hdt.

The Γ(ϕ) term appearing in (3.9c) and (3.9d) acts as a friction term which describes the decay
of the scalar field ϕ due to the interactions encoded in the Lagrangian Lint. Here we assume
monomial scalar field potentials which are popular examples of inflaton models

V (ϕ) = (λϕ)2n

2n , λ > 0 , n = 1, 2, 3, ... (3.11)

and a monomial scalar field interaction term

Γ(ϕ) = µϕ2p , µ > 0 , p = 0, 1, 2, 3, ... (3.12)

The exponent 2p reflects the parity invariance of the potential and the condition µ > 0 ensures
that the second law of thermodynamics is satisfied (see e.g. [37, 99]). For example, interactions
described by Lint ∼ ϕψ and Lint ∼ g2ϕ2χ2, where ψ is the particle of the thermal bath, leads
in the first case to the simplest constant interaction term with Γ(ϕ) = µ, i.e. p = 0. and in
the other case to Γ(ϕ) = µϕ2, i.e. p = 1, see e.g. [100].

To summarise, we will analyse the system (3.9) for the unknowns {H,ϕ, ρpf} having the free
parameters {n, p, λ, µ, γpf} besides the initial conditions {ρ0, ϕ0, ϕ̇0, H0}. Note that n, p and
γpf are dimensionless parameters while λ and µ have dimensions. We shall see ahead that it
is the dimensionless ratio (see (3.17) ahead) of these two quantities that plays an important
role on the qualitative behaviour of solutions.

3.2 Dynamical systems’ formulation

In order to obtain a regular dynamical system on a compact state-space, we start by intro-
ducing dimensionless variables normalized by the Hubble function H (which is positive for
ever expanding models)

Ωpf := ρpf
3H2 > 0 , Σϕ := ϕ̇√

6H
, X := λϕ

(6nH2) 1
2n

, T̃ := c

H
1
n

> 0, (3.13)
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where c =
(

6n−1

n

) 1
2n λ is a positive constant. We also introduce a new time variable Ñ defined

by

d

dÑ
:=

(
c

H
1
n

)δ
H

d

dt
, (3.14)

where

δ =


0 if p ≤ n

2
2p− n if p >

n

2

When δ = 0, i.e. p ≤ n
2 , then Ñ = N = ln(a/a0) is the number of e-folds N from some

reference epoch at which a = a0, i.e., N = 0. When written in terms of the new variables,
the system (3.9), reduces to a regular local 3-dimensional dynamical system

dX

dÑ
= 1
n

(1 + q)T̃ δX + T̃ 1+δΣϕ (3.15a)

dΣϕ

dÑ
= −

[
(2 − q)T̃ δ + νT̃ δ+n−2pX2p

]
Σϕ − nT̃ 1+δX2n−1 (3.15b)

dT̃

dÑ
= 1
n

(1 + q)T̃ 1+δ, (3.15c)

where the constraint equation
Ωpf = 1 − Σ2

ϕ −X2n (3.16)

is used to globally solve for Ωpf . Since Ωpf > 0, the above equation implies that Ωpf is bounded
since Ωpf ∈ (0, 1), while Σϕ ∈ (−1, 1), and X ∈ (−1, 1). The positive dimensionless constant
ν is given explicitly by

ν = 6pµc−n =
√
n62p−(n−1) µ

λn
, (3.17)

and q is the usual deceleration ”parameter” defined via (1.17),

q = −1 + 3Σ2
ϕ + 3

2γpfΩpf = −1 + 3
2 (γϕΩϕ + γpfΩpf) , (3.18)

where we introduced

Ωϕ = ρϕ
3H2 = Σ2

ϕ +X2n = 1 − Ωpf , Ωϕ ∈ (0, 1), (3.19)

and the scalar field effective equation of state parameter γϕ is given by

γϕ := 1 + pϕ
ρϕ

= ϕ̇2

1
2 ϕ̇

2 + 1
2n(λϕ)2n =

2Σ2
ϕ

Ωϕ
. (3.20)
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Moreover, since γpf ∈ (0, 2), it follows from (3.16), and (3.18) that

−1 ≤ q ≤ 2, (3.21)

with q = 1 when Σϕ = 0, and Ωpf = 0; q = 2 when X = 0, and Ωpf = 0; and q = 1
2(3γpf − 2)

when X = 0, and Σϕ = 0. These special constant values of q correspond to well-known
solutions: de-Sitter (dS) spacetime when q = 1, kinaton or massless scalar field self-similar
solution when q = 2 and whose scale factor is given by a(t) = t1/3, and the flat Friedmann-
Lemâitre (FL) self-similar solution when q = 1

2(3γpf −2) with scale factor given by a(t) = t
2

3γpf .

Although the constraint is used to solve for Ωpf , it is nevertheless useful to consider the
auxiliary equation for Ωpf (equivalently Ωϕ = 1 − Ωpf) given by

dΩpf

dÑ
= 2(1 + q − 3

2γpf)T̃ δΩpf + 2νT̃ δ+n−2pX2pΣ2
ϕ

= 3(γϕ − γpf)Ωpf(1 − Ωpf)T̃ δ + 2νT̃ δ+n−2pX2pΣ2
ϕ. (3.22)

Although the variables (X,Σϕ) are bounded, the variable T̃ becomes unbounded T̃ → +∞
when H → 0. In order to obtain a regular and global 3-dynamical system, we introduce

T = T̃

1 + T̃
, (3.23)

so that T ∈ (0, 1) with T → 0 as T̃ → 0, and T → 1 as T̃ → +∞, as well as a new independent
time variable τ defined by

d

dτ
= (1 − T )k d

dÑ
= T δ(1 − T )k−δ

H

d

dt
, (3.24)

where

k =


n− 2p+ δ if p <

n

2 ,

1 + δ if p ≥ n

2 .

This leads to a regular and global 3-dimensional dynamical system for the state-vector (X,Σϕ, T )

dX

dτ
= 1
n

(1 + q)T δ(1 − T )k−δX + T 1+δ(1 − T )k−(1+δ)Σϕ (3.25a)

dΣϕ

dτ
= −

[
(2 − q)T δ(1 − T )k−δ + νT δ+n−2p(1 − T )k−(δ+n−2p)X2p

]
Σϕ − nT 1+δ(1 − T )k−(1+δ)X2n−1

(3.25b)
dT

dτ
= 1
n

(1 + q)T 1+δ(1 − T )1+k−δ, (3.25c)
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The auxiliary equation (3.22) written in terms of the new time variable τ becomes

dΩpf
dτ

= 2(1 + q − 3
2γpf)T δ(1 − T )k−δΩpf + 2νT δ+n−2p(1 − T )k−(δ+n−2p)X2pΣ2

ϕ. (3.26)

The state space S is thus a 3-dimensional space consisting of a (deformed when n > 1) open
and bounded solid cylinder without its axis

S = {(X,Σϕ, T ) ∈ R3 : 0 < X2n + Σ2
ϕ < 1, 0 < T < 1}. (3.27)

The state space S can be regularly extended to include the axis of the cylinder with Ωpf = 1
(Ωϕ = X2n + Σ2

ϕ = 0) which is an invariant boundary subset as follows from (3.26), and the
outer shell of the cylinder which consists of the pure scalar field boundary subset, Ωpf = 0
(Ωϕ = X2n + Σ2

ϕ = 1). Due to the interaction term when ν ̸= 0, the Ωpf = 0 boundary subset
is not invariant for the flow. Furthermore at Ωpf = 0 it follows that

dΩpf
dτ

∣∣∣∣
Ωpf=0

= 2νT δ+n−2p(1 − T )k−(δ+n−2p)X2pΣ2
ϕ ≥ 0, d2Ωpf

dτ2

∣∣∣∣∣
Ωpf=0

= 0 d3Ωpf
dτ3

∣∣∣∣∣
Ωpf=0

= 0

(3.28a)

d4Ωpf
dτ4

∣∣∣∣∣
Ωpf=0

= 6n2(1 − T )k−δ−1(3(1 − T )3k−3δ−1T 1+3δγ2
pf+

+ (1 − T )2k−2δ−1T 1+2δγpf(3(1 − T )k−δT δ + (1 − T )k−n+2p−δTn−2p−δν)) > 0.
(3.28b)

Since ν > 0, this shows that the surface Ωpf = 0 not being invariant, it is future-invariant,
which motivates the following definition:

Definition 3.1. The orbits in S with initial data Ωpf(τ0) > 0 are said to be of class B if there
is a finite τ∗ < τ0 such that Ωpf(τ∗) = 0. The complement of such orbits in S are said to be
of class A.

Class B orbits enter the state-space S by crossing the outer cylindrical shell with Ωϕ =
Σ2
ϕ + X2n = 1. Moreover S can be regularly extended to include the invariant boundaries

T = 0 and T = 1. Although these boundaries are unphysical, it is essential to include them
since all possible past attractor sets for class A orbits are located at T = 0 and all possible
future attractors for both class A and B orbits are located at T = 1 as follows from the
following lemma:

Lemma 3.2. The α-limit set of class A interior orbits in S is located at T = 0, while the
ω-limit set of all interior orbits in S is located at T = 1.
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Proof. Since 1 + q ≤ 0, then T is strictly monotonically increasing in the interval (0, 1) except
when q = −1 in which case

dT

dτ

∣∣∣∣
q=−1

= 0, d2T

dτ2

∣∣∣∣∣
q=−1

= 0,

d3T

dτ3

∣∣∣∣∣
q=−1

= n(1 − T )2k−3(1+δ)T 1+2δ
(
3(1 − T )kT δ

(
n(k − δ)T + (1 − T )2T 2γpf

)
+ νnk(1 − T )1+δT k

)
> 0.

This shows that the points in S with q = −1 are just inflection points in the graph of T (τ).
By the monotonicity principle (see A.23), it follows that there are no fixed points, recurrent
or periodic orbits in the interior of the state space S, and the α-limit sets of class A orbits
are contained at T = 0 and ω-limit sets of all orbits in S are located at T = 1.

Thus the global behavior of both class of orbits can be inferred by a complete detailed de-
scription of the invariant subsets T = 0 and T = 1, which are associated with the asymptotic
past (H → +∞) and future (H → 0) respectively. Due to their distinct properties, we split
our analysis into three cases: p < n/2, p = n/2 and p > n/2.

3.3 Dynamical systems’ analysis when p < n
2

When p < n
2 the global dynamical system (3.25) takes the form

dX

dτ
=
[ 1
n

(1 + q)(1 − T )X + TΣϕ

]
(1 − T )n−2p−1 (3.29a)

dΣϕ

dτ
= −νTn−2pX2pΣϕ −

[
(2 − q)(1 − T )Σϕ + nTX2n−1

]
(1 − T )n−2p−1 (3.29b)

dT

dτ
= 1
n

(1 + q)T (1 − T )n−2p+1 (3.29c)

and the auxiliary equation becomes

dΩpf
dτ

= 2(1 − T )n−2p(1 + q − 3
2γpf)Ωpf + 2νTn−2pX2pΣ2

ϕ. (3.30)

3.3.1 Invariant boundary T = 0

The flow induced in the T = 0 boundary is given by

dX

dτ
= 1
n

(1 + q)X ,
dΣϕ

dτ
= −(2 − q)Σϕ, (3.31)

where q = −1 + 3Σ2
ϕ + 3

2γpfΩpf , and Ωpf = 1 − Ωϕ = 1 −X2n − Σ2
ϕ, satisfies
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dΩpf
dτ

= 2(1 + q − 3
2γpf)Ωpf . (3.32)

Thus
dΩpf
dτ

∣∣∣∣
Ωpf=0

= 0, dΩpf
dτ

∣∣∣∣
Ωpf=1

= 0, (3.33)

and the intersection of the sets Ωpf = 0, and Ωpf = 1 with the invariant boundary T = 0
yields an invariant boundary subset. On T = 0 the system (3.29) admits five fixed points,
one at the center with Ωpf = 1, and four on the invariant scalar field subset with Ωpf = 0.

The fixed point that lies on the intersection of T = 0 with the pure matter subset Ωpf = 1 is
given by

FL0 : X = 0, Σϕ = 0, T = 0, (3.34)

with q = 1
2(3γpf − 2) corresponding to the flat FL self-similar solution. The linearisation

around this fixed point yields the eigenvalues 3
2nγpf , −3

2(2 − γpf) and 3
2nγpf with eigenvectors

the canonical basis for R3. Since 0 < γpf < 2, FL0 has two positive real eigenvalues and a
negative real eigenvalue, being a hyperbolic saddle, and the α-limit point of a 1-parameter set
of class A orbits in S.

On the intersection of the invariant boundary T = 0 with the subset Ωm = 0 there are two
equivalent fixed points

K± : X = 0, Σϕ = ±1, T = 0. (3.35)

with q = 2 corresponding to the self-similar massless scalar field or kinaton solution. The
linearisation of the full system around these fixed points yields the eigenvalues 3

n , 3(2 − γpf)
and 3

n whose generalised eigenvectors are (1, 0, 0), (0, 1, 0), and (∓1, 0, 1). Since γpf ∈ (0, 2)
it is easy to conclude that K± are hyperbolic sources, and the α-limit point of a 2-parameter
set of class A orbits in S.

The remaining other two equivalent fixed points are

dS±
0 : X = ±1, Σϕ = 0, T = 0 (3.36)

and correspond to a quasi-de-Sitter state with q = −1. The linearisation around these fixed
points yields the eigenvalues −3γpf , −3 and 0 with eigenvectors (1, 0, 0), (0, 1, 0) and (0,∓n

3 , 1)
respectively. The fixed points dS±

0 have two negative real eigenvalues (since γpf > 0) and a zero
eigenvalue corresponding to a center manifold. Due to the monotonicity of T it is clear that a
single class A orbit originates from each dS±

0 into S corresponding to the 1-dimensional center
manifold of each fixed point. This center manifold its what is usually called the inflationary
attractor solution. In order to simplify the analysis of the center manifold we use instead
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system (3.15) for the unbounded variable T̃ , and introduce the adapted variables

X̄ = X ∓ 1, Σ̄ϕ = Σϕ ± n

3 T̃ , T̄ = T̃ . (3.37)

This leads to the transformed adapted system

dX̄

dN
= −3γpfX̄ + F (X̄, Σ̄ϕ, T̃ ), dΣ̄ϕ

dN
= −3Σ̄ϕ +G(X̄, Σ̄ϕ, T̃ ), dT̃

dN
= N(X̄, Σ̄ϕ, T̃ )

(3.38)
where the fixed points dS±

0 are now located at the origin of coordinates (X̄, Σ̄ϕ, T̃ ) = (0, 0, 0),
and F , G and N are functions of higher order terms. The 1-dimensional center manifold W c

at dS±
0 can be locally represented as the graph h : Ec → Es, i.e. (X̄, Σ̄ϕ) = (h1(T̃ ), h2(T̃ )),

satisfying the fixed point h(0) = 0 and the tangency dh(0)
dT̃

= 0 conditions (see A.5). Using
this in the above equation and, using T̃ as an independent variable, we get

1
n

(1 + q)
(dh1

dT̃
(T̃ )T̃ − h1(T̃ ) ∓ 1

)
− T̃

(
h2(T̃ ) ∓ n

3 T̃
)

= 0, (3.39a)

1
n

(1 + q)T̃
(dh2

dT̃
(T̃ ) ∓ n

3
)

+ (2 − q)
(
h2(T̃ ) ∓ n

3 T̃
)
+

+ νT̃n−2p
(
h1(T̃ ) ± 1

)2p(
h2(T̃ ) ∓ n

3 T̃
)

+ nT̃
(
h1(T̃ ) ± 1

)2n−1
= 0. (3.39b)

where q = −1 + 3
(
h2(T̃ ) ∓ n

3 T̃
)2

+ 3
2γpf

(
1 − (h1

(
T̃ ) ± 1

)2n −
(
h2(T̃ ) ∓ n

3 T̃
)2). The problem of

finding the inflationary attractor solution amounts to solving the above system of non-linear
ordinary differential equations. Although in general the existence of an explicit solution for
the above system is not expected, it is possible however to approximate the solution by a
formal truncated power series expansion in T̃ :

h1(T̃ ) =
N∑
i=1

aiT̃
i, h2(T̃ ) =

N∑
i=1

biT̃
i. (3.40)

Plugging in (3.40) into (3.39a)-(3.39b), and using the expansions (X̄ ± 1)2n = 1 ± 2nX̄ +( 2n
2n−2

)
X̄2 + . . . , T̃n−2p = T̃ δn−2p

1 + T̃ 2δn−2p
2 + . . . , and solving the resulting linear system of
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equations for the coefficients of the expansions yields as T̃ → 0,

X = ±1 ∓ n

18 T̃
2 ±

(
n2

648(5 − 2n) + νn

27γpf
δn−2p

1

)
T̃ 4 + O(T̃ 4) (3.41a)

Σϕ = ∓n

3 T̃
[
1 ∓

(
n

18 + ν

3 δ
n−2p
1

)
T̃ 2± (3.41b)(

n2

648(17 − 6n) − ν

3

(
δn−2p

2 − n(2 − 4n+ (7 + 2p)γpf) + 6γpf
18γpf

δn−2p
1

))
T̃ 4 + O(T̃ 6)

]
(3.41c)

Ωpf = 2νn2

27γpf
δn−2p

1 T̃ 4 + O(T̃ 6). (3.41d)

Therefore, it follows that to leading order on the center manifold

dT̃

dN
= n

3 T̃
3 + O(T̃ 4) as T̃ → 0, (3.42)

which shows explicitly that dS±
0 are center saddles with a unique center manifold orbit origi-

nating from each fixed point into the interior of S.

We now show that on T = 0 the above fixed points are the only possible α-limit sets, and that
the orbit structure on T = 0 is very simple consisting only of heteroclinic orbits connecting
these fixed points.

Lemma 3.3. Let p < n
2 . Then the T = 0 invariant boundary consists of heteroclinic orbits

connecting the fixed points as depicted in Figure 3.1.

Proof. It is straightforward to check that {Σϕ = 0} and {X = 0} are invariant 1-dimensional
subsets consisting of heteroclinic orbits FL0 → dS±

0 , and K± → FL0 respectively. Therefore
the two axis divide the (deformed) circle with boundary X2n + Σ2

ϕ = 1 consisting of the
heteroclinic orbits K+ → dS±

0 and K− → dS±
0 into 4-invariant quadrants. On each quadrant

there are no interior fixed points and hence by the index theorem (theorem A.28) no closed
curves. It follows by the Poincaré-Bendixson theorem (A.25) that each quadrant consists of
heteroclinic orbits connecting the fixed points. Moreover in this case the T = 0 invariant
boundary admits the following conserved quantity

Σγpf
ϕ X(2−γpf)nΩ−1

pf = const., Ωpf = 1 − Σ2
ϕ −X2n (3.43)

which determines the solution trajectories on T = 0, see Figure 3.1.

Theorem 3.4. Let p < n
2 . The α-limit set for class A orbits in S, consists of fixed points on

T = 0. In particular as τ → −∞ (N → −∞), a 2-parameter set of orbits converge to each
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X

ΣΦ

FL0

0dS

+

+0dS-

Ωφ=1 pf =0( (

Ω

K

-K

(a) (p, n) = (0, 1).

ΣΦ

XFL0

Ωφ=1 pf =0( (

Ω

0dS-
0dS+

+K

-K

(b) (p, n) = (1, 3).

Figure 3.1: The invariant boundary T = 0.

K±, with asymptotics

X(N) = (CX ± CTN)e
3
n
N , Σϕ(N) = ±1 ∓ CΣe

3(2−γpf)N , T̃ (N) = CT e
3
n
N (3.44)

with CX , CΣ > 0, and CT > 0 constants. A 1-parameter set converges to FL0 with asymptotics

X(N) = CXe
3γpf
2n

N , Σϕ(N) = 0, T̃ (N) = CT e
3γpf
2n

N (3.45)

with CX , and CT > 0 constants, and a unique center manifold orbit converge to each dS±
0

with asymptotics

X = ±1 ∓ n

18

(
1 − 2n

3 N

)−1
, Σϕ = ∓n

3

(
1 − 2n

3 N

)−1/2
, T̃ (N) =

(
1 − 2n

3 N

)−1/2
.

(3.46)
When p = 1

2(n − 1) we also get from (3.41d) the asymptotics Ωpf = 2νn2

27γpf

(
1 − 2n

3 N
)−2

. For
p < 1

2(n− 1) one needs to go higher orders on the center manifold of Ωpf .

Proof. The proof follows by Lemmas 3.2, and 3.3, and the local analysis of the fixed points.

Remark 3.5. Solutions of class A which approach K± behave as the self-similar massless
scalar field or kinaton solution, and the ones approaching FL0 as the self-similar Friedmann-
Lemâitre solution whose asymptotics towards the past exhibit well-known Big-Bang singular-
ities. In the context of cosmological inflation the physical interesting solution is the center
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manifold originating from each dS±
0 whose asymptotics are given by

n = 1 : H ∼ −t , ϕ ∼ −t , ρpf ∼ (−t)2, as t → −∞ (3.47a)

n = 2 : H ∼ e− 2
3 t , ϕ ∼ e− t

3 , ρpf ∼ e− 4
3 t, as t → −∞ (3.47b)

n ≥ 3 : H ∼ (−t)
n

n−2 , ϕ ∼ (−t)
2

n−2 , ρpf ∼ (−t)
2n(2p+1)

n−2 , as t → −∞.

(3.47c)

with p < n
2 .

3.3.2 Invariant boundary T = 1

On the T = 1 invariant boundary, the system (3.29a) and (3.29b) reduces to

dX

dτ
= Σϕδ

n−2p
1 ,

dΣϕ

dτ
= −nX2n−1δn−2p

1 − νX2pΣϕ. (3.48)

and the auxiliary equation for Ωpf , satisfies for n > 2p

dΩpf
dτ

= 2νX2pΣ2
ϕ. (3.49)

The analysis can be divided in two subcases, p < 1
2(n − 1), i.e. (p, n) = (0, 2), (0, 3), ...,

(p, n) = (1, 4), (1, 5), ..., etc., and p = 1
2(n− 1), i.e., (p, n) = (0, 1), (1, 3), (2, 5), ...

3.3.2.1 Case p < 1
2(n− 1)

In the first case p < 1
2(n− 1), for all p ≥ 0 there is a line of fixed points

L1 : X = X0, Σϕ = 0, T = 1, (3.50)

with X0 ∈ [−1, 1]. In addition to L1 there exists another line of fixed points when p > 0,

L2 : X = 0, Σϕ = Σϕ0, T = 1, (3.51)

with Σϕ0 ∈ [−1, 1]. We shall refer to the non-isolated fixed point at the origin of the T = 1
invariant set as FL1, and the end points of L1 with X = ±1 as dS±

1 . The description of the
induced flow on T = 1 when p < 1

2(n− 1) is given by the following simple lemma:

Lemma 3.6. When p < 1
2(n−1), the set {T = 1}\L1 for p = 0, and the set {T = 1}\L1 ∪L2

for p > 0 are foliated by invariant subsets X = const. consisting of regular orbits which enter
the region Ωpf > 0 by crossing the set Ωpf = 0 and converging to the line of fixed points L1 as
τ → +∞. See Figure 3.2.
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Proof. When p < 1
2(n− 1), the system (3.48) admits the following conserved quantity

X = const. (3.52)

which determine the solutions trajectories on the T = 1 invariant boundary. The remaining
properties of the flow follows from the fact that on {T = 1} \ L1 for p = 0, and the set
{T = 1} \ L1 ∪ L2 for p > 0, dΣϕ/dτ < 0, and dΩpf/dτ < 0.

FL1

Ωφ=1 pf =0( (

Ω

X

ΣΦ

L1
dS1 dS1

+-

(a) p = 0

FL1

Ωφ=1 pf =0( (

Ω

X

ΣΦ

L1

L2

dS1
-

dS1
+

(b) p > 0

Figure 3.2: The invariant boundary T = 1 for p < 1
2 (n− 1).

Theorem 3.7. Let p < 1
2(n− 1). Then the ω-limit set all orbits in S is contained on L1. In

particular:

i) If p < 1
2(n − 2), then as τ̄ → +∞, a 2-parameter set of orbits converge to each of the

two fixed points dS±
1 on the line L1 with X0 = ±1, and when p = 0 a 1-parameter set of

orbits converge to FL1 with X0 = 0.

ii) If p = 1
2(n − 2), then as τ̄ → +∞, a 2-parameter set of orbits converge to each of the

two fixed points on the line with

X0 = ±

 n2

3γpfν

−1 +
√

1 +
(3γpfν

n2

)2
1/n

.

and when p = 0 a 1-parameter set of orbits converge to FL1 with X0 = 0.

Proof. The first statement follows by lemmas 3.2 and 3.6 for p = 0, while for p > 0, it is
shown in lemma 3.13 by doing a cylindrical blow-up of L2 on top of the blow up of FL1.

The linearised system around L1 has eigenvalues 0, −νX2p
0 and 0, with associated eigenvectors

(1, 0, 0), (0, 1, 0), and (0,− 2
ν (p − 1

2(n − 1))X2(n−p)−1
0 δn−2p

2 , 1). On the {T = 1} invariant
boundary the line of fixed points L1 is normally hyperbolic, i.e. the linearisation yields one
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negative eigenvalue for all X0 ∈ [−1, 1], except at X0 = 0 when p > 0 where the two lines
intersect, and one zero eigenvalue with eigenvector tangent to the line itself, see e.g. [101].
On S̄, the line L1 is said to be partially hyperbolic. Each fixed point on the line, including
the point at the center when p = 0, has a 1-dimensional stable manifold, and a 2-dimensional
center manifold, while the point with X0 = 0 is non-hyperbolic for p > 0. In this case the
blow up of FL1 is done in Section 3.3.3. To analyse the 2-dimensional center manifold of each
partially hyperbolic fixed point on the line. We start by making the change of coordinates
given by

X̄ = X −X0, Σ̄ϕ = Σϕ + 2n
ν

(p− 1
2(n− 1))X2(n−p)−1

0 (1 −T )δn−2p
2 , T̄ = 1 −T (3.53)

which takes a point in the line L1 to the origin (X̄, Σ̄ϕ, T̄ ) = (0, 0, 0) with T̄ ≥ 0. The resulting
system of equations takes the form

dX̄

dτ
= F (X̄, Σ̄ϕ, T̄ ), dΣ̄ϕ

dτ
= −νX2p

0 Σ̄ϕ +G(X̄, Σ̄ϕ, T̄ ), dT̄

dτ
= N(X̄, Σ̄ϕ, T̄ ) (3.54)

where F , G and N are functions of higher order. The center manifold reduction theorem (see
A.5 )yields that the above system is locally topological equivalent to a decoupled system on
the 2-dimensional center manifold, which can be locally represented as the graph h : Ec → Es,
i.e., Σ̄ϕ = h(X̄, T̄ ) which solves the nonlinear partial differential equation

F (X̄, h(X̄, T̄ ), T̄ )∂X̄h(X̄, T̄ )+N(X̄, h(X̄, T̄ ), T̄ )∂T̄h(X̄, T̄ ) = −νX2p
0 h(X̄, T̄ )+G(X̄, h(X̄, T̄ ), T̄ )

(3.55)
subject to the fixed point and tangency conditions h(0, 0) = 0 and ∇h(0, 0) = 0 respectively.
A quick look at the nonlinear terms suggests that we approximate the center manifold at
(X̄.T̄ ) = (0, 0), by making a formal multi-power series expansion for h of the form h(X̄, T̄ ) =
T̄n−2p∑N

i,j=0 ãijX̄
iT̄ j . Solving for the coefficients of expansion it is easy to verify that all

coefficients of type ãi0 are identically zero, so that h can be written as a series expansion in
T̄ with coefficients depending on X̄, i.e.,

h(X̄, T̄ ) = T̄n−2p
N∑
j=1

āj(X̄)T̄ j , āj(X) =
N∑
i=0

aijX̄
i (3.56)
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where for example

a01 = 0, a11 = − (2(n− p) − 1)!
ν(n− 1)!(n− 2p− 1)!X

n
0

a02 = n

ν
X

2(n−p)−1
0 , a12 = −n(2n− 2p− 1)

ν
X

2(n−p−2)
0

a03 = −n(n− 2p− 1)
ν

X
2(n−p)−1
0 +

(
3(n− 1)!ν − (2(n− p) − 1)!X2(n−p−1)

0

)
(n− 1)!ν3 Xn−2p+1

0 δn−2p
2

(0,0)
X‐

T‐

(a) b01 > 0. For b01 < 0
the direction of the flow is

reversed.

X

T‐

‐

(0,0)

(b) X0 = 0 when p = 0

T‐

X‐

(0,0)

(c) X0 = X± when p =
1
2 (n − 2).

(0,0)
X‐

T‐

(d) X0 = ±1 when p <
1
2 (n − 2).

Figure 3.3: Flow on the 2-dimensional center manifold of each point on L1.

After a change of time d/dτ = T̄n−2p−1d/dτ̄ , the flow on the 2-dimensional center manifold
is given by

dX̄

dτ̄
=

N∑
j=1

b̄j(X̄)T̄ j , b̄j(X̄) =
N∑
i=0

bijX̄
i (3.58a)

dT̄

dτ̄
= T̄

N∑
j=1

c̄j(X)T̄ j c̄j(X̄) =
N∑
i=0

cijX̄
i (3.58b)
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with

b01 = X0

(3γpf
2n (1 −X2n

0 ) − n(n− 2p− 1)
ν

X
2(n−p−1)
0 δn−2p

2

)
b11 =

(3γpf
2n

(
1 − (1 + 2n)X2n

0

)
− (2(n− p) − 1)!
ν(n− 1)!(n− 2p− 1)!X

2(n−p−1)
0 δn−2p

2

)
b02 = n

ν
X

2(n−p)
0

c01 = −3γpf
2n (1 −X2n

0 ), c11 = 0

c02 = 3γpf
2n (1 −X2n

0 ), c12 = −3γpfX
2n
0 .

For p = 1
2(n− 2), with n even, the coefficient b01 vanishes at X0 = 0 and X0 = X± where

X± = ±

 n2

3γpfν

−1 +
√

1 +
(3γpfν

n2

)2
1/n

. (3.60)

Note that X− ∈ (−1, 0) and X+ ∈ (0, 1). Moreover b01 < 0 for X0 ∈ (X−, 0) ∪ (X+, 1], and
b01 > 0 for X0 ∈ [−1, X−) ∪ (0, X+) and the origin (0, 0) is a nilpotent singularity. Since the
coefficient c̄01(X̄) ̸= 0 for all X0, then the formal normal form is zero with

dX̄∗
dτ̄∗

= sign(b01)T̄∗,
dT̄∗
dτ̄∗

= T̄ 2
∗ Φ(X̄∗, T̄∗) (3.61)

and Φ an analytic function. The phase-space is the flow-box multiplied by the function T̄∗,
with the direction of the flow given by the sign of b01, see Figure 3.3a. For X0 = 0 (when
p = 0), then b11(0) = 3γpf

2n > 0, and c01(0) = −3γpf
2n < 0 which after Euler multiplication by

T̄−1 yields a hyperbolic saddle, see Figure 3.3b. For X0 = X±, we have

b11(X±) = −
(

n2

ν
√

3γpf

)2
1 +

(3γpfν

n2

)2
−

√
1 +

(3γpfν

n2

)2
 < 0,

c01(X±) = − n3

6γpfν2

−1 +
√

1 +
(3γpfν

n2

)2
 < 0,

and after Euler multiplication by T̄−1 the origin is a hyperbolic sink, see Figure 3.3c.

For p < 1
2(n − 2), the coefficient b01 vanishes at X0 = 0 and X0 = ±1, being negative for

X0 ∈ (−1, 0), and positive for X0 ∈ (0, 1). For b01 ̸= 0, the phase-space is again as depicted
in Figure 3.3a with the direction of the flow given by the sign of b01, i.e. of X0. When X0 = 0
(and restricting to p = 0), b01 = 0, and b11 = 3γpf

2n > 0 which after Euler multiplication by
T̄−1 yields that FL1 is a hyperbolic saddle, see Figure 3.3b. For X0 = ±1, we have that
b11 = −3γpf < 0, c01 = 0, c02 = 0 and c12 = −3γpf < 0 after changing time variable to
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d/dτ̃ = T̄−1d/dτ̄ , then

dX̄

dτ̃
= −3γpfX̄ + n

ν
T̄ + n

ν
T̄ 2 + n(n− 2p)

2 X̄T̄ − 3
2(2n+ 1)X̄2 + O(∥(X̄, T̄ )∥3)

dT̄

dτ̃
= −3γpfX̄T̄ + O(∥(X̄, T̄ )∥3)

and the origin is a semi-hyperbolic fixed point with eigenvalues −3γpf , 0 and associated
eigenvectors (1, 0) and (− n

3γpfν
, 1). To analyse the 1-dimensional center manifold we introduce

the adapted variable X̃ = X̄ + n
3γpfν

T̄ . The 1-dimensional center manifold W c at (0, 0)
can be locally represented as the graph h : Ec → Es, i.e. X̃ = h(T̄ ), satisfying the fixed
point h(0) = 0 and tangency dh(0)

dT̄
= 0 conditions, i.e. using T̄ as an independent variable.

Approximating the solution by a formal truncated power series expansion h(T̄ ) = ∑N
i=2 aiT̄

i

and solving for the coefficients yields to leading order on the center manifold

dT̄

dτ̃
= −n

ν
T̄ 2 + O(T̄ 3), as T̄ → 0. (3.63)

Therefore for X0 = ±1, the origin is the ω-limit set of a 1-parameter set of orbits on the
2-dimensional center manifold, see Figure 3.3d.

The global qualitative behavior for solutions of the dynamical system 3.29 when p < 1
2(n− 1)

is shown in Figure 3.4.

Remark 3.8. The asymptotic for solutions converging to dS±
1 are given by

H ∼ t
− n

2(n−p) , ϕ ∼ const, ρpf ∼ t
− n

n−p , as t → +∞ (3.64)

while those converging to S± are given by

H ∼ t−
n

n+3 , ϕ ∼ const, ρpf ∼ t−
2n

n+3 , as t → +∞. (3.65)

3.3.2.2 Case p = 1
2(n− 1)

In the second case p = 1
2(n− 1), there is single fixed point lying in the intersection of T = 1

with the pure matter subset Ωpf = 1

FL1 : X = 0, Σϕ = 0, T = 1. (3.66)

The linearisation around this fixed point on T = 1 boundary yields the characteristic polyno-
mial λ2 + νδn1λ + nδn1 = 0. Since ν > 0, when n = 1 (p = 0), FL1 has two eigenvalues with
negative real part being a hyperbolic sink on T = 1 (stable node if ν ≥ 2, and a stable focus
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(a) Case p < 1
2 (n −

2) with (p, n) = (1, 5),
γpf = 4

3 and ν = 1.

(b) Case p = 1
2 (n −

2) with (p, n) = (1, 4),
γpf = 4

3 and ν = 1.

Figure 3.4: Qualitative global evolution of the dynamical system (3.29) for p < n
2 (n− 1)

if 0 < ν < 2), while on the full state space FL1 has a 1-dimensional center manifold with
center tangent space Ec = ⟨(0, 0, 1)⟩, i.e., consisting of the Ωpf = 1 invariant set. Therefore
FL1 is the ω-limit point of a 2-parameter set of orbits, converging to FL1 tangentially to the
center manifold when ν ≥ 2, or spiraling around the center manifold when 0 < ν < 2. When
n− 2p = 1 but p ̸= 0 and n > 1 all eigenvalues of the fixed point FL1 are zero. The blow-up
of the fixed point FL1 is given in Section 3.3.3.

Lemma 3.9. Let p = 1
2(n−1). Then the T = 1 invariant boundary consists of orbits entering

the region Ωpf > 0 by crossing the set Ωpf = 0 and converging to the fixed point FL1 at the
center as τ → +∞.

Proof. It suffices to note that the bounded function Ωpf is strictly monotonically increasing
along the orbits, except at the axis of coordinates Σϕ = 0 or X = 0 when p > 0. However since
dΣϕ/dτ ̸= 0 on Σϕ = 0 and dX/dτ ̸= 0 on X = 0, except at origin where the axis intersect, it
follows by the LaSalle’s invariance principle (A.10) that (Σϕ, X) → (0, 0), and Ωpf → 1. In
fact, when p = 1

2(n− 1), the system (3.48) admits the following conserved quantity on T = 1:
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−

arctan

 2n
ν

Σϕ
Xn +1√

( 2n
ν )2−1


√(

2n
ν

)2
− 1

+ 1
2 log [νΣϕX

n + n(1 − Ωpf)] = const., if 0 < ν < 2n, (3.67a)

log [Σϕ +Xn] + Xn

Σϕ +Xn
= const., if ν = 2n, (3.67b)

arctanh

 2n
ν

Σϕ
Xn +1√

1−( 2n
ν )2


√

1 −
(

2n
ν

)2
+ 1

2 log [νΣϕX
n + n(1 − Ωpf)] = const., if ν > 2n (3.67c)

which determine the solutions trajectories on the T = 1 invariant boundary.

ΣΦ

X
FL1

Ωφ=1 pf =0( (

Ω

(a) (p, n) = (0, 1).

ΣΦ

XFL1

Ωφ=1 pf =0( (

Ω

(b) (p, n) = (1, 3).

Figure 3.5: The invariant boundary T = 1 for p = 1
2 (n− 1).

Theorem 3.10. Let p = 1
2(n − 1). Then as τ → +∞, all orbits in S converge to the fixed

point FL1.

Proof. The proof follows by Lemmas 3.2, and 3.9.

Remark 3.11. It is possible to deduce the asymptotics towards the fixed point FL1. For
(n, p) = (1, 0), and all γpf ∈ (0, 2) the preceding analysis yields to leading order on the center
manifold

T (τ) = 1 −
(

1 + 3γpf
2 CT τ

)−1
as τ → +∞. (3.68)

Moreover if 0 < ν < 2, then

X(τ) = e− ν
2 τ
(
CX cos(1

2
√

4 − ν2τ) +
(νCX + 2CΣ) sin(1

2
√

4 − ν2τ)√
4 − ν2

)
, (3.69a)

Σϕ(τ) = e− ν
2 τ
(
CΣ cos(1

2
√

4 − ν2τ) −
(2νCX + νCΣ) sin(1

2
√

4 − ν2τ)√
4 − ν2

)
. (3.69b)
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as τ → +∞. If ν = 2,

X(τ) = e−τ
(
(1 + τ)CX + τCΣ

)
, (3.70a)

Σϕ(τ) = e−τ
(
CΣ − τ(CX + CΣ)

)
, (3.70b)

as τ → +∞, and if ν > 2, then

X(τ) = e− ν
2 τ
(
CX cosh(1

2
√
ν2 − 4τ) +

(νCX + 2CΣ) sinh(1
2
√
ν2 − 4τ)√

ν2 − 4

)
, (3.71a)

Σϕ(τ) = e− ν
2 τ
(
CΣ cosh(1

2
√
ν2 − 4τ) −

(2νCX + νCΣ) sinh(1
2
√
ν2 − 4τ)√

ν2 − 4

)
. (3.71b)

as τ → +∞. For p > 0, i.e., (p, n) = (1, 3), (2, 5), (3, 7), etc., the asymptotics can be obtained
by the analysis of the blow-up of FL1 done in Section 3.3.3.

The global qualitative behavior for solutions of the dynamical system 3.29 when p = n
2 (n− 1)

is shown in Figure 3.6.

(a) (p, n) = (0, 1). (b) (p, n) = (1, 3).

Figure 3.6: Qualitative global evolution of the dynamical system (3.29) for p = n
2 (n− 1).

3.3.3 Blow-up of FL1 when p > 0

To analyse the non-hyperbolic fixed point FL1 of the dynamical system (3.29) when p > 0, we
start by relocating FL1 at the origin, i.e., we introduce T̄ = 1 − T , to obtain the dynamical
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system

dX

dτ
= 1
n

(1 + q)T̃n−2pX + (1 − T̃ )T̃n−2p−1Σϕ (3.72a)
dΣϕ

dτ
= −

[
(2 − q)T̃n−2p + ν(1 − T̃ )n−2pX2p

]
Σϕ − n(1 − T̃ )T̃n−2p−1X2n−1 (3.72b)

dT̃

dτ
= − 1

n
(1 + q)(1 − T̃ )T̃n−2p+1 (3.72c)

where recall
q = −1 + 3Σ2

ϕ + 3
2γpf

(
1 −X2n − Σ2

ϕ

)
. (3.73)

In order to understand the dynamics near the origin (X,Σϕ, T̄ ) = (0, 0, 0), which is a non-
hyperbolic fixed point for p > 0 we employ the spherical blow-up method [102–104] (see A.7.3).
This is, we transform the fixed point at the origin to the unit 2-sphere S2 = {(x, y, z) ∈ R3 :
x2 + y2 + z2 = 1}, and define the blow-up space manifold as B := S2 × [0, u0] for some fixed
0 < u0 < 1. We further define the quasi-homogeneous blow-up map

Ψ : B → R3, Ψ(x, y, z, u) = (un−2px, uny, u2pz) (3.74)

which after canceling a common factor u2p(n−2p) (i.e. by changing time variable d/dτ =
u2p(n−2p)d/dτ̄ , where p < n

2 , with p > 0) leads to a desingularisation of the non-hyperbolic
fixed point on the blow-up locus {u = 0}. Since Φ is a diffeomorphism outside of the sphere
S2 × {u = 0}, which corresponds to the fixed point (0, 0, 0), the dynamics on the blow-up
space B \ S2 × {u = 0} are topological conjugate to R3 \ {0, 0, 0}.

It usually simplifies the computations if instead of standard spherical coordinates on B, one
uses different local charts κi : B → R3 such that ψi : Ψ ◦ κ−1

i and the resulting vector fields
are simpler to analyse. We choose six charts κi such that

ψ1± = (±un−2p
1± , un1±y1±, u

2p
1±z1±) (3.75a)

ψ2± = (un−2p
2± x2±,±un2±, u

2p
2±z2±) (3.75b)

ψ3± = (un−2p
3± x3±, u

n
3±y3±,±u2p

3±) (3.75c)

where ψ1±, ψ2± and ψ3± are called the directional blows ups in the positive/negative x, y,
and z-directions respectively. It is easy to check that the different charts are given explicitly
by

κ1+ : (u1+, y1+, z1+) = (ux
1

n−2p , yx−n, zx−2p) (3.76a)

κ2+ : (x2+, u2+, z2+) = (xy− n−2p
n , uy

1
n , zy− 2p

n ) (3.76b)

κ3+ : (x3+, u3+, z3+) = (xz− n−2p
2p , yz

− n
2p , uz

1
2p ) (3.76c)
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Later transition maps κij = κj ◦ κ−1
i allows us to identify fixed points and special invariant

manifolds on different charts, and to deduce all dynamics on the blow up space. In this case,
we will need the following transition charts.

κ1+2+ : (x2+, u2+, z2+) = (y− n−2p
n

1+ , u1+y
1
n
1+, y

− 2p
n

1+ z1+), y1+ > 0; (3.77a)

κ2+1+ : (u1+, y1+, z1+) = (u2+x
1

n−2p

2+ , x−n
2+ , z2+x

−2p
2+ ), x2+ > 0; (3.77b)

κ1+3+ : (x3+, y3+, u3+) = (z
− n−2p

2p

1+ , y1+z
− n

2p

1+ , u1+z
1

2p

1+), z1+ > 0; (3.78a)

κ3+1+ : (u1+, y1+, z1+) = (u3+x
1

n−2p

3+ , y3+, y3+x
−n
3+ , x

−2p
3+ ), x3+ > 0; (3.78b)

κ2+3+ : (x3+, y3+, u3+) = (x2+z
− n−2p

2p

2+ , z
− n

2p

2+ , u2+z
1

2p

2+), z2+ > 0; (3.79a)

κ3+2+ : (x2+, u2+, z2+) = (x3+y
− n−2p

n
3+ , u3+y

1
n
3+, y

− 2p
n

3+ ), y3+ > 0; (3.79b)

Since the physical state-space has T̄ ≥ 0, we are only interested in the region {z ≥ 0}, i.e. the
union of the upper hemisphere of the unit sphere S2 and the equator of the sphere {z = 0}
which constitutes an invariant boundary. This motivates that we start the analysis by using
chart κ3+, i.e., the directional blow-up map in the positive z-direction, on which the northern
hemisphere is mapped into an invariant plane of coordinates (x3, y3, 1). After canceling a
common factor u2p(n−2p)

3 (i.e. by changing the time variable d/dτ = u
2p(n−2p)
3 d/dτ̄3) leads to

dx3
dτ̄3

= 1
2np(1 + q)(2p+ (n− 2p)(1 − u2p

3 ))x3 + (1 − u2p
3 )y3 (3.80a)

dy3
dτ̄3

= 1
2p(1 + q)(1 − u2p)y3 −

(
2 − q + ν(1 − u2p

3 )n−2px2p
3
)
y3 − n(1 − u2p

3 )x2n−1
3 u

2n(n−1−2p)
3

(3.80b)
du3
dτ̄3

= − 1
2np(1 + q)(1 − u2p

3 )u3 (3.80c)

where
q = −1 + 3γ

2

(
1 + 2 − γ

γ
y2

3u
2n
3 − x2n

3 u
2n(n−2p)
3

)
.

In these coordinates the equator of the sphere is at infinity, and it is better analyzed using
charts κ1± and κ2±. Moreover since the above system is symmetric under the transformation
(x3, y3) → −(x3, y3) it suffices to consider the charts in the positive direction. To study the
points at infinity, we notice that both the directional blow-ups in the positive x and y direction
already tell how such local chart must be given. To study the region where x3 blows up, we
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use the chart
(y1, z1, u1) =

(
y3
xn3
,

1
x2p

3
, u3x

1
n−2p

3

)
(3.81)

together with change of time variable d/dτ̄1 = z1d/dτ̄3, i.e. d/dτ = u
2p(n−2p)
1 d/dτ̄1, leads to

the system of equations

dy1
dτ̄1

= −n(1 − u2p
1 z1)zn−2p−1

1 u
2n(n−2p−1)
1 −

(
2 − q + 1 + q

n− 2p

)
y1z

n−2p
1 − νy1(1 − u2p

1 )n−2p

(3.82a)

− n

n− 2p
(
1 − u2p

1 z1
)
y2

1z
n−2p−1
1

dz1
dτ̄1

= −
(1 + q

n

(
n

n− 2p − u2p
1 z1

)
zn−2p

1 + 2p
n− 2p(1 − u2p

1 z1)y1z
n−2p−1
1

)
z1 (3.82b)

du1
dτ̄1

= 1
n− 2p

(1 + q

n
z1 +

(
1 − u2p

1 z1
)
y1

)
u1z

n−2p−1
1 (3.82c)

where
q = −1 + 3γpf

2

(
1 + 2 − γpf

γpf
y2

1u
2n
1 − u

2n(n−2p)
1

)
.

To study the region where y3 blows up, we use the chart κ3+2+

(x2, z2, u2) =

 x3

y
n−2p

n
3

,
1

y
− 2p

n
3

, u3y
1
n
3

 (3.83)

and changing the time variable d/τ̄2 = z2d/dτ̄3 i.e. d/dτ = u
2p(n−2p)
2 d/τ̄2 we get

dx2
dτ̄2

= 1
n

(
2(n− 2p+ 1

2) − (n− 2p− 1)q
)
x2z

n−2p
2 +

(
1 + (n− 2p)x2n

2

)
(1 − u2p

2 z2)zn−2p−1
2

+ ν
n− 2p
n

(1 − u2p
2 z2)n−2px2p+1

2 (3.84a)
dz2
dτ̄2

= 2p
n

((
2 − q + 1 + q

2p (1 − u2p
2 z2)

)
zn−2p

2 + ν(1 − u2p
2 z2)n−2px2p

2

)
z2

+ 2p(1 − u2p
2 z2)x2n−1

2 zn−2p
2 u

2n(n−2p−1)
2

du2
dτ̄2

= −
(

(2 − q)zn−2p
2 + ν

n
(1 − u2p

2 z2)n−2px2p
2 +

(
1 − u2p

2 z2
)
zn−2p−1

2 x2n−1
2 u

2n(n−2p−1)
2

)
u2

(3.84b)

where
q = −1 + 3γpf

2

(
1 + 2 − γpf

γpf
u2n

2 − x2n
2 u

2n(n−2p)
2

)
. (3.85)

The general structure of the blow-up space for the two different cases with p < 1
2(n− 1) and

p = 1
2(n− 1) is shown in Figure 3.7. In the first case, we shall see ahead that the points R±

are still non-hyperbolic and therefore needed a further blow-up, while in the second case the
number of fixed points on the equator depends on if ν < 2n, ν = 2n or ν > 2n.
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(a) Case p < 1
2 (n − 1). (b) Case p = 1

2 (n − 1).

Figure 3.7: Blow-up space B.

To obtain a global phase-space description, we shall also, instead of projecting the upper-half
of the unit 2-sphere on the z = 1 plane, to project it into the open unit disk x2 +y2 < 1 which
can be joined with the equator (unit circle on {z = 0}), thus obtaining a global understanding
of the flow on the Poincaré-Lyapunov unit cylinder D2 × [0, ū0] for some ū ∈ (0, 1). Usually
generalised angular variable Θ are used on the invariant subset {u3 = 0}, see e.g. [105, 106].
Here we use a different type of transformation, based on [68], which makes the analysis
somewhat simpler:

(x3, y3, u3) =
((

r

1 − r

) 1
2p

cos θ,
(

r

1 − r

) 2p+1
2p

F (θ) sin θ, (1 − r)
1

2p ū

)
, (3.86)

where

F (θ) =

√
1 − cos2(2p+1) θ

1 − cos2 θ
=

√√√√ 2p∑
k=0

cos2k θ (3.87)

is bounded and analytical in θ ∈ [0, 2π), satisfying F (θ) ≥ 1 (with F ≡ 1 when p = 0), and
F (0) =

√
2p+ 1. The above transformation leads to

x
2(2p+1)
3 + y2

3 =
(

r

1 − r

) 2p+1
p

(3.88)

and make a further change of time variable

d

dξ̄
= (1 − r) d

dτ̄3
. (3.89)
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we obtain the dynamical system

dr

dξ
= 2p(1 − r)r

(
(1 + q)(1 − r)
2pn(2p+ 1)

(
(2p+ 1)

(
n− (n− 2p)(1 − r)ū2p

)
− n(1 − ū2p)F 2(θ) sin2 θ

)
+ F 2(θ) sin2 θ

2p+ 1
(
(2 − q)(1 − r) + r(1 − (1 − r)ū2p)n−2pν cos2p θ

)
+ r(1 − (1 − r)ū2p)F (θ) sin θ

− n(1 − ū2p)
2p+ 1 ū2n(n−2p−1)(1 − r)

(n−1)(n−2p−1)
p

r
n−1

p −1
F (θ) sin θ

)
(3.90a)

dθ

dξ
= −F (θ)2

2np
(
(1 + q)(1 − r)(n− (1 − r)(n− 2p)ū2p) cos θ + 2pnr(1 + (1 − r)ū2p)F (θ) sin θ

)
sin θ

− 4n
4(2p+ 1)(1 − r)

(n−2p−1)(n−1)
p r

n−p−1
p ū2n(n−2p−1)(1 − ū2p) cos2n θF (θ)

+ (1 − r)
4p(2p+ 1)(1 + q)(1 − ū2p − 2p(2 − q))F (θ)2 sin 2θ + 2r(1 + (1 − r)ū2p)n−2pνF (θ) cos2p θ sin 2θ

(3.90b)
dū

dξ
= −(1 + q)(1 − (1 − r)ū2p)

2np (1 − r)ū− ū

4p(2p+ 1)
(
2(1 − r)r

(
2p(2 − q) − (1 + q)(1 − ū2p)

)
F 2(θ)

+ 4pνr2(1 − (1 − r)ū2p)n−2pF 2(θ) + 4pn(1 − r)
(n−2p−1)(n−1)

p r
(n−1)

p ū2n(n−2p−1)(1 − ū2p) cosn−1 θF (θ)
)

sin2 θ

+ ūr cos4p+1 θ

2np
(
(1 + q)(1 − r)(n− (1 − r)(n− 2p)ū2p) cos θ + 2pnr(1 + (1 − rū2p))F (θ)

)
(3.90c)

where

q = −1+3γpf
2

(
1 − (1 − r)

n(n−2p−1)
p rn/pū2n(n−2p) cos2n θ + 2 − γpf

γpf
(1 − cos2p(2p+1) θ)(1 − r)

n−2p−1
p r

2+ 1
p ū2n

)
.

The right-hand side of the above dynamical system is regular and can be extended up to
{r = 0} and {r = 1} at least in a C1 manner. The general structure of the Poincaré-Lyapunov
cylinders in both cases when p < 1

2(n− 1) and p = 1
2(n− 1) are shown in Figure 3.8a. In this

way all fixed points are hyperbolic or semi-hyperbolic, and in particular when p < 1
2(n − 1)

the line L2 does no longer exists.
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(a) Case p < 1
2 (n − 1). (b) Case p = 1

2 (n − 1).

Figure 3.8: Blow-up space on the Poincaré-Lyapunov cylinder.

3.3.3.1 Case p < 1
2(n− 1):

Consider the case p < 1
2(n−1) with p > 0, i.e. n > 2, for example (p, n) = (1, 4), (1, 5), (1, 6), ...,

(p, n) = (2, 6), (2, 7), .. , etc.

Positive z-direction

For u3 < 1 all fixed points are located at the invariant subset {u3 = 0}. The flow induced on
{u3 = 0} is given by

dx3
dτ̄3

= 3γpf
4p x3 + y3 ,

dy3
dτ̄3

=
(3(2p+ 1)γpf

4p K − νx2p
3

)
y3 (3.91)

where we introduced
K(γpf , p) = 1 − 4p

(2p+ 1)γpf
. (3.92)

Due to that γpf ∈ (0, 2), it follows that K ∈ (−∞, 1
1+2p).

Remark 3.12. By changing coordinates to (x̄, ȳ) =
(
x3,

3γpf
4p x3 + y3

)
the system of equa-

tions (3.91) is transformed into an equivalent Liénard-type system

dx̄

dτ̄3
= ȳ,

dȳ

dτ̄3
= −f(x̄)ȳ − g(x̄) (3.93)
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where

f(x̄) = −3γpf
4p

(1 + p)
2p K + νx̄2p (3.94a)

g(x̄) = 3γpf
4p x̄

(3γpf(1 + 2p)
4p K − νx̄2p

)
. (3.94b)

which arises from the second-order Liénard-type differential equation

d2x̄

dτ̄2
3

+ f(x̄) dx̄
dτ̄3

+ g(x̄) = 0. (3.95)

Introducing the functions

F (x̄) =
∫ x̄

0
f(s)ds, G(x̄) =

∫ x̄

0
g(s)ds (3.96)

the energy of the system is is E = 1
2 ȳ

2 + G(x̄), and making a further change of variable
Y = ȳ + F (x̄) leads to the Liénard plane

dx̄

dτ̄3
= Y − F (x̄), dY

dτ̄3
= −g(x̄). (3.97)

There is vast amount of literature on Liénard type systems, see e.g.,[102, 104, 107, 108] and
reference therein. The most difficult problem concerns the existence, number, relative position
and bifurcations of limit cycles arising on Liénard equations.

The fixed points are the real solutions of
(3(2p+ 1)γpf

4p K − νx2p
3

)
y3 = 0 , y3 = −3γpf

4p x3. (3.98)

In this case there are at most 3 fixed points. The fixed point at the origin of coordinates

M : x3 = 0, y3 = 0. (3.99)

The linearised system at M has eigenvalues λ1 = 3γpf
4p , λ2 = 3 (2p+1)γpf

4p K, λ3 = −3γpf
4np , and

associated eigenvectors v1 = (1, 0, 0), v2 = (− 2
3(2−γpf) , 1, 0), v3 = (0, 0, 1). Hence on {u3 = 0},

M is a hyperbolic fixed point if and only if K ̸= 0, being a saddle if K < 0, (0 < γpf <
4p

2p+1),
and a source if K > 0, ( 4p

2p+1 < γpf < 2). When K = 0, (γpf = 4p
2p+1), there is a bifurcation

leading to a center manifold associated with a zero eigenvalue. To analyse the center manifold
we introduce the adapted variable ȳ3 = y3 − 2

3(2−γpf) x̄3. The center manifold can be locally
represented as the graph h : Ec → Eu, i.e. x3 = h(ȳ3), which solves the initial value problem.
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3γpf
4p h(ȳ3) − 2ν

3(2 − γpf)

(
h(ȳ3) − 2ȳ3

3(2 − γpf)

)
ȳ3 = ȳ

3(2p+ 1)γpf
4p − ν

(
h(ȳ3) − 2ȳ3

3(2 − γpf)

)2p
 dh

dȳ3

(3.100a)

h(0) = 0 dh

dȳ3
(0) = 0. (3.100b)

Approximating the solution by formal truncated power series expansion, and solving coeffi-
cients yields to the leading order

dȳ3
dτ̄3

= −ν
(2p+ 1

3

)2p
ȳ2p+1

3 + O(ȳ2p+3
3 ), ȳ3 → 0 (3.101)

and therefore it is one dimensional stable center manifold. In addition to M there are more
two fixed point when K > 0, while no additional fixed points exists when K ≤ 0. When
K > 0, the fixed points are

S± : x3 = ±
(3(2p+ 1)γpf

4pν K

) 1
2p

, y3 = ∓
(3γpf

4p

)(3(2p+ 1)γpf
4pν K

) 1
2p

(3.102)

The linearisation around these fixed points yields the eigenvalues

λ1 = 3γpf
8p

(
1 −

√
1 + 8p(1 + 2p)K

)
, λ2 = 3γpf

8p

(
1 +

√
1 + 8p(1 + 2p)K

)
, λ3 = −3γpf

4np
(3.103)

with associated eigenvectors

v1 =
(

1 −
√

1 + 8p(1 + 2p)K
3(1 + 2p)γpfK

, 1, 0
)
, v2 =

(
1 +

√
1 + 8p(1 + 2p)K

3(1 + 2p)γpfK
, 1, 0

)
, v3 = (0, 0, 1).

(3.104)
It follows that S± are hyperbolic saddles.

Fixed points at infinity

When p < 1
2(n− 1), the flow on the invariant subset {u1 = 0} is given by

dy1
dτ̄1

= −3
(

1 − n− 2p− 1
n− 2p γpf

)
y1z

n−2p
1 − νy1,

dz1
dτ̄1

= − 1
n− 2p

(3γpf
2 z1 − 2py1

)
zn−2p

1

(3.105)
and analyse the invariant set {z1 = 0} on {u1 = 0}, which results

dy1
dτ̄1

= −νy1. (3.106)
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and has one fixed point
P+ : y1 = 0, z1 = 0 u1 = 0. (3.107)

The linearisation yields the eigenvalues λ1 = −ν, λ2 = 0, and λ3 = 0 with associated eigen-
vectors v1 = (1, 0, 0), v2 = (0, 1, 0), and v3 = (0, 0, 1). The zero eigenvalue in the u1-direction
is associated with a line of fixed points parameterized by constant values of u1 = u0 ∈ (0, 1),
and which corresponds to the half of the line of fixed points L1 with X0 < 0. Thus on u1 = 0
invariant set, the fixed point P+ is semi-hyperbolic. The center manifold reduction theorem
yields that the above system is locally topological equivalent to the 1-dimensional decoupled
equation on the center manifold, which can be locally represented as graph h : Ec → Es, i.e.
y1 = h(z1) which solves the nonlinear ordinary differential equation

− 1
n− 2p

(3γpf
2 − 2ph(z1)

)
zn−2p

1
dh

dz1
= −νh(z1)−3

(
1 − n− 2p− 1

n− 2p γpf

)
h(z1)zn−2p

1 (3.108)

subject to the fixed point, h(0) = 0, and tangency, dh(0)
dz1

= 0, conditions. In general it is
not possible to solve for h explicitly. However we can approximate the solutions by making a
formal multi-power series expansion for h(z1) and solving for the coefficients gives as z1 → 0:
In this case, the flow on the center manifold is

dz1
dτ̄1

= − 3γpf
2(n− 2p)z

n−2p+1
1 + O

(
zn−2p+2

1

)
, z1 → 0. (3.109)

and so P+ is the ω-limit point of a 1-parameter set of orbits.

On the positive y-direction, when p < 1
2(n − 1), the flow induced on the invariant subset

{u2 = 0} is given by

dx2
dτ̄2

= ν
n− 2p
n

x2p+1
2 +

( 1
n

(
(n− 2p) − 3(n− 2p− 1)γpf

2

)
x2z2 + (1 + (n− 2p)x2n

2 )
)
zn−2p−1

2

(3.110a)
dz2
dτ̄2

= 2p
n

(
3
(

1 − (2p+ 1)γpf
2

)
zn−2p

2 + νx2p
2

)
z2 (3.110b)

and analyse the invariant set {z2 = 0} on {u2 = 0}, which results

dx2
dτ̄2

= ν
n− 2p
n

x2p+1
2 (3.111)

which admits one fixed point

R+ : x2 = 0, z2 = 0 u2 = 0 (3.112)

and whose linearised system has all eigenvalues zero. The zero eigenvalue in the u2 direction
is due to the line of fixed points L+

2 . Nevertheless it follows from (3.106), and (3.111), that
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the equator of the Poincaré sphere consists of heteroclinic orbits R+ → Q±, and R− → Q±.

To blow-up of R+ or better the complete line L+
2 , we perform a cylindrical blow up, i.e. we

transform each point on the line to a circle S1 = {(v, w) ∈ R2 : v2 + w2 = 1}. The blow-up
space is B̄ = S1 × [0, u20) × [0, s0) and define the quasi-homogeneous blow-up map

Ψ̄ : B̄ → R3, Ψ̄(v, w, u2, s) = (sn−2p−1v, s2p+1w, u2)

We choose four charts such that

ψ̄1± =
(
±sn−2p−1

1± , s2p+1
1± w1±, u2

)
(3.113a)

ψ̄2± =
(
sn−2p−1

2± v2±,±s2p+1
2± , u2

)
(3.113b)

In fact we only consider the semi-circle with w ≥ 0 since z2 ≥ 0. This in particular means that
we only need to consider the blow-up in the positive w-direction, i.e. the directional blow-up
defined by ψ̄2+. We start with the v-direction {v = ±1} which after canceling the common
factor s2p(n−2p−1)

1± (i.e by changing the time variable d/dτ̄2 = s
2p(n−2p−1)
1± d/dτ̃1±) leads to

dw1±
dτ̄1±

= ν
(1 − s2p+1

1± u2p
2 w1±)n−2p

2p− n+ 1 w1± − n(2 − q) + (1 + 2p)(1 + q)
n(n− 2p− 1) sn1±w

n−2p−1
1± (3.114a)

∓

(1 + 2p)(1 + (n− 2p)s2n(n−2p−1)
1± )

n− 2p− 1 − 2p(s1±u2)2n(n−2p−1)

wn−2p
1± (1 − s2p+1

1± u2p
2 w1±)

+
(1 + q)(1 − s2p+1

1± u2p
2 w1±)

n
wn−2p+1

1± sn1±

ds1±
dτ̄1±

= 1
n− 2p− 1

(
1 + q + (n− 2p)(2 − q)

n
sn1±w

n−2p
1 +

ν(n− 2p)(1 − s2p+1
1± u2p

2 w1±)
n

)
s1±

(3.114b)

± 1
n− 2p− 1

(
1 + (n− 2p)s2n(n−2p−1)

1±

) (
1 − s2p+1

1± u2p
2 w1±

)
wn−2p−1

1± s1±

du2
dτ̄1±

= −
(

(2 − q)sn1±w
n−2p
1 ± (s1±u2)2n(n−2p−1)(1 − s2p+1

1± u2p
2 w1±)wn−2p−1

1 (3.114c)

+
ν
(
1 − s2p+1

1± u2p
2 w1±

)n−2p

n

)
u2

where
q = −1 + 3γpf

2

(
1 + 2 − γpf

γpf
u2n

2 − u
2n(n−2p)
2 s

2n(n−2p−1)
1±

)
(3.115)

The system above presents the following fixed point:

T± : w1± = 0, s1± = 0, u2 = 0 (3.116)
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whose linearised system has eigenvalues − ν
n−2p−1 , (n−2p)ν

n(n−2p−1) , and − ν
n with eigenvectors the

canonical basis of R3, and the fixed points

Q± : w1± = ∓
(

ν

2p+ 1

) 1
n−2p−1

, s1± = 0, u2 = 0 (3.117)

where only Q− exists in the region w1± > 0. The eigenvalues of the linearised system around
Q± are ν, 2pν

n(2p+1) and − ν
n with associated eigenvectors the canonical basis of R3.

In the w-direction and after canceling a common factor s2p(n−2p−1)
2± (i.e. by changing the time

variable d/dτ̄2 = s
2p(n−2p−1)
2± d/dτ̃2+) leads to the system

dv2±
dτ̄2±

= n(2 − q) + (2p+ 1)(1 + q)
n(2p+ 1) sn2±v2 + ν

(1 − s2p+1
2± u2p

2 )n−2p

2p+ 1 v2p+1
2± (3.118a)1 +

(
(n− 2p)(2p+ 1) − 2p(n− 2p− 1)u2n(n−2p−1)

2

)
v2n

2±s
2n(n−2p−1)
2±

1 + 2p

(1 − s2p+1
2± u2p

2

)
+(n− 2p− 1)(1 + q)

n(2p+ 1)
(
1 − s2p+1

2± u2p
2

)
sn2±v2±

ds2±
dτ̄2±

=
ν(1 − s2p+1

2± u2p
2 )n−2p

n(2p+ 1) v2p
2±s2± +

2p(2 − q) + (1 + q)(1 − s2p+1
2± )u2p

2
n(2p+ 1) sn+1

2± (3.118b)

2p(1 − s2p+1
2± u2p

2 )
2p+ 1 s

2n(n−2p−1)+1
2± u

2n(n−2p−1)
2 v2n−1

2±

du2
dτ̄2±

= −
(

(2 − q)sn2± + (1 − s2p+1
2± u2p

2±)v2n−1
2± s

2n(n−2p−1)
2± u

2n(n−2p−1)
2 +

ν(1 − s2p+1
2± u2p

2 )n−2p

n
v2p

2±

)
u2

(3.118c)

where
q = −1 + 3γpf

2

(
1 + 2 − γpf

γpf
u2n

2 − u
2n(n−2p)
2 s

2n(n−2p−1)
2± v2n

2±

)
(3.119)

The system only has the fixed points

Q∓ : v2± = ∓
(2p+ 1

ν

) 1
2p+1

, s2± = 0, u2 = 0 (3.120)

which has eigenvalues
(

2p+1
ν

) 2p
2p+1 , ν

n(2p+1)

(
2p+1
ν

) 2p
2p+1 , and − ν

n

(
2p+1
ν

) 2p
2p+1 with associated

eigenvectors are the canonical basis of R3. The blow-up of L+
2 is shown Figure 3.9. Since all

fixed points are located on u2 = 0, we have the following result concerning the line L2 on the
cylinder state-space S.

Lemma 3.13. No interior orbit in S converges to the points on the set L2 \ FL0.
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Figure 3.9: Blow-up of the non-hyperbolic line of fixed points L2.

Global phase-space on the Poincaré-Lyapunov disk

The previous results can be collected in a global phase-space by employing the Poincaré-
Lyapunov compactification. This compactification has the advantage that all fixed points are
hyperbolic, or partially hyperbolic, and in particular on the cylinder the line L2 is absent.
When p < 1

2(n − 1), the induced flow on the {ū = 0} invariant subset (to see the cylindrical
Poincaré-Lyapunov compactification see ), is given by

dr

dξ̄
= 2p(1 − r)r

(
− ν

2p+ 1r
(
1 − cos2(2p+1) θ

)
cos2p θ + 3γpf

(2p+ 1)(1 − r)
((2p+ 1)Kγpf

4p + cos2(2p+1) θ

))
+ 2p(1 − r)r2F (θ) sin θ,

dθ

dξ̄
= −F (θ)

( 3
2p+ 1F (θ) sin 2θ(1 − r) +

(
1 + ν

2(2p+ 1) sin 2θF (θ) cos2p θ − cos2(2p+1) θ

)
r

)
.

At {r = 0} lies the fixed point M which is the origin (x3, y3) plane. The fixed point M is a
saddle for K ≤ 0 and a source when K > 0. When K > 0 we have two additional saddle fixed
points S± that are located at

rS±

1 − rS±
=
((3γpf

4p

)2 (2p+ 1)K
ν

) 1
2p+1

[((2p+ 1)K
ν

)2
+ 1

] p
2p+1

θS± = arccos

±
(

1 +
((2p+ 1)K

ν

)−2)− 1
2(2p+1)

 .
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The points at the infinity in the (x3, y3) plane are now located at the {r = 1} invariant set.
The hyperbolic sinks P± and the hyperbolic sources Q± are given by

θP+ = 0, θP− = π

θQ± = arccos

±
(

(2p+ 1)2

(2p+ 1)2 + 4ν2

) 1
2(2p+1)

 .

M
Q-

P-

Q+
P+

(a) Case
0 < γpf < 4p

2p+1 ,
i.e., K ∈ (−∞, 0).

Q-

P-

Q+
P+M

(b) Case γpf = 4p
2p+1 ,

i.e., K = 0.

Q-

Q+
P+P-

S+

S-

M

(c) Case 4p
2p+1 < γpf <

2, i.e., K ∈ (0, 1
1+2p

).

Figure 3.10: Poincaré-Lyapunov disk when p < 1
2 (n− 1) with p > 0.

Theorem 3.14. Let p < 1
2(n − 1) with p > 0. Then for all ν > 0 the Poincaré-Lyapunov

disk consists of heteroclinic orbits connecting the fixed points M , P±, Q±, and S± when they
exist, with the separatrix skeleton as depicted in Figure 3.10.

Proof. First notice that {y3 = 0} is an invariant subset consisting of heteroclinic orbits M →
P± which splits the phase-space into two invariant sets {y3 > 0} and {y3 < 0}. On each of
these invariant sets there are no fixed points when K ≤ 0, and if K > 0 there is a single fixed
point which is a saddle. Therefore by the index theorem (A.28) there are no periodic orbits
on each of these regions. Since close saddle connections cannot exist either, by the Poincaré-
Bendixson theorem (A.25), the ω and α-limit sets of all orbits in the Poincaré-Lyapunov
disk are the fixed points M, P±, Q± and S± when they exist, the phase-space consisting
of heteroclinic orbits connecting these fixed points. In particular whe K ≤ 0 there are two
separatrices Q± → M which further split the regions y3 > 0, and y3 < 0 into two invariant
subsets, the flow on these subsets being trivial, and when K > 0 there are four separatrices
Q− → S−, M → S−, and Q+ → S+, M → S+ which further splits the invariant regions y3 > 0
and y3 < 0 into four invariant subsets where the flow is also trivial.

Remark 3.15. It is interesting to obtain the asymptotics for the orbits on the cylinder S
towards FL1. For example when 0 < γpf <

2n
n+1 , there exists a one parameter family of orbits
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in S with the following asymptotics towards FL1 as τ → +∞

X(τ) = − 2CTCΣ
3(2 − γpf)

(
1 + 3γpf

2n (n− 2p)τ
) n+1

(n−2p)γpf
(γpf− 2n

n+1 )

Σϕ(τ) = CΣCT

(
1 + 3γpf

2n (n− 2p)τ
)−

nγpf
n−2p

(2−γpf)

T (τ) = 1 −
(

1 + 3γpf
2n (n− 2p)τ

)− 1
n−2p

with CT > 0, CΣ constants, which is obtained via the linearised solution at M restricted to the
2-dimensional unstable manifold when K < 0.

3.3.3.2 Case p = 1
2(n− 1):

Positive z-direction

Consider now the case p = 1
2(n−1) with p > 0, n > 1 with n odd, i.e., (p, n) = (1, 3), (2, 5), (3, 7), etc..

Setting p = 1
2(n− 1) in (3.80) leads to

dx3
dτ̄3

= 1
n− 1

(
1 − un−1

n

)
(1 + q)x3 + (1 − un−1

3 )y3 (3.125a)

dy3
dτ̄3

= 1
n− 1(1 + q)(1 − un−1)y3 −

(
2 − q + ν(1 − un−1

3 )xn−1
3

)
y3 − n(1 − un−1

3 )x2n−1
3

(3.125b)
du3
dτ̄3

= − 1
n(n− 1)(1 + q)(1 − un−1

3 )u3 (3.125c)

where
q = −1 + 3γ

2 + 3γ
2

((2 − γ)
γ

y2
3 − x2n

3

)
u2n

3 .

Since n is odd, the system is symmetric under the transformation (x3, y3, u3) → (−x3,−y3, u3),
and all fixed points with u3 < 1 lie on the invariant subset {u3 = 0} where the induced flow
is given by

dx3
dτ̄3

= 3γpf
2(n− 1)x3 + y3 ,

dy3
dτ̄3

= 3γpf
2(n− 1)nKy3 − nx2n−1

3 − νy3x
n−1
3 (3.126)

and where we introduced the notation

K = 1 − 2(n− 1)
nγpf

, (3.127)

Due to that γpf ∈ (0, 2), it follows that K ∈ (−∞, 1
n).
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Remark 3.16. The system (3.126) can be transformed to Liénard type system (3.93), where
now the functions f(x) and g(x) are given by

f(x) = νxn−1 − 3(1 + nK)
n(1 −K) (3.128a)

g(x) = nx2n−1 − 3γpf
2(n− 1)νx

n +
( 3γpf

2(n− 1)

)2
nKx. (3.128b)

The fixed points of (3.126) are the real solutions to

−x3

(
nx

2(n−1)
3 − 3γpf

2(n− 1)νx
n−1
3 +

( 3γpf
2(n− 1)

)2
nK

)
= 0 , y3 = − 3γpf

2(n− 1)x3 (3.129)

The first equation admits at most five real solutions. The origin of coordinates is always a
fixed point

M : x3 = 0, y3 = 0. (3.130)

and the linearised system at M has eigenvalues 3γpf
2n(n−1) , 3nγpf

2(n−1)K, and − 3γpf
2n(n−1) , with associ-

ated eigenvectors (1, 0, 0), (− 2
3(2−γpf) , 1, 0), and (0, 0, 1). On {u3 = 0}, and for all γpf ∈ (0, 2)

and n > 1, M is a hyperbolic fixed point if and only if K ̸= 0, being a saddle if K < 0,
(0 < γpf <

2(n−1)
n ), and a source if K > 0, (2(n−1)

n < γpf < 2). When K = 0, (γpf = 2(n−1)
n ),

there is a bifurcation leading to a center manifold associated with a zero eigenvalue. To anal-
yse the center manifold we introduce the adapted variables ȳ3 = y3 − 2

3(2−γpf) x̄3. The center
manifold can be locally represented as the graph h : Ec → Eu, i.e. x̄3 = h(ȳ3), which solves
the differential equation

3γpf
2(n− 1)h(ȳ3) + 2

3(2 − γpf)

(
h(ȳ3) − 2ȳ3

3(2 − γpf)

)2n−1

+ 2
2 − γpf

1 − 2
n

− 2
3

(
h(ȳ3) − 2ȳ3

3(2 − γpf)

)n−1
 ȳ3

=

 3γpf
2(n− 1)Kȳ3 − νȳ3

(
h(ȳ3) − 2ȳ3

3(2 − γpf)

)n−1

− n

(
h(ȳ3) − 2ȳ3

3(2 − γpf)

)2n−1
 dh

dȳ3

(3.131a)

satisfying the fixed point h(0) = 0 and tangency dh(0)
dȳ3

= 0 conditions. Approximating the
solution by a formal truncated power series expansion and solving for the coefficients yields
to the leading order on the center manifold

dy3
dτ̄3

= −ν
(
n

3

)n−1
yn3

(
1 − n

ν

(
n

3

)n
yn−1

3

)
, y3 → 0, (3.132)
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and therefore M is a center-saddle in this case. The remaining four fixed points that may or
not exist depending on the parameters range are

S±
± : x3 = ±

( 3γpfA±
2(n− 1)

) 1
n−1

, y3 = ∓
( 3γpf

2(n− 1)

) n
n−1

A
1

n−1
± (3.133)

where

A± = ν

2n ±

√(
ν

2n

)2
−K. (3.134)

and the superscripts ± on the nomenclature of the fixed points stand for A+ or A− respectively,
and the subscripts ± stand for the sign of the value of x3 at the fixed point. The linearisation
around the fixed points S±

±, yields the eigenvalues

λ1± = 3γpf
4(n− 1) [1 + nK − νA±] +

√
(1 −K)2(2 − γpf)2

9 n2 + (1 −K)(2 + γpf)nA± + (4n− 8n2 + ν2)A±

λ2± = 3γpf
4(n− 1) [1 + nK − νA±] −

√
(1 −K)2(2 − γpf)2

9 n2 + (1 −K)(2 + γpf)nA± + (4n− 8n2 + ν2)A±

λ3 = − 3γpf
2n(n− 1) (3.135a)

with associated eigenvectors

v1 = (a1, 1, 0), v2 = (a2, 1, 0), v3 = (0, 0, 1) ai = 2λi − 3γpf(3γpfA±
2(n−1)

) (
2n(2n− 1)

(3γpfA±
2(n−1)

)
+ 3γpfν

)
(3.136)

Just as the stability properties of the fixed point M, the sign of K plays a prominent role
in the qualitative properties of the phase space. Hence we shall split the analysis into two
subcases K ≤ 0, and K > 0. Moreover it is helpful to introduce the quantity

f±(γpf , n) =
√
n

[
(2n− 1) (1 −K)

1 − nK
(
n10n−9

2n−1 − γpf(3n−1)2

2(n−1)

)
1 + 4n(n− 1)K ±

±
√

2n2γpf (1 −K)2

∣∣∣−1 − nK
(
n+ (n+1)

2 γpf
)∣∣∣

1 + 4n(n− 1)K

]1/2

.

a) SUBCASE K ≤ 0 (0 < γpf ≤ 2(n−1)
n ): In addition to M, and for all ν > 0, only S+

±

exist. For S+
±, the pair of eigenvalues λ1+, λ2+ are real if ν ≥ f−(γpf , n) and imaginary

otherwise. Moreover, if 0 < ν < (1+nK)
√
n, then λ1+, λ2+ have positive real part, and if

ν > (1+nK)
√
n then λ1+, λ2+ have negative real part. Finally, if if ν = (1+nK)

√
n > 0

both eigenvalues are purely imaginary. Notice that the cases ν ≤ (1 + nK)
√
n only

exists when − 1
n < K < 0, i.e., 2(n−1)

n+1 < γpf <
2(n−1)
n holds. Therefore on the {u3 = 0}

invariant subset, S± are an unstable (strong) focus if ν < (1 +nK)
√
n, a center or weak
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focus if ν = (1 + nK)
√
n, a stable strong focus if (1 + nK)

√
n < ν < f−(n, γpf) and a

stable node if ν ≥ f−(γpf , n).

The case ν = (1 + nK)
√
n consists of a bifurcation where stability is changed, from an

unstable focus to a stable focus leading to a center-focus problem, which will not be
treated here, although numerical results indicate that they are centers.

As a final remark, note that when K = 0 the expression for the fixed points reduce
to x3 = ±

(
3ν
n2

) 1
n−1 , y3 = ∓

(
ν
n

) 1
n−1

(
3
n

) n
n−1 , and f± is solely a function of n, given

by f±(n) =
√
n
√

2n− 1 ±
√

4n(n− 1). Moreover for ν <
√
n, the solution of Equa-

tion 3.132 describes globally the center manifold which consists of the two heteroclinic
orbits S+

± → M.

b) SUBCASE 0 < K < 1/n (2(n−1)
n < γpf < 2): In addition to M, there are fixed points

only for ν ≥ 2n
√
K, while no additional fixed points exists for 0 < ν < 2n

√
K. When

ν > 2n
√
K there are four fixed points S±

±, which merge into two fixed points S0
± when

ν = 2n
√
K,

S0
± : x3 = ±

( 3γpfK

(n− 1)

) 1
n−1

, y3 = ∓
( 3γpfK

(n− 1)

) 1
n−1

. (3.137)

For ν > 2n
√
K, The eigenvalues λ1+ and λ2+ of the linearisation around S+

± are real
if 2n

√
K < ν ≤ f+(n,K) or ν ≥ f−(n,K), and imaginary otherwise. Moreover if

2n
√
K < ν < (1 +nK)

√
n, then λ1+ , λ2+ have positive real part and if ν > (1 +nK)

√
n

then λ1+ , λ2+ have negative real part. Finally if ν = (1 + nK)
√
n both eigenvalues

are purely imaginary. Therefore on {u3 = 0} the fixed points S±
± are unstable nodes if

2n
√
K < ν ≤ f+(n,K), an unstable focus if f+(n,K) < ν < (1 + nK)

√
n, a center if

ν = (1 + nK)
√
n a stable focus if (1 + nK)

√
n < ν < f−(n,K) and a stable node if

ν ≥ f−(n,K).

The eigenvalues λ1− and λ2− of the linearisation around S−
± are real for all ν > 2n

√
K.

Moreover, λ1− is negative and λ2− is positive, so that S−
± are hyperbolic saddles.

When ν = 2n
√
K, λ1 and λ2 are always complex. Moreover since 0 < K < 1/n the

real part of the eigenvalues λ1 and λ2 is always positive, and the fixed points S0
± are

unstable strong focus.

3.3.3.3 Fixed points at infinity

Due to that when p = 1
2(n− 1) the power of u in front of x and y in (3.74) is odd, it is enough

to consider the blow up in positive direction. Setting p = 1
2(n − 1), the flow induced on the
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{u1 = 0} invariant subset is given by

dy1
dτ̄1

= −n− νy1 − ny2
1 − 3y1z1 ,

dz1
dτ̄1

= −(n− 1)
( 3γpf

2(n− 1)z1 + y1

)
z1 (3.138)

We are interested in the invariant subset {z1 = 0} on {u1 = 0}, where the system reduces
further to

z1
dy1
dτ̄3

= −n− νy1 − ny2
1 (3.139)

and yields two fixed points when ν > 2n:

P± : y1 = B±, z1 = 0, u1 = 0 (3.140)

where we introduced the notation

B± = − ν

2n ±

√(
ν

2n

)2
− 1 < 0. (3.141)

The linearised system at P± has eigenvalues λ1 = −(n − 1)B±, λ2 = ∓2n
√(

ν
2n
)2 − 1, and

λ3 = B±, with associated eigenvectors v1 = (1, a, 0), v2 = (0, 1, 0), and v3 = (0, 0, 1), where
a = − 3

n−1
B±+ λ2

2n
B±+λ2

. Since P+ has λ2, λ3 < 0, and λ1 > 0, and P− has λ3 < 0, and λ1, λ2 > 0,
they are both hyperbolic saddles, but on {u1 = 0}, P− is a source and P+ is a saddle, in
particular, a one-parameter set of orbits originate from P−, and a single orbit from P+ into
the region {z1 > 0}. When ν = 2n, the fixed points P± merge into a single fixed point

P0 : y1 = −1, z1 = 0, u1 = 0 (3.142)

where the eigenvalues reduce to λ1 = (n− 1), λ2 = 0, and λ3 = −1. Hence the z1 = 0 axis is
the center manifold of P0. Finally when 0 < ν < 2n there are no fixed points on the {z1 = 0}
axis.

Using the directional blow-up in the positive y-direction, the flow induced on {u2 = 0} is
given by

dx2
dτ̄2

= 1+ ν

n
xn2 +x2n

2 + 3
2x2z2,

dz2
dτ̄2

= (n− 1)
n

(
nx2n−1

2 + νxn−1
2 + 3nγpf

2(n− 1)

( 2
n

−K

)
z2

)
z2.

(3.143)
Further restricting to the invariant subset {z2 = 0} results in

dx2
dτ̄2

= 1 + ν

n
xn2 + x2n

2 . (3.144)

Since n is odd, there are two fixed points when ν > 2n, corresponding to the fixed points P±

studied above and which in these coordinates are located at (x2, z2, u2) =
(
B

1/n
± , 0, 0

)
, and
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which for ν = 2n merge into a single fixed point P0. When 0 < ν < 2n there are no fixed
points on {z2 = 0} ∩ {u2 = 0}. Therefore the equator of the Poincaré sphere has fixed points
when ν ≥ 2n on the second and fourth quadrants, which are α-limit points for orbits in the
northern hemisphere. When 0 < ν < 2n the equator consists of a periodic orbit. In order to
study the stability of the periodic orbit at infinity in the (x3, y3) plane when 0 < ν < 2n we
shall employ a Poincaré-Lyapunov compactification on the unit disk.

The Poincaré-Lyapunov disk

When p = 1
2(n− 1), using(3.86) on (3.90) leads to the regular system of equations

dr

dξ̄
= (n− 1)r(1 − r)

[
−ν

n
r(1 − cos2n θ) cosn−1 θ + 3

n
(1 − r)

(
nγpfK

2(n− 1) + cos2n θ

)]
(3.145a)

dθ

dξ̄
= −F (θ)

[ 3
2nF (θ) sin 2θ(1 − r) +

(
1 + ν

2n sin 2θF (θ) cosn−1 θ

)
r

]
. (3.145b)

At {r = 0} lies the fixed point M which is the origin of the (x3, y3) plane. The previous
analysis showed that M is a saddle if K < 0, a center saddle if K = 0, and a source if K > 0.
The fixed points S±

± are located at

rS
1 − rS

=
( 3γpfA±

2(n− 1)

)(
1 +A−2

±

)n−1
2n , θS = arccos

± 1(
1 +A−2

±

) 1
2n

 (3.146)

while the points at infinity in the (x3, y3) plane are now located at {r = 1}. When ν > 2n
there are two fixed points corresponding to P±:

θP = arccos

±
(
ν −

√
ν2 − 4n2

ν
√

2

) 1
2n

 (3.147)

which merge into a single fixed point P0 when ν = 2n, with

θ0 = arccos
(

−
( 1√

2

) 1
n

)
(3.148)

which we have seen to be α-limit points for interior orbits on the disk. Finally, when ν ∈ (0, 2n)
there exists a periodic orbit Γ∞:

dθ

dξ
= −F (θ)

(
1 + ν

2nF (θ) cosn−1 θ sin 2θ
)
< 0. (3.149)

Lemma 3.17. For all 0 < ν < 2n, with n > 1, n odd, Γ∞ is an unstable limit cycle.
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Proof. To analyse the periodic orbit we introduce the variable s = (1 − r)/r, so that the
periodic orbit is now located at s = 0, and a new time variable ξ by d/dτ̄3 = (1 − r)/rd/dξ,
which leads to a regular system that close to s = 0,

ds

dθ
= S1(θ)s+ S2(θ)s2 + · · · (3.150)

where

S1 =
− ν
n(n− 1)F 2(θ) sin2 θ cosn−1 θ

F (θ)
(
1 + ν

2nF (θ) cosn−1 θ sin 2θ
) , (3.151a)

S2 =
3

2n
(
2 − (2 − γpf)n+ 2(n− 1) cos2n θ

)
− 3

2nF (θ) sin 2θ
(
− ν
n(n− 1)F 2(θ) sin2 θ cosn−1 θ

)
F (θ)

(
1 + ν

2nF (θ) cosn−1 θ sin 2θ
)

(3.151b)

Denoting by s(θ, s0) the solution of the above differential equation such that s(0, s0) = s0,
then close to s = 0 we have

S(θ) = β1(θ)s0 + β2(θ)s2
0 + · · · (3.152)

where β1 and β2 solve the initial value problem

dβ1
dθ

= S1(θ)β1(θ), β1(0) = 1, (3.153a)
dβ2
dθ

= S1(θ)β2(θ) + S2(θ)β2
1(θ), β2(0) = 0. (3.153b)

The solutions are

β1(θ) = eα(θ), β2(θ) = −eα(θ)
∫ θ

0
eα(ψ)S2(ψ)dψ, (3.154)

with
α(θ) = −ν

n
(n− 1)

∫ θ

0

F (θ̃) sin2 θ̃ cosn−1 θ̃

1 + ν
2nF (θ̃) sin 2θ̃ cosn−1 θ̃

dθ̃ (3.155)

The Poincaré return map near s = 0 is P (s0) = s(2π, s0). Since P (0) = 0, and for n odd,
P ′(0) = eα(2π) < 1, and that θ is striclty monotonically decreasing, the periodic orbit Γ∞ is
an unstable limit cycle for all 0 < ν < 2n and n > 1.

Proposition 3.18. Let p = 1
2(n − 1) with p > 0 (n > 1 with n odd). Then the infinity is a

repeller.

Proof. The proof follows by the local analysis of the fixed points P±, P0 and Lemma 3.17.

Figure 3.11, shows the three different types of orbit structure at the boundary of the disk
{r = 1}.



86 Dynamical Systems in General Relativity and Modified Gravity Theories

M
S-

S+

Γ∞

(a) (p, n) = (1, 3),
γpf = 1 i.e. K = −1/3,

and ν < 6.

M
S-

S+

P0

P0

(b) (p, n) = (1, 3),
γpf = 1 i.e. K = −1/3,

and ν = 6.

P+

P

P-

P-

+

S-

S+

M

(c) (p, n) = (1, 3),
γpf = 1 i.e. K = −1/3,

and ν > 6.

Figure 3.11: Poincaré-Lyapunov disk when K ≤ − 1
n , for 0 < ν < 2n, ν = 2n, and ν > 2n.

Theorem 3.19. Let p = 1
2(n − 1) with p > 0 (n > 1 with n odd). If K ∈ (−∞,− 1

n ], i.e.,
γpf ∈ (0, 2(n−1)

n+1 ), and ν > 0, then the ω-limit set of all orbits on the Poincaré-Lyapunov disk
is contained on the set M ∪ S+

±. In particular, as τ̄3 → +∞ exactly 2 orbits converge to the
fixed point M and a 1-parameter family of orbits converge to each fixed point S+

±, the separatrix
skeleton being trivial.

Proof. From Proposition 3.18 every regular orbits on the (x3, y3) plane remains bounded for
all future times. The divergence of the vector field (3.126) yields

3γpf
2(n− 1)(1 + nK) − νxn−1

3 , (3.156)

which for K ≤ −1/n and ν > 0, does not change sign and vanishes at a set of measure zero, by
the the Bendixson-Dulac criteria (see A.24) there are no periodic orbits. Moreover the origin
M is a saddle, and S± are sinks for all ν > 0. Since closed saddle connections are not possible
it follows by the Poincaré-Bendixson theorem (see A.25) that the only possible ω-limit sets
in this case are the fixed points S+

± and M. The last statement follows by the local stability
properties of the fixed points.

Besides the possible orbit structure on the invariant boundary {r = 1}, Figure 3.11, also
shows the trivial separatrix skeleton on the Poincaré-Lyapunov disk for K ∈ (−∞,− 1

n) and
ν > 0.

Theorem 3.20. Let p = 1
2(n − 1) with p > 0 (n > 1 with n odd). If K ∈ (0, 1

n) i.e.,
γpf ∈ (2(n−1)

n , 2), and 0 < ν < 2n
√
K, then, as τ3 → +∞, all orbits converge to a unique

interior stable limit cycle Γin.

Proof. Here we make use of the equivalent system (3.97), and apply Liénard’s Theorem
(A.7.2), see e.g. [102]. The functions g(x̄) and F (x̄) =

∫ x̄
0 f(s)ds in (3.128), are odd functions
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M

Γ∞

ΓIN

Figure 3.12: Poincaré-Lyapunov disk when 0 < K < 1
n , and 0 < ν <

√
2nK < 2n.

of x̄, and if ν < 2n
√
K, then x̄g(x̄) > 0 for x̄ ̸= 0. Moreover, F (0) = 0, F ′(0) < 0, F (x̄)

has unique positive zero at x̄ =
(
n
ν

3γpf
2(n−1)(1 + nK)

) 1
n−1 , and for x̄ ≥

(
n
ν

3γpf

2(n−1)(1 + nK)
) 1

n−51 ,
F (x̄) is monotonically increasing to infinity as x̄ → +∞. Therefore the system has a unique
stable limit cycle. Since in this case ν < 2n

√
K, by Lemma 3.17 the infinity consists of an

unstable limit cycle, and M is a hyperbolic source, the only possible ω-limit set is the unique
interior stable limit cycle.

Remark 3.21. In fact Liénards theorem also gives the relative location of the interior stable
limit cycle.

Figure 3.12 shows the Poincaré-Lyapunov disk for K ∈ (0, 1
n) and ν < 2n

√
K, where the

orbits accumulate at the interior stable limit cycle Γin.

Remark 3.22. We now briefly discuss what we have not proved. The cases K ∈ (− 1
n , 0]

with ν < (1 + nK)
√
n, ν = (1 + nK)

√
n or ν > (1 + nK)

√
n, and the cases K ∈ (0, 1

n) with
ν ≥ 2n

√
K, and ν < (1 + nK)

√
n, ν = (1 + nK)

√
n or ν > (1 + nK)

√
n. Numerical results

indicate that in the first case a unique stable interior limit cycle Γin exists if ν ≤ (1+nK)
√
n,

with S+
± sources when ν < (1 + nK)

√
n, and centers with an unstable outer periodic orbit

when ν = (1 + nK)
√
n, while no interior limit cycle exists when ν > (1 + nK)

√
n, and

S+
± are sinks, see Figure 3.13, for representative examples. In the second sub-case for which
K ∈ (0, 1

n) with ν ≥ 2n
√
K, numerical results suggest that an interior stable limit cycle exists

if ν ≤ (1 + nK)
√
n, in which case S+

± are sources for the strict inequality and centers if
ν = (1 + nK)

√
n with an unstable outer periodic orbit, while no interior periodic orbit exists

when ν > (1 + nK)
√
n. Recall that when K > 0, the fixed point M are sources, and S−

± are
saddles when they exist, i.e., when ν > 2n

√
K. If ν = 2n

√
K, then S+

± and S−
± merge into

the fixed points S0
±, which are unstable strong focus, see Figure 3.14, for some representative

cases.

Most of the results on existence of limit cycles for Liénard system rely on the strong assump-
tion that x̄g(x̄) > 0 for ẋ ̸= 0, i.e., that the fixed point at the origin is the only fixed point



88 Dynamical Systems in General Relativity and Modified Gravity Theories

of the system, see e.g. [109] and references therein. Recent works on which such assump-
tions is relaxed are for e.g. [110] and references therein. In trying to apply Theorem 3.4 of
[110] with V (x, Y ) = Y 2 + 2G(x) − Y F (x) for which H(x) = −2F (x)G′(x) + 4F ′(x)G(x) =

6(n−1)xn+1

n2(n+1)(1−K)
(
(n(1 + n)(1 + nK) − ν2)xn−1 − 3ν

)
, which does not seem enough to prove the

numerical results discussed on Remark 3.22.

Γ∞

ΓIN

MS-

S+

(a) ν < (1 + nK)
√

n.

MS-

S+

ΓIN

Γ∞

(b) ν = (1 + nK)
√

n.

MS-

S+

Γ∞

(c) (1 + nK)
√

n < ν <
f−(γpf , n).

S-

S+

M

Γ∞

(d) f−(γpf , n) ≤ ν <
2n.

Figure 3.13: Poincaré-Lyapunov disk when K ∈ (0, 1
n ), exemplified with n = 3, and γpf =

5/4, i.e. K = − 1
15 .
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(a) 2n
√

K < ν ≤
f+(n, K).

Γ∞

M

S+
+

S+
-

S+-
S--

ΓIN

(b) f+(n, K) < ν <
(1 + nK)

√
n.

M

Γ∞

ΓIN

S+-

S--

S+
+

S+
-

(c) ν = (1 + nK)
√

n.

Γ∞

M
S--

S+
-

S+-

S+
+

(d) (1 + nK)
√

n < ν <
f−(n, K).

Γ∞

M
S--

S+
-

S+
+

S+-

(e) ν ≥ f−(n, K).

Figure 3.14: Poincaré-Lyapunov disk when K ∈ (0, 1
n ), exemplified with n = 3 and γpf =

3/2, i.e. K = 1
9 .

Remark 3.23. It is interesting to obtain the asymptotics for the orbits on the cylinder S
towards FL1. For example when 0 < γpf <

2n
n+1 , there exists an one parameter family of orbits

in S with the asymptotics towards FL1 as in 3.124 with n− 2p = 1.

3.4 Dynamical systems’ analysis when p = n
2

By setting p = n
2 with n even, i.e., (p, n) = (1, 2), (2, 4), (3, 4), ..., global dynamical system

(3.25) becomes

dX

dτ
= 1
n

(1 + q)(1 − T )X + TΣϕ (3.157a)
dΣϕ

dτ
= −(2 − q)(1 − T )Σϕ − nTX2n−1 − ν(1 − T )X2pΣϕ (3.157b)

dT

dτ
= 1
n

(1 + q)T (1 − T )2 (3.157c)
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where the deceleration parameter q is given by (3.18). The auxiliary equation takes the form

dΩϕ

dτ
= −3(1 − T )

[
(γpf − γϕ)Ωϕ(1 − Ωϕ) + 2

3νσϕΩ
3
2
ϕ

]
. (3.158)

where

γϕ = 2Σϕ

3Ωϕ
, σϕ =

2Σ2
ϕX

n

Ω3/2
ϕ

. (3.159)

3.4.1 Invariant boundary T = 0

The flow at T = 0 is given by

dX

dτ
= 1
n

(1 + q)X (3.160a)
dΣϕ

dτ
= −

[
2 − q + νX2p

]
Σϕ. (3.160b)

From auxiliary equation for Ωpf we have that

dΩpf
dτ

∣∣∣∣
Ωpf=1

= 0, dΩpf
dτ

∣∣∣∣
Ωpf=0

= 2νX2pΣ2
ϕ ≥ 0. (3.161)

On the T = 0 invariant boundary, the system (3.157) admits five fixed points, one at the
origin with Ωpf = 1,

FL0 : X = 0 , Σϕ = 0, T = 0, (3.162)

at which q = 1
2(3γpf − 2) corresponding to the flat Friedmann-Lemâitre solution. The lineari-

sation around FL0 yields the eigenvalues 3
2n , −3

2(2 − γpf) and 3
2n with associated eigenvectors

the canonical basis for R3. This fixed point as one negative real eigenvalue and two positive
real eigenvalues, and is therefore a hyperbolic saddle, from which departs a 1-parameter family
of orbits in S. On T = 0 the subset Ωpf = 0 (X2n+Σ2

ϕ = 1) is not invariant (except at Σϕ = 0
or X = 0), but it is future invariant since ν > 0. On this subset there are four fixed points.
The first two equivalent fixed points on the intersection of the invariant boundary T = 0 with
the pure scalar field subset Ωpf = 0 are given by

K± : X = 0 , Σϕ = ±1, T = 0 (3.163)

which correspond to a massless scalar field states or kinaton states, with q = 2. The lineari-
sation around this fixed point yields to the eigenvalues 3

n , 3
n and 3(2 − γpf), with associated

eigenvectors the canonical basis for R3. It follows that K± are hyperbolic sources, so that
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a 2-parameter family of orbits in S originate from each K±. The other two equivalent fixed
points are

dS±
0 : X = ±1 , Σϕ = 0, T = 0 (3.164)

and correspond to a quasi-de-Sitter state with q = −1. The linearisation yields the eigenval-
ues −3γpf , −(3 + ν) and 0 with eigenvectors (1, 0, 0), (0, 1, 0) and (0,∓ n

3+ν , 1). These fixed
points have two negative real eigenvalues and a null eigenvalue, possessing a 2-dimensional
stable manifold contained in the boundary T = 0, and a 1-dimensional center manifold (the
inflationary attractor solution). Just as in section 3.3.1, the monotonicity of T implies that
dS± are center-saddles with a unique orbit, the center manifold orbit, entering the state-space
dS±

0 . However, due its physical meaning, it is important to obtain approximations for the
center manifold solution. In order to analyse the center manifold of dS±

0 we use instead sys-
tem (3.15) for the unbounded variable T̃ . To analyze the center manifold of the fixed points
(X,Σϕ, T̃ ) = (±1, 0, 0) for p = n

2 , we introduce adapted variables

X̄ = X ∓ 1, Σ̄ϕ = Σϕ ± n

3 + ν
T̃ , T̄ = T̃ (3.165)

where the fixed points dS±
0 are now located at the origin of coordinates (X̄, Σ̄ϕ, T̃ ) = (0, 0, 0).

This leads to the system

dX̄

dN
= −3γpfX̄+F (X̄, Σ̄ϕ, T̃ ), dΣ̄ϕ

dN
= −(3+ν)Σ̄ϕ+G(X̄, Σ̄ϕ, T̃ ), dT̃

dN
= N(X̄, Σ̄ϕ, T̃ )

(3.166)
where F , G and N are functions of higher order terms. The 1-dimensional center manifold W c

at dS±
0 can be represented locally as the graph h : Ec → Es, i.e. (X̄, Σ̄ϕ) = (h1(T̃ ), h2(T̃ )),

satisfying the fixed point h(0) = 0 and the tangency dh(0)
dT̃

= 0 conditions. Using this in the
above equation and, using T̃ as an independent variable, we get

1
n

(1 + q)
(
h′

1(T̃ )T̃ − (h1(T̃ ) ± 1)
)

− T̃
(
h2(T̃ ) ∓ n

3 + ν
T̃
)

= 0, (3.167a)
1
n

(1 + q)T̃
(
h′

2(T̃ ) ∓ n

3 + ν

)
+ (2 − q)

(
h2(T̃ ) ∓ n

3 + ν

)
+ (3.167b)

+ ν
(
h1(T̃ ) ± 1

)n(
h2(T̃ ) ∓ n

3 + ν
T̃
)

− T̃
(
h1(T̃ ) ± 1

)2n−1
= 0.

Finding the attractor solution amounts to solve the above non-linear ordinary differential
equation. We can however approximate the solution by performing a formal power series
expansion

h1(T̃ ) =
N∑
i=1

aiT̃
i, h2(T̃ ) =

N∑
i=1

biT̃
i, (3.168)
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Inserting (3.168) into (3.167) subject to the fixed point and tangency conditions, and solving
the resulting linear system of equations for the coefficients results in

X = ±1 + ∓ n

6γpf

3γpf + 2ν
(3 + ν)2 T̃

2 + O(T̃3) (3.169a)

Σϕ = ∓ n

3 + ν
T̃

[
1 − n2

6γpf(3 + ν)4 (γpf (9 + (3 − 3n)ν) − 2ν (3 + ν + nν − 2n(3 + ν))) T̃ 2 + O(T̃ 3)
]

(3.169b)

Ωpf = 2n2ν

3γpf(3 + ν)2 T̃
2 + O(T̃ 3). (3.169c)

Therefore, it follows that to leading order on the center manifold

dT̃

dN
= n

3 + ν
T̃ 3 + O(T̃ )4, as T̃ → 0 (3.170)

which shows explicitly that dS±
0 are center saddles with a unique class A center manifold orbit

originating from each fixed point into the interior of S.

We now show that on T = 0 the above fixed points are the only possible α-limit sets for
class A orbits in S, and that the orbit structure on T = 0 is very simple consisting only of
heteroclinic orbits connecting these fixed points.

Lemma 3.24. Let n = p
2 . Then the T = 0 invariant boundary consists of heteroclinic orbits

connecting the fixed points, and semi-orbits crossing the set Ωpf = 0 and converging to dS±
0 ,

as depicted in figure 3.15

Proof. The proof is identical to the proof of Lemma 3.3, although in this case there are no
conserved quantities, and the Ωpf = 0 set is not invariant but future invariant.

Theorem 3.25. Let p = n
2 . Then the α-limit set of class A orbits in S, consists of fixed

points on T = 0. In particular as τ → −∞ a 2-parameter set of orbits converge to each K±,
a 1-parameter set to FL0, and a unique center manifold orbit converge to each dS±

0 .

Proof. The proof follows by lemmas, 3.2, 3.24, and the local analysis of the fixed points.
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Figure 3.15: The invariant boundary T = 0 exemplified with n = 2 and p = 1.

3.4.2 Invariant Boundary T = 1

The induced flow in the boundary T = 1 is given by

dX

dτ
= Σϕ (3.171a)

dΣϕ

dτ
= −nX2n−1 (3.171b)

while the auxiliary equation for Ωpf is given by

dΩpf
dτ

= 0 ⇒ Ωpf = 1 − (X2n + Σ2
ϕ) = const. (3.172)

Hence the T = 1 invariant boundary is foliated by periodic orbits characterized by Ωpf =
const., where Ωpf = 1 corresponds to the fixed point

FL1 : X = 0, Σϕ = 0, T = 1, (3.173)

being a center, see Figure 3.16.

FL1

Ωφ=1 pf=0( (

Ω

P1
1
2
P

1
4
P

ΣΦ

X

Figure 3.16: The invariant boundary T = 1 exemplified with n = 2 and p = 1.

Theorem 3.26. Let p = n
2 :
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(i) If γpf ≤ 2n
n+1 , then all orbits in S converge for τ → +∞, to the fixed point FL1 with

Ωpf = 1;

(ii) If γpf >
2n
n+1 , then all orbits in S converge for τ → +∞, to an inner periodic orbit PΩpf

with 0 < Ωpf < 1.

Proof. The proof is based on Lemma 3.2 together with generalised averaging techniques based
on the methods introduced in [50, 68]. Standard averaging techniques and theorems can be
found in [111] for the periodic case and [90] for the general case. In these theorems a key
role is played by the perturbation parameter ϵ, (see A.8). In the present situation the role
of ϵ-parameter is instead played by the function ϵ = 1 − T . Therefore, we have to prove an
averaging theorem for the case where ϵ is not a constant, but a variable that slowly goes to
zero.

Each periodic orbit on T = 1 (ϵ = 0) has an associated time period, P (Ωϕ), so that for a
given real function f , its average over time period associated with Ωϕ is given by

⟨f⟩ = 1
P (Ωϕ)

∫ τ0+P (Ωϕ)

τ0
f(τ)dτ. (3.174)

In what follows we will need to compute several averaged quantities, such as ⟨Σ2
ϕ⟩, or ⟨XnΣ2

ϕ⟩.
We therefore use a differential formulation, which is more adapted to the problem at hand,
by introducing new polar variables (r, θ) that solves the constraint equation Ωϕ = Σ2

ϕ +X2n,
where Ωϕ can be seen as the square of the radial coordinate, i.e., r =

√
Ωϕ, and

(X,Σϕ) = (r
1
n cos θ, rG(θ) sin θ), G(θ) =

√
1 − cos2n θ

1 − cos2 θ
=

√√√√n−1∑
k=0

cos2k θ. (3.175)

The resulting system of equation takes the form

dr

dτ
= 3

2ϵ
[
(γpf − γϕ)(1 − r2) − νσϕr

2
]

= ϵf(ω, τ, ϵ) (3.176a)
dϵ

dτ
= − 1

n
ϵ2(1 − ϵ)(1 + q) (3.176b)

where
q + 1 = 3

2(2r2G(θ)2 sin2 θ + γpf(1 − r2)), (3.177)

and θ solves
dθ

dτ
= − ϵ

2n (3 + νr cosn θ)G2(θ) sin 2θ + (1 − ϵ)G(θ)r
n−1

n . (3.178)
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On T = 1, the average of a real function f over a time period associated with Ωϕ = const., is
then

⟨f⟩ =
Γ[n+1

2n ]
4
√
πΓ[1 + 1

2n ]

∫ 2π

0

f

G(θ)dθ (3.179)

where Γ[x] is the usual Γ-function. This yields

⟨X2n⟩ = Ωϕ

n+ 1 , ⟨Σ2
ϕ⟩ = nΩϕ

n+ 1 , ⟨Σ2
ϕX

n⟩ =
Γ2[1

2 + 1
2n ]Ω3/2

ϕ

2(1 + 2n)Γ2[1 + 1
2n ]

. (3.180)

Note that the above implies ⟨Σ2
ϕ⟩ = n⟨X2n⟩, which is in accordance with the result in [68],

obtained by averaging the dynamical system. In particular, it follows that the scalar field
equation of state γϕ = 2Σ2

ϕ/Ωϕ = 2G(θ)2 sin2 θ has an average

⟨γϕ⟩ = 2n
n+ 1 (3.181)

while for the interaction term σϕ = 2Σ2
ϕX

n/(3Ω3/2
ϕ ) = 2/3G(θ)2 sin2 θ cosn θ, we obtain

⟨σϕ⟩ =
Γ2[1

2 + 1
2n ]

3(1 + 2n)Γ2[1 + 1
2n ]

, (3.182)

both independent of r2 = Ωϕ. The general idea of this averaging method is to start with the
near identity transformation

r(τ) = y(τ) + ϵ(τ)g(y, τ, ϵ) (3.183)

and then prove that the evolution of the variable y is approximated, at first order, by the
solution ȳ of the averaged equation. The evolution equation for y can be obtained using
equations (3.176a) and (3.176b) alongside with the evolution equation for ω. This then gives

dy

dτ
=

(
1 + ϵ

∂g

∂y

)−1 [dr
dτ

−
(
g + ϵ

∂g

∂ϵ

)
dϵ

dτ
− ϵ

∂g

∂τ

]
(3.184)

=
(

1 + ϵ
∂g

∂y

)−1 [3
2ϵ
(

(γpf − ⟨γϕ⟩)y(1 − y2) + (⟨γϕ⟩ − γϕ)y(1 − y2) − ν⟨σϕ⟩y2

+ ν(⟨σϕ⟩ − σϕ)y2 − 2
3
∂g

∂τ

)

+ 3
2ϵ

2g

(
(γpf − γϕ)(1 − 3y2) − 2νσϕ + 2

3n(1 − ϵ)(1 + q)
)

− 3
2ϵ

3
(

(γpf − γϕ)(1 − 2y)g2 − νσϕg
2 + 2

3n(1 − ϵ)(1 + q)∂g
∂ϵ

)]
.
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Setting

∂g

∂τ
= f(y, τ̄ , ϵ) − ⟨f(y, ., 0)⟩

= 3
2 (⟨γϕ⟩ − γϕ) y(1 − y2) + 3

2 (⟨σϕ⟩ − σϕ) y2
(3.185)

where the right-hand side is for large times almost periodic has an average that is zero that
the variable g is bounded. Now using the fact that

(
1 + ϵ∂g∂y

)−1
≈ 1 − ϵ∂g∂y + O(ϵ2) we get

dy

dτ
= ϵ⟨f⟩(y) + ϵ2h(y, g, τ, ϵ) + O(ϵ3) (3.186)

where

⟨f⟩(y) = 3
2
(
(γpf − ⟨γϕ⟩)y(1 − y2) − ν⟨γϕ⟩y2

)
(3.187a)

h(y, g, , τ, ϵ) = 3
2

(
(γpf − γϕ)(1 − 3y2)g − 2νσϕ + 2(1 + q)

3n

)
g (3.187b)

− 3
2
(
(γpf − ⟨γϕ⟩)y(1 − y2) − ν⟨σϕ⟩y2

) ∂g
∂y
.

Dropping the higher order terms in ϵ in (3.186), we study the truncated averaged equation
coupled to an evolution equation for ϵ:

dȳ

dτ
= 3

2ϵ
(
γpf − ⟨γϕ⟩

)
ȳ(1 − ȳ2) − 3

2ϵν⟨σϕ⟩ȳ2 (3.188a)
dϵ

dτ
= − 1

n
ϵ2(1 − ϵ)(1 + q). (3.188b)

This system has a line of fixed points at ϵ = 0 which can be removed by introducing a new
time variable

1
ϵ

d

dτ
= d

dτ̄
, (3.189)

leading to

dȳ

dτ
= 3

2
(
γpf − ⟨γϕ⟩

)
ȳ(1 − ȳ2) − 3

2ν⟨σϕ⟩ȳ2 (3.190a)
dϵ

dτ̄
= − 1

n
ϵ(1 − ϵ)(1 + q) (3.190b)

which admits two fixed points on the ϵ = 0 invariant subset. The first fixed point is given by

F1 : ȳ = 0, ϵ = 0, (3.191)

whose linearisation yield the eigenvalues 3(γpf − ⟨γϕ⟩) and −3γpf/2, with associated eigenvec-
tors the canonical basis of R2. When γpf > ⟨γϕ⟩, F1 is a saddle, and since ⟨σϕ⟩ ∈ (0, 1) and
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ν > 0, there is a second fixed point

F2 : ȳ = 1
2

(
− ν⟨σϕ⟩
γpf − ⟨γϕ⟩

+
√

4 + ν2⟨σϕ⟩2

(γpf − γϕ)2

)
, ϵ = 0 (3.192)

and whose linearisation yields the eigenvalues.

− 3(γpf − ⟨γϕ⟩) + 3
4ν⟨σϕ⟩

(
− ν⟨σϕ⟩
γpf − γϕ

+

√√√√4 +
ν2⟨σ2

ϕ⟩
(γpf − ⟨γϕ⟩)2

)
,

− 3
4n

(
ν⟨σϕ⟩ + 2γpf

√
4 + ν2⟨σϕ⟩2

(γpf − γϕ)2 (⟨γϕ⟩ − γpf)
)

with associated eigenvectors the canonical basis for R2. Hence F2 is a hyperbolic sink. Notice
that in the absence of interaction, i.e., ν = 0 the fixed point F2 reduces to ȳ = 1, ϵ = 0 as
in [68, 80]. When γpf = ⟨γϕ⟩, F2 merge into F1, leading to center manifold as follows by the
flow at ϵ = 0 in this case, i.e. dȳ/dτ̄ = −3/2ν⟨σϕ⟩ȳ2. Thus the solutions converge to F1

tangentially to the ϵ = 0 axis. When γpf < ⟨γϕ⟩, F1 is the only fixed point being a hyperbolic
sink.

Next, we prove that the solutions y of the full averaged system (3.186), have the same limit
as the solutions ȳ of the truncated averaged equation when τ → +∞, and hence also r and
subsequently Ωϕ. For this we define sequences {τn} and {ϵn}, with n ∈ N, as follows

τn+1 − τn = 1
ϵn
, τ0 = 0, (3.194a)

ϵn+1 = ϵ(τn+1), ϵ0 > 0 (3.194b)

with lim τn = +∞ and lim ϵn = 0, since ϵ(τ) → 0 as τ → +∞. Notice that for ϵ small
enough y is monotone and bounded, and therefore has a limit as τ → +∞. Then we estimate
|η(τ)| = |y(τ) − ȳ(τ)| where y and ȳ are solution trajectories with the same initial condition,
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|η(τ)| =
∣∣∣∣∣
∫ τ

τn

(
3
2ϵ
(
γpf − ⟨γϕ⟩

)
y
(
1 − y2

)
− 3

2ϵν⟨σϕ⟩y2 + ϵ2h(y, g, τ, ϵ)
)
ds

−
∫ τ

τn

(
3
2ϵ
(
γpf − ⟨γϕ⟩

)
ȳ
(
1 − ȳ2

)
− 3

2ϵν⟨σϕ⟩2ȳ2
)
ds

∣∣∣∣∣
≤ ϵn

∫ τ

τn

3
2 |γpf − ⟨γϕ⟩|︸ ︷︷ ︸

|.|≤C

|y − ȳ| |1 − (y2 + ȳ2 + yȳ)|︸ ︷︷ ︸
|.|≤2

ds+ 3
2ϵnν⟨σϕ⟩2

∫ τ

τn

|1 − (y + ȳ)|︸ ︷︷ ︸
|.|≤1

|ȳ − y|ds

+ ϵ2n

∫ τ

τn

|h(y, g, τ, ϵ)|︸ ︷︷ ︸
|.|≤M

ds+ O(ϵ3n)

≤ 3Cϵn
∫ τ

τn

|η(s)|ds+ 3
2ϵnν⟨σϕ⟩

∫ τ

τn

|η(s)|ds+ ϵ2nM(τ − τn) + O(ϵ3n)

= ϵn
3
2

(
2C + ν⟨σϕ⟩

)∫ τ

τn

|η(s)|ds+ ϵ2nM(τ − τn) + O(ϵ3n), (3.195)

where C and M are positive constants. By Gronwall’s inequality

|η(τ)| ≤ ϵnM

3
2

(
2C + ν⟨σϕ⟩

)(e 3
2 (2C+ν⟨σϕ⟩)(τ−τn) − 1

)
(3.196)

and using the fact that τ − τn ∈ [0, 1/ϵn], i.e., τ ∈ [τn, τn+1], it follows that

|η(τ)| ≤ Kϵn, (3.197)

with K is a positive constant. Letting n → +∞ implies that η → 0 as τ → +∞. Therefore y
and ȳ have the same limit as τ → +∞, i.e. the fixed point F1 or F2. Finally, from equation
(3.183), using the triangle inequality and the fact that ϵ → 0 as τ → +∞, it follows that r
(and hence also Ωϕ) has the same limit as ȳ.

The above results are shown numerical in Figure 3.17, for some representative cases.
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(a) γpf − ⟨γϕ⟩ > 0. (b) γpf − ⟨γϕ⟩ = 0. (c) γpf − ⟨γϕ⟩ < 0.

Figure 3.17: Qualitative global evolution of the dynamical system (3.157) for three different
future asymptotic cases, exemplified with n = 2 and ν = 1. Figure 3.17a has γpf = 3

2 >
4
3 ,

Figure 3.17b has γpf = 4
3 and Figure 3.17c γpf = 1 < 4

3 .

3.5 Dynamical systems’ analysis when p > n
2

When p > n
2 the global dynamical system (3.25) reduces to

dX

dτ
= 1
n

(1 + q)T 2p−n(1 − T )X + T 2p−n+1Σϕ (3.198a)
dΣϕ

dτ
= −(2 − q)T 2p−n(1 − T )Σϕ − nT 2p−n+1X2n−1 − ν(1 − T )2p−n+1X2pΣϕ (3.198b)

dT

dτ
= 1
n

(1 + q)T 2p−n+1(1 − T )2 (3.198c)

where q = −1 + 3Σ2
ϕ + 3

2γpfΩpf , and the auxiliary equation for Ωpf becomes

dΩpf
dτ

= 2(1 + q − 3
2γpf)T 2p−n(1 − T )Ωpf + 2ν(1 − T )2p−n+1X2pΣ2

ϕ. (3.199)

3.5.1 Invariant boundary T = 0

When p > n
2 with n ∈ N, the induced flow on the T = 0 invariant boundary reduces to

dX

dτ
= 0, dΣϕ

dτ
= −νX2pΣϕ (3.200)

and Ωpf = 1 − Σ2
ϕ −X2n, satisfies for p > n

2

dΩpf
dτ

= 2νX2pΣ2
ϕ. (3.201)
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Thus, the subset Ωpf = 0 is not invariant but future invariant, except at Σϕ = 0 or X = 0,
which are the points of intersection of the subset Ωpf = 0 with the lines of fixed points

L1 : X = X0, Σϕ = 0, T = 0 (3.202)

with X0 ∈ [−1, 1] and
L2 : X0 = 0, Σϕ = Σϕ0 , T = 0, (3.203)

with Σϕ0 ∈ [−1, 1]. We shall refer to the non-isolated fixed point at the origin of the T = 0
invariant set as FL0 = L1 ∩L2. The end points of L1 with X = ±1 as dS±

0 , and the end points
of L2 with Σϕ0 = ±1 as K±. The description of the induced flow on T = 0 is given by the
following lemma:

Lemma 3.27. When p > n
2 , the set set {T = 0} \ L1 ∪ L2 is foliated by invariant subsets

X = const. consisting of regular orbits which enter the region Ωpf > 0 by crossing the set
Ωpf = 0 and converging to the line of fixed points L1 as τ → −∞. See Figure 3.18.

Proof. When p > n/2 the system (3.200) admits the following conserved quantity

X = const. (3.204)

which determine the solutions trajectories on T = 0 invariant boundary. The remaining
properties of the flow follows from the fact that on U , dΣϕ/dτ < 0, and dΩpf/dτ < 0.

FL0

Ωφ=1 pf =0( (

Ω

X

ΣΦ

L1

L2

dS0
-

dS0
+

K+

K-

Figure 3.18: The invariant boundary T = 0 exemplified with n = 2 and p = 2.

Theorem 3.28. Let p > n
2 . Then the α-limit set of all orbits in S is contained on the set

dS±
0 ∪ FL0 ∪ K±. In particular, as τ → −∞ a 2-parameter set of orbits converge to each fixed

point K±, a 1-parameter set of FL0, and a single orbit to each of the fixed points dS±
0 .

Proof. By Lemma 3.2, the α-limit set of all orbits in S is located T = 0, the description of this
boundary given in Lemma 3.27. The conclusions about the non-hyperbolic fixed point FL0 and
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the line L2 can be found in subsection 3.5.2 where we blow-up the point FL0 and on top of that
also the line L2. For the line L2, Lemma 3.29 says that the fixed points K± are sources. We now
analyse the line of fixed points L1. The linearised system around L1 has eigenvalues 0, −νX2p

0

and 0, with associated eigenvectors (1, 0, 0), (0, 1, 0), and (3(2p−n)
2n X0(1 −X2

0 )δ2p−n
1 , 0, 1). On

the {T = 0} invariant boundary the line of fixed points L1 is normally hyperbolic, i.e. the
linearisation yields one negative eigenvalue for all X0 ∈ [−1, 1], except at X0 = 0 where the
two lines intersect, and one zero eigenvalue with eigenvector tangent to the line itself (similar
to Sec.3.3.2.1). On S̄, the line L1 is said to be partially hyperbolic. Each fixed point on
the line, has a 1-dimensional stable manifold, and a 2-dimensional center manifold, while the
point with X0 = 0 is non-hyperbolic. In this case the blow up of FL0 is done in Sec. 3.5.2.
To analyse the 2-dimensional center manifold of each partially hyperbolic fixed point on the
line we start by making the change of coordinates given by

X̄ = X −X0 + 3(2p− n)γpf
2n X0(1 −X2

0 )T̄ δ2p−n
1 , Σ̄ϕ = Σϕ, T̄ = T (3.205)

which takes a point in the line L1 to the origin (X̄, Σ̄ϕ, T̄ ) = (0, 0, 0) with T̄ ≥ 0. The resulting
system of equations takes the form

dX̄

dτ
= F (X̄, Σ̄ϕ, T̄ ), dΣ̄ϕ

dτ
= −νX2p

0 Σ̄ϕ +G(X̄, Σ̄ϕ, T̄ ), dT̄

dτ
= N(X̄, Σ̄ϕ, T̄ ) (3.206)

where F , G and N are functions of higher order. The center manifold reduction theorem
yields that the above system is locally topological equivalent to a decoupled system on the
2-dimensional center manifold, which can be locally represented as the graph h : Ec → Es,
i.e., Σ̄ϕ = h(X̄, T̄ ) which solves the nonlinear partial differential equation

F (X̄, h(X̄, T̄ ), T̄ )∂X̄h(X̄, T̄ )+N(X̄, h(X̄, T̄ ), T̄ )∂T̄h(X̄, T̄ ) = −νX2p
0 h(X̄, T̄ )+G(X̄, h(X̄, T̄ ), T̄ )

(3.207)
subject to the fixed point and tangency conditions h(0, 0) = 0 and ∇h(0, 0) = 0 respectively.
A quick look at the nonlinear terms suggests that we approximate the center manifold at
(X̄.T̄ ) = (0, 0), by making a formal multi-power series expansion for h of the form h(X̄, T̄ ) =
T̄ 2p−n+1∑N

i,j=0 ãijX̄
iT̄ j . Solving for the coefficients of expansion it is easy to verify that all

coefficients of type ãi0 are identically zero, so that h can be written as a series expansion in
T̄ with coefficients depending on X̄, i.e.,

h(X̄, T̄ ) = T̄ 2p−n+1
N∑
j=1

āj(X̄)T̄ j , āj(X) =
N∑
i=0

aijX̄
i (3.208)
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where for example

a01 = 0, a11 = 0 a02 = −n

ν
X

2(p−n)−1
0 a12 = −n(2p+ 1)

ν
X

2(p+1)
0

a03 = 1
2ν2

(
6n+ 3(2p+ 1)γpfν(1 −X2n

0 )Xn
0

)
δn−2p

1 . (3.209a)

After a change of time d/dτ = T̄ 2p−nd/dτ̄ , the flow on the 2-dimensional center manifold is
given by

dX̄

dτ̄
=

N∑
j=1

b̄j(X̄)T̄ j , b̄j(X̄) =
N∑
i=0

bijX̄
i (3.210a)

dT̄

dτ̄
= T̄

N∑
j=1

c̄j(X)T̄ j c̄j(X̄) =
N∑
i=0

cijX̄
i (3.210b)

with

b01 = 3
2(1 −X2n

0 )X0

b11 = 3γpf
2n (1 − (1 + 2n)X2n

0 )

b02 = −n

ν
X

2(p−n)
0

b21 = −3γpf
2 (2n+ 1)X2n

0

b12 = −3γpfX
2n
0

c01 = 3γpf
2n (1 −X2n

0 ), c11 = 0

c02 = −
9γ2

pf
2n X2n

0 (1 −X2n
0 )δn−2p

1 , c12 = −3γpfX
2n
0

b01 only vanishes for X0 = ±1 or X0 = 0 for any p > n/2, being negative for X0 ∈ (−1, 0),
and positive for X0 ∈ (0, 1). In this case the origin (0, 0) is a nilpotent singularity. Since the
coefficient c01(X̄) ̸= 0 for all X0, then the normal formal form is zero with

dX̄∗
dτ̄∗

= sign(b01)T̄∗,
dT̄∗
dτ̄∗

= T̄ 2
∗ Φ(X̄∗, T̄∗) (3.212)

and Φ an analytic function. The phase-space is the flow-box multiplied by the functional T̄∗,
with the direction of the flow given by the sign of b01, see Figure 3.19a. When X0 = ±1 we
have that b11 = −3γpf < 0, c01 = 0, c02 = 0 and c12 < −3γpf after changing the time variable
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to d/dτ̃ = T−1d/dτ̄ , then

dX̄

dτ̃
= −3γpfX̄ − n

ν
T̄ − 3γpf

2 (2n+ 1)X̄2 − 3γpfXT + O
(
||(X̄, T̄ )||3

)
(3.213a)

dT̄

dτ̃
= −3γpfX̄T̄ + O

(
||(X̄, T̄ )||3

)
(3.213b)

and the origin is a semi-hyperbolic fixed point with eigenvalues −3γpf , 0 and associated
eigenvectors (1, 0) and (− n

3γpfν
, 1). To analyse the 1-dimensional center manifold we introduce

the adapted variable X̃ = X̄ + n
3γpfν

T̄ . The 1-dimensional center manifold W c at (0, 0)can
be locally represented as the graph h : Ec → Es, i.e. X̃ = h(T̄ ), satisfying the fixed
point h(0) = 0 and tangency dh(0)

dT̄
= 0 conditions, i.e. using T̄ as an independent variable.

Approximating the solution by a formal truncated power series expansion h(T̄ ) = ∑N
i=2 aiT̄

i

and solving for the coefficients yields to leading order on the center manifold

dT̄

dτ̃
= n

ν
T̄ 2 + O(T̄ 3), as T̄ → 0. (3.214)

Therefore for X0 = ±1, the origin is the α-limit set of 1-parameter set of orbits on the
2-dimensional center manifold, see Figure 3.19b.

X‐

T‐

(a) b01 > 0. For b01 <
0 the direction of the

flow is reversed.

T‐

(0,0)

X‐

(b) X0 = ±1.

Figure 3.19: Flow on the 2-dimensional center manifold of each point on L1.
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3.5.2 Blow-up of FL0

To analyse the non-hyperbolic fixed point FL0 we use the unbounded dynamical system (3.15)
for p > n

2 and this system reads

dX

dN
= 1
n

(1 + q)T̃ 2p−nX + T̃ 2p−n+1Σϕ (3.215a)
dΣϕ

dN
= −

[
(2 − q)T̃ 2p−n + νX2p

]
Σϕ − nT̃ 2p−n+1X2n−1 (3.215b)

dT̃

dN
= 1
n

(1 + q)T̃ 2p−n+1 (3.215c)

where recall
q = −1 + 3Σ2

ϕ + 3γpf
2
(
1 −X2n − Σ2

ϕ

)
. (3.216)

In order to understand the dynamics near the origin (X,Σϕ, T̄ ) = (0, 0, 0), which is a non-
hyperbolic fixed point for p > 0 we employ the spherical blow-up method [102–104] (see A.7.3).
This is, we transform the fixed point at the origin to the unit 2-sphere S2 = {(x, y, z) ∈ R3 :
x2 + y2 + z2 = 1}, and define the blow-up space manifold as B := S2 × [0, u0] for some fixed
0 < u0 < 1. We further define the quasi-homogeneous blow-up map

Ψ : B → R3, Ψ(x, y, z, u) = (un−2px, uny, u2pz) (3.217)

which after canceling a common factor u2p(n−2p) (i.e. by changing time variable d/dτ =
u2p(n−2p)d/dτ̄ , where p < n

2 , with p > 0) leads to a desingularisation of the non-hyperbolic
fixed point on the blow-up locus {u = 0}.

We choose six charts κi such that

ψ1± = (±u2p−n
1± , un1±y1±, u

2p
1±z1±) (3.218a)

ψ2± = (u2p−n
2± x2±,±un2±, u

2p
2±z2±) (3.218b)

ψ3± = (u2p−n
3± x3±, u

n
3±y3±,±u2p

3±) (3.218c)

where ψ1±, ψ2± and ψ3± are called the directional blows ups in the positive/negative x, y,
and z-directions respectively. It is easy to check that the different charts are given explicitly
by

κ1+ : (u1+, y1+, z1+) = (ux
1

2p−n , yx−n, zx−2p) (3.219a)

κ2+ : (x2+, u2+, z2+) = (xy− 2p−n
n , uy

1
n , zy− 2p

n ) (3.219b)

κ3+ : (x3+, u3+, z3+) = (xz− 2p−n
2p , yz

− n
2p , uz

1
2p ) (3.219c)
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Later transition maps κij = κj ◦ κ−1
i allows us to identify fixed points and special invariant

manifolds on different charts, and to deduce all dynamics on the blow up space. In this case,
we will need the following transition charts.

κ1+2+ : (x2+, u2+, z2+) = (y− 2p−n
n

1+ , u1+y
1
n
1+, y

− 2p
n

1+ z1+), y1+ > 0; (3.220a)

κ2+1+ : (u1+, y1+, z1+) = (u2+x
1

2p−n

2+ , x−n
2+ , z2+x

−2p
2+ ), x2+ > 0; (3.220b)

κ1+3+ : (x3+, y3+, u3+) = (z
− 2p−n

2p

1+ , y1+z
− n

2p

1+ , u1+z
1

2p

1+), z1+ > 0; (3.221a)

κ3+1+ : (u1+, y1+, z1+) = (u3+x
1

2p−n

3+ , y3+, y3+x
−n
3+ , x

−2p
3+ ), x3+ > 0; (3.221b)

κ2+3+ : (x3+, y3+, u3+) = (x2+z
− 2p−n

2p

2+ , z
− n

2p

2+ , u2+z
1

2p

2+), z2+ > 0; (3.222a)

κ3+2+ : (x2+, u2+, z2+) = (x3+y
− 2p−n

n
3+ , u3+y

1
n
3+, y

− 2p
n

3+ ), y3+ > 0; (3.222b)

Just as in the blow-up of FL1 we are only interested in the region {z ≥ 0}, i.e. the union
of the upper hemisphere of the unit sphere S2 and the equator of the sphere {z = 0} which
constitutes an invariant boundary. This motivates that we start the analysis by using chart
κ3+, i.e., the directional blow-up map in the positive z-direction, on which the northern
hemisphere is mapped into the z = 1, and the equator of the sphere is at infinity, which is
better analysed using the charts κ1+ and κ2+. Figure 3.20 shows the blow-up space of FL0

when p > n
2 . Later we shall also instead of projecting the upper-half og the unit 2-sphere on

the z = 1 plane, to project it into the open unit disk x2 + y2 < 1 which can be joined with
the equator (unite circle on {z = 0}), thus obtaining a global understanding of the flow on
the Poincaré-Lyapunov disk.

Figure 3.20: Blow-up space B for p > n/2.
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3.5.2.1 Positive z-direction

We start with the positive z-direction {z = 1} which after canceling a common factor u2p(2p−n)
3

(i.e. by changing the time variable d/dτ = u
2p(2p−n)
3 d/dτ̄3) leads to

dx3
dτ̄3

= 1
2p(1 + q)x3 + u2n

3 y3 (3.223a)

dy3
dτ̄

= −
(

(2 − q) + 1 + q

2p + νx2p
3

)
y3 − nu

2n(2p−n)
3 x2n−1

3 (3.223b)

du3
dτ̄3

= 1
2np(1 + q)u3 (3.223c)

where
q = −1 + 3γpf

2 + 3γpf
2

(
2 − γpf
γpf

y2
3u

2n
3 − x2n

3 u
2n(2p−n)
3

)
. (3.224)

For all u3 < 1 all fixed points are located at the invariant subset {u3 = 0}. The low induced
on {u3 = 0} is given by

dx3
dτ̄3

= 3γpf
4p x3 ,

dy3
dτ̄3

=
(3(2p− 1)γpf

4p K̃ − νx2p
3

)
y3 (3.225)

where
K̃ = 1 − 4p

(2p− 1)γpf
< 0. (3.226)

The system only presents one fixed point at the origin

M : x3 = 0, y3 = 0 (3.227)

and whose linearisation yields the eigenvalues λ1 = 3γpf
4p , λ2 = 3γpf(2p−1)

4p K̃, and λ3 = 3γpf
4np ,

the associated eigenvectors are the canonical basis of R3. Hence on {u3 = 0}, M is always a
hyperbolic saddle.

3.5.2.2 Fixed points at infinity

To study the points at infinity, we notice that both directional blow-ups in the positive x and
y direction already tell how such local chart must be given. To study the region where x3

blows up, we use the chart

(y1, z1, u1) =
(
y3
xn3
,

1
x2p

3
, u3x

1
2p−n

3

)
(3.228)
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with change of time variable d/dτ̄1 = z1d/dτ̄3, i.e. d/dτ = u
2p(2p−n)
1 d/dτ̄1, leads to the system

of equations

dy1
dτ̄1

= −
((

2 − q + 1 + q

2p− n

)
z2p−n

1 − ν

)
y1 −

(
nu

2n(2p−n+1)
2 − n2

2p− n
y2

1

)
z2p−n+1

1 u2n
1

(3.229a)
dz1
dτ̄1

= − 1 + q

2p− n
z2p−n+1

1 − 2p
2p− n

y1z
2p−n+2
1 u2n

1 (3.229b)

du1
dτ̄1

= 1
2p− n

(1 + q

n
z2p−n

1 + y1z
2p−n+1
1 u2n

1

)
u1, (3.229c)

where
q = −1 + 3γpf

2n

(
1 + 2 − γpf

γpf
u2n

1 y2
1 − u

2n(2p−n)
1

)
.

The flow on the invariant subset {u1 = 0} is given by

dy1
dτ̄1

= −
(3

2

(
2 − γpf + γpf

2p− n

)
z2p−n

1 + ν

)
y1,

dz1
dτ̄1

= − 3γpf
2(2p− n)z

2p−n+1
1 (3.230)

and analyse the invariant set {z1 = 0} on {u1 = 0}, which results

dy1
dτ̄1

= −νy1 (3.231)

which has one fixed point

P+ : y1 = 0, z1 = 0 u1 = 0 (3.232)

whose linearisation yields to the eigenvalues λ1 = −ν, λ2 = 0, and λ3 = 0, with associated
eigenvectors v1 = (1, 0, 0), v2 = (0, 1, 0), and v3 = (0, 0, 1). The zero eigenvalue in the
u1-direction is associated with a line of fixed points parameterized by constant values of
u1 = u0 ∈ (0, 1), and which corresponds to the half of the line of fixed points L1 with X0 < 0.
Thus on u1 = 0 invariant set, the fixed point P+ is semi-hyperbolic. The center manifold
reduction theorem yields that the above system is locally topological equivalent to the 1-
dimensional decoupled equation on the center manifold, which can be locally represented as
the graph h : Ec → Es, i.e. y1 = h(z1) which solves the nonlinear ordinary differential
equation.

3γpf
2(2p− n)z

2p−n+1
1

dh

dz1
= νh(z1) + 3

2

(
2 − γpf + γpf

2p− n

)
h(z1)zn−2p

1 (3.233)
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subject to the fixed point, h(0) = 0, and tangency, dh
dz1

(0) = 0, conditions. The above
differential equation subject to the given initial conditions lead to an explicit solution

h(z1) = Cze
(3(2p−n)(2−γpf )+2γpf ) log z1−2νz

n−2p
1

3γpf . (3.234)

The flow on the center manifold is, to leading order, given by

dz1
dτ1

= − 3γpf
2(2p− n)z

2p−n+1 + O(z2p−n+3
1 ) (3.235)

and therefore it is a stable center manifold.

To study the region where y3 blows up, we use the chart

(x2, z2, u2) =

 x3

y
2p−n

n
3

,
1

y
− 2p

n
3

, u3y
1
n
3

 (3.236)

and changing the time variable d/τ̄2 = z2d/dτ̄3 i.e. d/dτ = u
2p(2p−n)
2 d/τ̄2 we get

dx2
dτ̄2

= 1
n

((1 + q) + (2 − q)(2p− n))x2z
2p−n
2 +

(
1 + (2p− n)u2n(2p−n−1)

2 x2n
2

)
z2p−n+1

2 + ν
2p− n

n
x2p+1

2

(3.237a)
dz2
dτ̄2

=
(

2pu2n(2p−n)
2 x2n−1

2 z2p−n+1
2 + 1

n
(1 + q + 2p(2 − q)) z2p−n

2 + 2pνx2p
2

)
z2 (3.237b)

du2
dτ̄

= − 1
n

(
(2 − q)z2p−n

2 + nu
2n(2p−n)
2 x2n−1

2 z2p−n+1
2 + νx2p

2

)
u, (3.237c)

where
q = −1 + 3γpf

2

(
1 + 2 − γpf

γpf
u2n

2 − x2n
2 u

2n(2p−n)
2

)
.

The induced flow on the invariant subset {u2 = 0} is given by

dx2
dτ̄2

=
(
z2 + 3γpf

2n x2

)
z2p−n

2 + 2p− n

n

(3
2(2 − γpf)z2p−n

2 + νx2p
2

)
(3.238a)

dz2
dτ̄2

= 3γpf
2n z2p−n+1

2 + 2p
n

(3
2(2 − γpf)zn−2p

2 + νx2p
2

)
z2 (3.238b)

and analyse the invariant set {z2 = 0} on {u2 = 0} which results

dx2
dτ̄1

= ν
2p− n

n
x2p

2 (3.239)

which admits one fixed point
R+ : x2 = 0, z2 = 0 (3.240)

and whose linearised system has all eigenvalues zero. The zero eigenvalue in the u2 direction is
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due to the line of fixed points L+
2 . The zero eigenvalue in the u2 direction is due to the line of

fixed points L+
2 . To blow-up R± or better the complete line L+

2 we will perform a cylindrical
blow-up. We will transform each point on the line to a circle S1 = {(v, w) ∈ R2 : v2 +w2 = 1}.
The blow-up space is B̄ = S1 × [0, u20) × [0, s0) and define the quasi-homogeneous blow-up
map

Ψ̄ : B̄ → R3, Ψ̄(v, w, u2, s) = (s2p−nv, s2pw, u2)

We choose four charts such that

ψ̄1± =
(
±s2p−n

1± , s2p
1±w1±, u2

)
(3.241a)

ψ̄2± =
(
s2p−n

2± v̄2±,±s2p
2±, u2

)
. (3.241b)

We start with the v1-direction {v1 = ±1} which after canceling the common factor s2p(2p−n)
1±

(i.e by changing the time variable d/dτ̄2 = s
2p(2p−n)
1± d/dτ̄1±) leads to

Figure 3.21: Blow-up of the non-hyperbolic line of fixed points L2 for p > n/2.

dw1±
dτ̃1±

= − 1 + q

2p− n
w2p−n+1

1± + 2p(n− 1)ν
n

w1± (3.242a)

∓ 2p
2p− n

(
1 + (2p− n)s2n(2p−n)

1± u
2n(2p−n−1)
2 (1 − u2n

2 )
)
w2p−n+2

1± s2n
1±

ds1±
dτ̃1±

= s1±
n(2p− n)

(
(1 + q + (2p− n)(2 − q))w2p−n

1± (3.242b)

±
(
1 + (2p− n)s2n(2p−n)

1± ū2n(2p−n−1)
)
w2p−n+1

1± + ν(2p− n)
)

du2
dτ̃1±

= − 1
n

(
(2 − q)w2p−n

1± ± ns
2p(2p−n)+1
1± u

2n(2p−n)
2 w2p−n+1

1± + ν
)
u2 (3.242c)

where
q = −1 + 3γpf

2

(
1 + 2 − γpf

γpf
u2n

2 − u
2n(2p−n)
2 s

2n(2p−n)
1±

)
. (3.243)
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The above system has the fixed points

T± : w1± = 0, s1± = 0 u2 = 0, (3.244)

whose linearisation gives the eigenvalues 2p(n−1)ν
n , ν

n , and − ν
n , where the associated eigenvec-

tors are the canonical basis of R3. Hence T± are saddles. Moreover in the {u2 = 0} subset is
a hyperbolic source. The other fixed point is

Q± : w1± = ±
(

4(n− 1)(2p− n)pν
3γpfn

) 1
2p−n

, s1± = 0, u2 = 0 (3.245)

where only Q+ exists in the region w1± > 0. The eigenvalues of the linearised system around
Q± are −2p(2p−n)(n−1)ν

n ,2p(n−1)((2p−n)(2−γpf)+γpf)ν
n2γpf

+ ν
n , and −2(n−1)(2p−n)(2−γpf)ν

n2γpf
− ν

n where
the associated eigenvectors are the canonical basis of R3. In the {u2 = 0} subset Q+ is
a hyperbolic saddle, while when n = 1, it merges with T+ leading to a center manifold.
The center manifold reduction theorem yields that the above system is locally topological
equivalent to the 1-dimensional decoupled equation on the center manifold, which can be
locally represented as graph h : Ec → Es, i.e. s1 = h(w1) wich solves the nonlinear differential
equation

4 − 3γpf + 4pw1h(w1)2

2p(2p− 1) =
(
ν − 3(1 − γpf) − 3p(2 − γpf) + w1

2p− 1

)
h(w1) dh

dw1
(3.246)

subject to the fixed point, h(0), and tangency, dh
dw1

(0) = 0, conditions. In general it is not
possible to solve for h explicitly. However we can approximate the solutions by making a
formal power series expansion for h(w1) and solving for the coefficients gives as w1 → 0,
which yields on the center manifold

dw1±
dτ̃1±

= − 3γpf
2(2p− 1)w

2p
1± (3.247)

showing that it is a stable center manifold.

In the w-direction and after canceling the common factor s2p(2p−n)
2± (i.e. by changing the time

variable d/dτ̄2 = s
2p(2p−n)
2± d/dτ̃2+) leads to the system

dv2±
dτ̃2+

= 1 + q

2p v2± − (2p− n)(n− 1)
n

v2p+1
2± ν +

(
1 + (2p− n)s2n(2p−n)

2± u
2n(2p−n−1)
2 (1 − u2n

2 )v2n
2±

)
sn2±

(3.248a)
ds2±
dτ̃2+

= 1
2pn

(
(1 + q + 2p(2 − q)) + 2pnsn(2(2p−n)+1)

2± v2n−1
2± + 2pnνv2p

2±

)
s2± (3.248b)

du2
dτ̃2+

= − 1
n

(
(2 − q) + ns

n(2(2p−n)+1)
2± u

2n(2p−n)
2 v2n−1

2± + νv2p
2±

)
u2 (3.248c)
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where
q = −1 + 3γpf

2

(
1 + 2 − γpf

γpf
u2n

2 − s
2n(2p−n)
2± u

2n(2p−n)
2 v2n

2±

)
(3.249)

The above system has the fixed points

T± : v2± = 0, s2± = 0, u2 = 0, (3.250)

whose linearisation gives the eigenvalues 3γpf
4p , 3(2p(2−γpf)+γpf)

4np , and −3(2−γpf)
2n , where the as-

sociated eigenvectors are the canonical basis of R3. In this case in the {u2}-subset T± is a
hyperbolic source. The other fixed points are

Q± : v2± = ±
( 3nγpf

4p(n− 1)(2p− n)

) 1
2p

, s2± = 0, u2 = 0. (3.251)

The eigenvalues of the linearised system around Q± are −3γpf
2 , 3

4np

(
4p− 2p(2p−n−1)γpf

2p−n + nγpf
(n−1)(2p−n))

)
,

and −3(2−γpf)
2n − 3γpf

4p(n−1)(2p−n) . In the {u2} subset, Q+ is a hyperbolic saddle.

Lastly in the positive w-direction we have one more fixed point,

K+ : v1± = 0, s2± = 0, u2 = 1 (3.252)

The eigenvalues of the linearised system around K+ are 3
2p , 3

2np , and 3(2 − γpf), where the
associated eigenvectors are the canonical basis of R3. Since γpf < 2, K± has all eigenvalues
have positive real part being a hyperbolic source.

Hence we have the following lemma:

Lemma 3.29. No interior orbit in S converges to the points on the set L2 \ FL0 ∪ K± as
τ → −∞, while a two-parameter set converges to each K± and a 1-parameter set to FL0.

Global phase-space on the Poincaré-Lyapunov disk

In this section we introduce a new cylindrical transformation

(x3, y3) =
((

r

1 − r

) 1
2p

cos θ,
(

r

1 − r

) 2p+1
2p

F (θ) sin θ, (1 − r)r
2p−n+1

2n(2p−n) , ū

)
, (3.253)

where

F (θ) =

√
1 − cos2(2p+1) θ

1 − cos2 θ
=

√√√√ 2p∑
k=0

cos2k θ (3.254)

The resulting dynamical system is regular and can be extended up to {r = 0} and {r = 1} at
least in a C1 manner. The general structure of the Poincaré-Lyapunov cylinder is shown in
Figure 3.22 where one can see the presence of the kinaton fixed points K±.
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Figure 3.22: Blow-up space in the Poincaré-Lyapunov cylinder.

We will focus our study to the {u3 = 0} subset to obtain a global phase-space picture on the
unit disk D2. Similarly to the blow-up of FL1 done in section 3.3.3

The above transformation leads to

x
2(2p+1)
3 + y2

3 =
(

r

1 − r

) 2p+1
p

(3.255)

and make a further change of time variable

d

dξ̄
= (1 − r) d

dτ̄3
. (3.256)

we get the regular system of equations

dr

dξ̄
= 1

2r(1 − r)
((2p− 1)

(2p+ 1)K̃γpf +
(

1 − K̃
2p− 1

(2p+ 1)

)
cos2p(2p+1) θ − pνrF 2(θ) cos2(p−1) sin2 2θ

)
(3.257a)

dθ

dξ̄
= − 1

4pF
2(θ) sin θ

(
−3(1 − r)γpf

(2p− 1
2p+ 1K̃ − 1

)
+ 4pr cos2p θ

)
(3.257b)

At {r = 0} lies the fixed point M which is the origin of the (x3, y3) plane, which the previous
analysis showed that is a saddle since K̃ < 0.

The fixed points at infinity in the (x3, y3) plane are now located at {r = 1}. The fixed points
R± and Q± are located at

θP+ = 0, θP− = π, θQ+ = π

2 , θ−
Q = 3π

2 . (3.258)
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Theorem 3.30. Let p > n
2 with p > 0 and n > 0. Then for all ν > 0 the Poincaré-Lyapunov

disk consists of heteroclinic orbits connecting the fixed points M, P± and Q±.

Proof. First notice that {y3 = 0} and {x3 = 0} are invariant subset consisting of heteroclinic
orbits M → P±, and Q± → M respectively. These separatrices split the phase-space into
four invariant subsets (the quadrants). Since on both of these quadrants there are no fixed
points the there are also no periodic orbits and by Poincaré-Bendixson theorem the Poincaré-
Lyapunov disk consists of heteroclinic orbits connecting the fixed points.

Figure 3.23 shows the Poincaré-Lyapunov disk for p > n
2 .

M

Q-

Q+

P+P-

Figure 3.23: Poincaré-Lyapunov disk when p > n
2 for (n, p, γpf) = (1, 1, 4/3).

3.5.3 Invariant Boundary T = 1

The flow induced in the T = 1 boundary is given by

dX

dτ
= Σϕ (3.259a)

dΣϕ

dτ
= −nX2n−1 (3.259b)

and the system presents only the fixed point

FL1 : X = 0, Σϕ = 0, T = 1. (3.260)

Notice that FL1 corresponds to the intersection of the invariant subset T = 1 and the subset
Ωpf = 1. At T = 1 the auxiliary equation for Ωpf gives dΩϕ/dτ = 0, so that the invariant
boundary T = 1 is foliated by periodic orbits, and FL1 is a center, see Fig.3.24.

Theorem 3.31. Consider the system (3.198) with 0 < Ωpf < 1 and 0 < γpf < 2:

(i) If γpf <
2n
n+1 , then all solutions converge, for τ → +∞, to the fixed point FL1 with

Ωpf = 1.
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Figure 3.24: The invariant boundaries T = 1 exemplified with (n, p) = (2, 2).

(ii) If γpf >
2n
n+1 , then all solutions converge, for τ → +∞, to Ωϕ = 1.

(iii) If γpf = 2n
n+1 , then all solutions converge, for τ → +∞, to each inner periodic orbit PΩϕ

.

Proof. The proof uses the same methods as in the proof of Theorem 3.26. There are two
differences, the first being that the the average of the interaction term σϕ is now given by

⟨σϕ⟩ =
Γ
[

1
2 + 1

2n

]
Γ
[

1
2n + p

2n

]
3Γ[1 + 1

2n ]Γ[ 1
2n + p

n ]
(3.261)

and the second one is the θ equation defined in (3.264).

The evolution for r =
√

Ωϕ and ϵ = 1 − T are given by

dω

dτ
= 3

2ϵ
(
(1 − ϵ)2p−n (γpf − γϕ) r(1 − r2) − σϕϵ

2p−n+1νr1+ 2p
n

)
(3.262a)

dϵ

dτ
= − 1

n
ϵ2(1 − ϵ)(1 + q) (3.262b)

where
q + 1 = 3

2
(
2r2G(θ)2 sin2 θ + γpf(1 − r2)

)
(3.263)

and θ solves

dθ

dτ
= − ϵ

2n
(
3(1 − ϵ2+−n) + ϵ2p− nνr

2p
n cos2p θ

)
G(θ)2 sin 2θ + (1 − ϵ)2p−n+1r

n−1
n F (θ).

(3.264)
Starting with the near identity transformation

r(τ) = y(τ) + ϵ(τ)g(y, τ, ϵ) (3.265)
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and expanding

(1 − ϵ)2p−n ≈ 1 − (2p− n)ϵ+ 1
2ζ(ζ − 1)ϵ2 − 1

6ζ(ζ − 1)(ζ − 2)ϵ3 + O(ϵ3) (3.266a)

ϵ2p−n+1 = ϵ2δ2p−n
1 + ϵ3δ2p−n

2 + O(ϵ3). (3.266b)

where ζ = 2p − n. In turn, the evolution equation for y can be obtained using equations
(3.262) alongside with the evolution equation for r, and gives

dy

dτ
=

(
1 + ϵ

∂g

∂y

)−1 [dr
dτ

−
(
g + ϵ

∂g

∂ϵ

)
dϵ

dτ
− ϵ

∂g

∂τ

]
(3.267)

=
(

1 + ϵ
∂g

∂y

)−1 [
ϵ

(3
2(γpf − ⟨γϕ⟩)

)
y(1 − y2) + 3

2(⟨γϕ⟩ − γϕ)y(1 − y2) − ∂g

∂τ

+ ϵ2
(3

2
(
(γpf − γϕ)(1 − 3y2)g + (γpf − γϕ)ζy(1 − y2) − σϕδ

2p−n
1 νy2

)
+ (1 + q)

n
g

)]
+ O(ϵ3).

Setting
∂g

∂τ
= 3

2 (⟨γϕ⟩ − γϕ) y(1 − y2) (3.268)

and using the fact that (1 + ϵ∂g∂y )−1 ≈ 1 − ϵ∂g∂y + O(ϵ2) we get

dy

dτ
= ϵ⟨f⟩(y) + ϵ2h(y, g, τ, ϵ) + (O)(ϵ3) (3.269)

where

⟨f⟩(y) = 3
2(γpf − ⟨γϕ⟩)y(1 − y2), (3.270a)

h(y, g, , τ, ϵ) = 3
2(γpf − ⟨γϕ⟩)y(1 − y2)∂g

∂y
(3.270b)

+ 3
2
(
(γpf − γϕ)(1 − 3y2)g + (γpf − γϕ)ζy(1 − y2) − σϕδ

2p−n
1 νy2

)
+ (1 + q)

n
g.

As before, the right-hand side (3.268) is almost periodic, meaning that in late times ⟨γϕ⟩−γpf ≈
which implies that g is bounded.

For the truncated system (at ϵ) we get

dȳ

dτ̄
= 3

(
γpf − ⟨γϕ⟩

)
ȳ
(
1 − ȳ

)
(3.271a)

dϵ

dτ̄
= − 1

n
ϵ(1 − ϵ)(1 + q) (3.271b)
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in the independent variable dτ̄ = ϵdτ . This system is similar to the one presented in [68], so
we simply refer the important results. The system presents two fixed points

F1 : ȳ = 1 , ϵ = 0 (3.272a)

F2 : ȳ = 0 , ϵ = 0. (3.272b)

The linearisation around the fixed points for γpf − ⟨γϕ⟩ ≠ 0 gives for F1: λ1 = −3(γpf − ⟨γϕ⟩),
λ2 = −3γϕ

2n , where the eigenvectors are the canonical basis of R2 while for F2: λ1 = 3(γpf −
⟨γϕ⟩), λ2 = −3γpf

2n and again the eigenvectors are again the canonical basis of R2 for F2. The
stability of each fixed points depends on the sign of γpf − ⟨γϕ⟩. If γpf > ⟨γϕ⟩ then F1 is a sink
and F2 is a saddle, whereas if γpf < ⟨γϕ⟩ then F1 is a saddle and F2 is a sink. Employing
Gronwall’s inequality we can show that solutions of y and r and hence Ωϕ have the same limit
as the solutions of ȳ of the truncated averaged equation when τ → +∞ which proves points
(i) and (ii).

For point (iii), where γpf = ⟨γϕ⟩. In this case the equation for y is given by

dy

dτ
= ϵ2

(
3
2(γpf − ⟨γϕ⟩)y(1 − y2)∂g

∂y

+ 3
2
(
(γpf − γϕ)(1 − 3y2)g + (γpf − γϕ)ζy(1 − y2) − νσϕδ

2p−n
1 y2

)
+ (1 + q)

n
g

) (3.273)

Taking the average of h we get

⟨h⟩(y, g) = ⟨h(y, ., 0)⟩ = 1
P

∫ P

0
h(y, g, 0, τ)dτ

= 3
2n⟨w⟩


⟨γϕ⟩ − γpf︸ ︷︷ ︸

=0

+ γpf

− 3
2⟨σϕ⟩δn−2pνy2

= 3
n+ 1⟨g⟩(y) − 3

2⟨σϕ⟩νy2δn−2p
1 (3.274)

where in the last step we have used integration by parts. After changing time variable ϵd/dτ̄ =
d/dτ , yields the truncated averaged system

dz̄

dτ̄
= ϵ

3
n+ 1⟨g⟩(z̄) − ϵ

3
2⟨σϕ⟩νz̄2δn−2p

1 (3.275a)

dϵ

dτ̄
= − 3

n(n+ 1)ϵ(1 − ϵ) (3.275b)



3. Dynamics of interacting monomial scalar field potentials and perfect
fluids 117

which on ϵ = 0 has a line of fixed points with z̄0 ∈ [0, 1]. The linearisation around the line
yields the eigenvalues λ1 = 0 and λ2 = − 3

n(n+1) with associated eigenvectors

v1 = (1, ϵ = 0) v2 = (−n⟨g⟩(z̄0) + n(n+ 1)
2 ν⟨σϕ⟩z̄2

0δ
2p−n
1 , 1)

Therefore the line is normally hyperbolic and each point on the line is exactly the ω-limit
point of a unique interior orbit. This means that there also exists an orbit of the dynamical
system with ϵ > 0 initially, that converges to (z̄0, 0), for each z̄0 as τ̄+ → ∞.

Just as in the proof of cases (i) and (ii), we can estimate the term O(ε3) that provides
bootstrapping sequences. This defines a pseudo-trajectory rn(τ̄n) = z̄(τ̄n) of system (3.262),
with

|rn(τ̄) − z̄(τ̄)| ≤ Kε2
n , (3.276)

where τ̄ ∈ [τ̄n, τ̄n+1] and K is a positive constant. Compactness of the state space and the
regularity of the flow implies that exists a set of initial values whose solution trajectory Ω(τ̄)
shadows the pseudo-trajectory rn(τ̄), in the sense that

∀n ∈ N, ∀τ̄ ∈ [τ̄n, τ̄n+1] : |rn(τ̄) − r(τ̄)| ≤ Kε2
n . (3.277)

Finally, using the triangle inequality, we get

|r(τ̄) − z̄(τ̄)| = |r(τ̄) − zn(τ̄) + rn(τ̄) − z̄(τ̄)|

≤ |rn(τ̄) − r(τ̄)|︸ ︷︷ ︸
≤Kε2

n

+ |rn(τ̄) − z̄(τ̄)|︸ ︷︷ ︸
≤Kε2

n

≤ 2Kε2
n →︸︷︷︸
τ̄n→∞

0 , (3.278)

and, therefore, for each z̄0 ∈ [0, 1], there exists a solution trajectory r(τ̄) that converges to
a periodic orbit at ε = 0 i.e. T = 1, characterized by r = z̄0, which concludes the proof of
(iii).

The global representative solutions for the p > n/2 can be founded in Figure 3.25.
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(a) Solution space for
γpf = 3

2 with n = 2,
p = 2 and ν = 1.

(b) Solution space for
γpf = 4

3 with n = 2,
p = 2 and ν = 1.

(c) Solution space for
γpf = 1 with n = 2, p =

2 and ν = 1.

Figure 3.25: Qualitative global evolution of the dynamical system (3.198) for three different
cases γpf <

4
3 , γpf = 4

3 and γpf >
4
3 illustrating the results of Theorem 3.31.

3.6 Concluding Remarks

This chapter considered a spatially homogeneous and isotropic universe having a scalar field
with monomial potentials interacting with perfect fluids. We were able to find a set of di-
mensionless bounded variables which resulted in a regular 3-dimensional regular dynamical
system that allowed us to describe the global evolution of these cosmological models and iden-
tify all possible past and future attractors. This brought some mathematical challenges as
new non-linearities arise in the resulting ODE system that required, for example, the use of
center manifold theory and blow-up techniques around non-hyperbolic fixed points. We split
our analysis into three cases for the exponents of the scalar field potential and the interaction
term, p < n/2, p = n/2 and p > n/2,.

In the p < n
2 case we further split our analysis into two subcases, p < 1

2(n−1) and p = 1
2(n−1).

When p = 1
2(n−1) all solutions at late times converge asymptotically to a Friedman-Lemâıtre

type of universe. When p < 1
2(n − 1) it was shown that our system could admit one or two

lines of fixed points depending on whether p is equal or greater than zero. For any point
other than the origin we see that for p = 0 all solutions will converge to the FL solution
while for p > 0 all solutions will converge to a point on the line. Moreover, we found that
for p < 1

2(n − 2), the generic future attractor is de-Sitter, a result that seems unknown in
the literature and that might offer a new model for quintessential inflation. Regarding the
fixed point FL1 located at the origin, we saw that this point is totally non-hyperbolic so we
employed blow-up techniques together with a cylindrical Poincaré-compactification to better
understand the dynamics in its neighbourhood.
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For p = n
2 the future asymptotic regime depends on the values of γpf . Following Theorem 3.26

we have that for γpf <
2n
n+1 the future state will be dominated by a perfect fluid model with

q = 1
2(3γpf − 2) which is self-similar. When γpf >

2n
n+1 the future state will be neither scalar

field or perfect fluid dominated due to the existence of the interaction term ν ̸= 0. In this
case the universe will oscillate towards the future and is characterized by a future asymptotic
manifest self-similarity breaking [112].

Lastly, for p > n
2 we again have two lines of fixed points (for any p, n > 0) although located

in the asymptotic past. In this case besides the existence of de-Sitter fixed points we also
have the presence of the kinaton self-similar solution. Once again the fixed point FL0 is
not hyperbolic, which motivated once more the use of blow-up techniques together with the
Poincaré compactification in order to understand the dynamics inherent to this point. The
asymptotics at late times follow Theorem 3.31 and the physical interpretation is the following:
In the case (i), where γpf > ⟨γϕ⟩ the future behaviour is described by a limit cycle, meaning
that the deceleration parameter oscillates toward the future. The consequence of this is that
this type of models exhibit a future asymptotic manifest self-similarity breaking. In turn
for γpf < γϕ the future state is dominated by the perfect fluid model with q = 1

2(3γpf − 2).
This model is self-similar which leads us to conclude that the solutions will approach the
Minkowski spacetime in a self-similar manner. Finally, for γpf = γϕ we saw that all solutions
oscillate towards the future, so the asymptotic future also manifests self-similarity breaking
and is neither dominated by the scalar field nor the perfect fluid.





Chapter 4

Global dynamics of Scalar field and
perfect-fluid in Bianchi I

Dynamical systems in Bianchi models have already a long history. Collins [113] obtained a
compact state space using normalized variables and analysed a perfect fluid model for Bianchi
types I, II, III, V and V I. This work was followed and extended by many others, for instance
[114] who considered the dynamics of all Class A Bianchi models. For a review of the early
works see [8].

Regarding more recent studies including the Bianchi I type, we highlight [81–83] where they
use averaging theory to determine the future asymptotics for models with perfect fluids and
scalar fields with an harmonic potential. Also [75] where the Bianchi type I Einstein-Vlasov
equations were analysed and it was shown that all models isotropize towards the future. In
[115] a dynamical systems analysis is used to study the dynamics of a Bianchi I cosmological
model with a homogeneous magnetic field and a viscous fluid. In [91] the authors constructed
the most general form of axially symmetric SU(2) Yang Mills fields in Bianchi cosmologies
and compared the dynamical evolution of the axially symmetric Yang Mills fields in Bianchi
I with fully isotropic Yang Mills fields in FLRW cosmologies.

In this chapter we investigate the global dynamics of scalar fields with monomial potentials and
perfect fluids on Bianchi I spacetimes. We define the dynamics on the appropriate compact
phase-space using H-renormalized variables, similar to the ones defined in the Chapters 2 and
3. Due to the fact that in this case the system is 5-dimensional, it is necessary to introduce
appropriate monotone functions that will exclude periodic and recurrent orbits in all invariant
sets. Our analysis which involves the study of invariant boundaries including the study of fixed
points, center manifolds and averaging techniques for the future attracting periodic orbits.

The chapter is organized as follows:

121
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In Sec. 4.1 we introduce a dynamical system for the co-evolution of a monomial scalar field
and a perfect fluid in a Bianchi I universe. In Sec 4.2 we consider the model without the
scalar field making a global analysis of the flow and giving rigorous proofs concerning the
asymptotic behaviour of general solutions in the past and in the future. A similar analysis
is made in Sec. 4.3 where now we will consider the full 5-dimensional system and the scalar
field in co-evolution with the perfect fluid.

4.1 The Bianchi I Dynamical System

4.1.1 Derivation of the non-linear ODE system

We consider a Bianchi I spacetime with metric g (1.63) containing a perfect fluid in co-
evolution with scalar field with potential (3.11).

Substituting the metric (1.63) in the Einstein equations (1.6) we obtain the non-linear evolu-
tion system for the unknowns {H,ϕ, ρpf , σ+, σ−}:

Ḣ = −1
2γpfρpf − ϕ̇

2 − σ2 (4.1a)

ϕ̈ = −3Hϕ̇+ λ2nϕ2n−1 (4.1b)

σ̇± = −3Hσ± (4.1c)

ρ̇pf = −3Hγpfρpf (4.1d)

together with the constraint

H2 = ρpf
3 + ϕ̇

6 + (λϕ)2n

6n + σ2

3 . (4.2)

where we recall
σ2 = 3

(
σ2

+ + σ2
−

)
. (4.3)

4.1.2 Dynamical Systems’ Formulation

In order to obtain a regular dynamical system on compact state-space, we start by introducing
dimensional variables normalized by the Hubble function H (H(t) > 0).

Ωpf := ρpf
3H2 > 0, Σ2

ϕ := ϕ̇√
6H

, X := λϕ

(6nH2) 1
2n

, Σ2
σ = σ2

3H2 , Σ± := σ±
H
, T̃ : c

H
1
n

(4.4)
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where c =
(

6n−1

n

) 1
2n λ is a positive constant and

Σ2
σ = Σ2

+ + Σ2
− (4.5)

where Σ± describes the anisotropy of the Hubble flow. We also introduce a new time variable
N that is defined by

d

dN
:= 1

H

d

dt
, (4.6)

where N = ln(a/a0) represents the number of e-folds in the inflationary period of cosmological
exponential expansion where a0 is some epoch at which N = 0.

Then, the system (4.1), in the new variables, will be reduced to a local 5-dimensional dynamical
system

dX

dN
= 1
n

(1 + q)X + T̃Σϕ (4.7a)
dΣϕ

dN
= −(2 − q)Σϕ − nT̃X2n−1 (4.7b)

dΣ+
dN

= −(2 − q)Σ+ (4.7c)
dΣ−
dN

= −(2 − q)Σ− (4.7d)

dT̃

dN
= 1
n

(1 + q)T̃ , (4.7e)

subjected to the constraint

1 − Ωpf = Σ2
ϕ +X2n + Σ2

+ + Σ2
− = Ωϕ + Σ2

σ, (4.8)

which is used to globally solved Ωpf . It’s useful to introduce the full form of the deceleration
parameter q defined via (1.17), i.e.

q := −1 + 3(Σ2
ϕ + Σ2

+ + Σ2
−) + 3

2γpfΩpf = −1 + 3Σ2
σ + 3

2(γϕΩϕ + γpfΩpf) (4.9)

where γϕ is defined in (3.20).

It is also useful to consider an auxiliary equation for Ωpf which is given by

dΩpf
dN

= [(2 − γpf)Σσ − (γpf − γϕ)Ωϕ] Ωpf . (4.10)
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It is easy to notice that when T̃ → +∞ (H → 0), the system (4.7) becomes unbounded. In
order to o obtain a regular and global 5-dimensional dynamical system, we further introduce

T = T̃

1 + T̃
, (4.11)

so that when T → 0 as T̃ → 0 and T → 1 as T̃ → +∞, as well a new, independent, variable
τ defined by

d

dτ
:= (1 − T ) d

dN
= (1 − T )

H

d

dt
. (4.12)

This leads to a global 5-dimensional dynamical system on the variables {X,Σϕ,Σ+,Σ−, T}:

dX

dτ
= 1
n

(1 + q)(1 − T )X + TΣϕ (4.13a)
dΣϕ

dτ
= −(2 − q)(1 − T )Σϕ − nTX2n−1 (4.13b)

dΣ±
dτ

= −(2 − q)(1 − T )Σ± (4.13c)
dT

dτ
= 1
n

(1 + q)T (1 − T )2, (4.13d)

where the constraint (4.8) is used to solve Ωpf globally and q is given by (4.9). The auxiliary
equation (4.10) alongside with the equations for Ωϕ and Σσ in the new time τ is given by

dΩpf
dτ

= 3(1 − T )
[
(2 − γpf)Σ2

σ − (γpf − γϕ)Ωϕ

]
Ωpf (4.14a)

dΩϕ

dτ
= 3(1 − T )

[
(γpf − γϕ)(1 − Ωϕ) + (2 − γpf)Σ2

σ

]
Ωϕ (4.14b)

dΣσ

dτ
= −3

2(1 − T )
[
(2 − γpf)(1 − Σ2

σ) + (γpf − γϕ)Ωϕ

]
Σσ (4.14c)

From the definition of T and the constraint equation together with the fact that Ωpf , we see
the state space

S = {X,Σϕ,Σ+,Σ−, T}

is bounded since

−1 ≤ X ≤ 1 , − 1 ≤ Σϕ ≤ 1 , − 1 ≤ Σ± ≤ 1 , 0 ≤ T ≤ 1. (4.15)

Moreover, since γpf ∈ (0, 2), it follows from (4.9) that

−1 ≤ q ≤ 2. (4.16)
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The state space S is 5-dimensional however it is useful to view it using two 3-dimensional
point of views represented by the spaces:

S1 : {X,Σϕ, T}

S2 : {Σ+,Σ−, T}.
(4.17)

The outer shell of the cylinder S1 is described by the pure scalar field subset:

Sϕ : Ωpf = Σσ = 0 (Ωϕ = 1).

The outer shell of the cylinder S2 is described by the pure Kasner subset:

Sσ : Ωpf = Ωϕ = 0 (Σσ = 1).

The state space S can be analytically extended to include is closure, i.e., the invariant bound-
aries T = 0 and T = 1, and form the extended state space S̄. In the same way we can define
the extension of Sϕ and Sσ to T = 0 and T = 1 as S̄ϕ and S̄σ respectively. Although this
boundary in unphysical, this extension is crucial since all attracting sets are located on these
boundaries as shown by the following lemma:

Lemma 4.1. The α-limit set of all interior orbits in S is located at T = 0, while the ω-limit
set of all interior orbits in S is located at T = 1.

Proof. Since 1 + q ≤ 0, then T is strictly monotonically increasing in the interval (0, 1) except
when q = −1 in which case

dT

dτ

∣∣∣
1+q=0

= 0 ,
d2T

dτ2

∣∣∣
1+q=0

,
d3T

dτ

∣∣∣
1+q=0

= 6n(1 − T )T 3 > 0 (4.18)

for T ∈ (0, 1). By the monotonicity principle A.23, it follows that there are no fixed points,
recurrent or periodic orbits in the interior of the state space S and the α and ω-limit sets of
all orbits in S are contained at T = 0 and T = 1, respectively.

4.1.3 Monotonic functions

In order to study the dynamics in each 4-dimensional boundary (T = 0 and T = 1) we will use
some monotonic functions that will simplify the system. As a consequence of the monotonicity
principle, this will allow us to exclude periodic orbits and recurrent orbits in all invariant sets
(see e.g.[74]), Some monotone functions were already suggested in [76, 78, 116] however we
will consider new ones.
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The firs monotone function that comes into mind is the one proportional to the shear equation.

Z1 = Σ2
σ, Z ′

1 = −(1 − T )(2 − q)Z1 (4.19)

As one can see Z1 is a decreasing monotone function, since q ∈ [−1, 2]. In fact Z ′
1 = 0 when

T = 1 and q = 2. Following equation (4.14c) we see that in fact the Σσ is a conserved quantity
when T = 1. For q = 2 we see Z ′

1 = 0 when Σ2
σ = 1 or when Σ2

ϕ = 1 (Σ2
σ = 0) and since Σσ is

bounded it follows that Σσ → 1 in the past and Σσ → 0 in the future.

Other monotone function is the one proportional to Ωpf

Z2 = Ωpf , Z ′
2 = 3(1 − T )

(
(2 − γpf)Σ2

σ − (γpf − γϕ)Ωϕ

)
Z2 (4.20)

In the {Ωϕ = 0}-subset Z ′
2 = 3(1 − T )(2 − γpf)Σ2

σZ2 which is always positive everywhere
except when T = 1 or when Σ2

σ = 0. In the first case, T = 1 we can see from (4.14a) that in
the T = 1 boundary Ωpf it is also a conserved quantity. When Σσ = 0, we know that when
Ωϕ = 0 then Ωpf + Σ2

σ = 1 so when Σ2
σ → 0, Ωpf → 1 and when Σ2

σ → 1, then Ωpf → 0 since
all variables are bounded we see that in the {Ωϕ = 0}-subset in the past Ωpf → 0 and Ωpf → 1
in the future.

To connect everything up we introduce another monotonic function

Z3 = Ωϕ

Σ2
σ

, Z ′
3 = 6(1 − T )X2n

Ωpf
Z3 (4.21)

We see that Z3 is a monotonically increasing function in the T = 0 subset except when X2n

is zero. Since are variables are bounded we see that in the past Ωϕ → 0 and in the future
Σ2
σ → 0 joining all this information we see that the Kasner circle Σ2

σ is the repeller in the
T = 0 boundary.

Now we are able to give a complete detailed description of the invariant subsets T = 0 and
T = 1 that are associated to the asymptotic past (H → +∞) and future (H → 0), however it
is interesting also to analyze a particular sub-case that arrive from this particular Bianchi-I
model, the anisotropic universe without the scalar field.

4.2 Model in the absence of scalar field

This case was first analysed from a dynamical system’s perspective in [113], but a more
complete early analysis was done in [114], see [8]. The model is asymptotically self-similar
to the past and future. One of the conclusions was that the flat FL equilibrium point is the
future attractor and the Kasner circle is the past attractor for the system.
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In this section, we revisit previous results within our framework before considering a model
with scalar field and perfect fluid. With respect to the previous formalism’s we use a different
time variable which allow us to draw a 3-dimensional picture of phase-space. In this context,
we also obtain explicit estimates for the asymptotic evolution of the variables in the approach
the pas and future attractors.

In this particular case we Ωϕ = 0, so our constraint is now Ωpf = 1 − Σ2
σ = 1 − Σ2

+ − Σ2
−.

Due to the fact that we don’t have a scalar field we need to adapt our H-normalized variables
from the ones in (4.4). In this case we have

Ωpf := ρpf
3H2 , Σ2

σ := σ2

3H2 , Σ± := σ±
H
, T̃ := 1

H
(4.22)

and using the conformal time N defined in (4.6) we obtain the system

dΣ±
dN

= −(2 − q)Σ±,
dT

dN
= (1 + q)T (1 − T ) (4.23)

together with the auxiliary equations

dΩpf
dN

= −3(2 − γpf)ΣσΩpf ,
dΣσ

dN
= 3(2 − γpf)ΣσΩpf . (4.24)

In this case our state space Spf,σ is a 3-dimensional space consisting in a cylinder with height
0 < T < 1. The outer shell of the cylinder is the pure shear invariant subset Sσ where Ωpf = 0
(Σσ = 1). The axis of the cylinder is a straight line with Ωpf = 1 (Σσ = 0) and it is related
to the self-similar flat Friedmann-Lemâıtre (FL) spacetime.

The state space Spf,σ can be analytically extended to include its closure, i.e the invariant
boundaries T = 0 and T = 1 forming a extended space S̄pf,σ. The result of Lemma 4.1 is also
valid in this case:

Lemma 4.2. The α-limit set of all interior orbits in Spf,σ is located at T = 0, while the
ω-limit set of all interior orbits in Sm,σ is located at T = 1.

Proof. See lemma 4.1

4.2.1 The T = 0 Boundary

The flow induced in the T = 0 boundary is given by

dΣ±
dN

= −(2 − q)Σ±,
dT

dN
= 0 (4.25)
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subjected to the constraint Ωpf = 1 − Σ2
+ − Σ2

−. The system (4.23) admits a circular line o
fixed points on the invariant shear subset Ωpf = 0 and one at the center with Ωpf = 1.

The isolated fixed point in the pure matter subset is

FL0 : Σ+ = 0, Σ− = 0, T = 0 (4.26)

with q = 1
2(3γpf − 2) corresponding to the flat FL self-similar solution. The linearisation

around this fixed point yields to the eigenvalues −3
2(2 − γpf), −3

2(2 − γpf) and 3γpf
2 where

the eigenvectors are the canonical basis of R3. FL0 has two negative real eigenvalues and a
positive real eigenvalue, being a hyperbolic saddle, and the α-limit set of orbits in S.

On the intersection of the invariant boundary T = 0 with the subset Ωpf , the circular line of
fixed points

LΣ,0 : Σ+ = Σ0, Σ− = ±
√

1 − Σ2
0, T = 0. (4.27)

with q = 2 corresponding to the Kasner vacuum solution. The linearisation around this line of
fixed points yields to the eigenvalues 3(2−γpf), 0, and 3 with the eigenvectors

(
Σ0√
1−Σ2

0
, 1, 0

)
,(

−
√

1−Σ2
0+

Σ0
, 1, 0

)
, and (0, 0, 1). In this case the Kasner circle is semi-hyperbolic. To analyse

the center manifold we introduce the adapted variables Σ̄+ = 1
Σ0

√
1−Σ2

0
Σ+ + (1 − Σ2

0)Σ− and

Σ̄− = −Σ0
√

1 − Σ2
0Σ++Σ2

0Σ−. The center manifold reduction theorem yields that the system
above is locally topological equivalent to the 1-dimensional decoupled equation on the center
manifold, which can be locally represented as the graph h : Ec → Eu, i.e. Σ̄+ = h(Σ̄−) which
solves the non-linear ordinary differential equation

dh

dΣ̄−
Σ̄− =

√
1 − Σ2

0 + h(Σ̄−) (4.28)

subjected to the fixed point h(0) = 0 and tangency dh
dΣ̄−

=0, conditions. In general is not
possible to solve for h explicitly. However we can approximate the solutions by making formal
power series for h(Σ̄−) and solving for the coefficients gives as Σ̄− → 0, which yields on the
center manifold

dΣ̄−
dN

= 3(2 − γpf)
Σ4

0
Σ̄5

− (4.29)

and therefore it is a one dimensional unstable center manifold. Therefore in the asymptotic
past the Kasner circle is a repeller.

The system (4.25) admit a conserved quantity for Ωpf > 0,

Σ+ = CΣ− (4.30)



4. Global dynamics of Scalar field and perfect-fluid in Bianchi I 129

Σ+

Σ-

FL0

LΣ,0

(a) T = 0 boundary for
γpf = 4

3 .

Σ+

Σ-

FL1

LΣ,1

(b) T = 1 boundary for
γpf = 4

3 .

Figure 4.1: The T = 0 and T = 1 invariant boundaries for the anisotropic case in a universe
without scalar field.

where C is a real constant that parameterises the solutions. Where the flow in invariant under
the transformation (Σ+,Σ−) → (−Σ+,−Σ−).

A straightforward inspection of the flow shows the line LΣ,0 is a source while FL0 is a saddle,
see Fig.4.1a.

Theorem 4.3. The α-limit set of orbits, consists of fixed points on T = 0. In particular as
N → −∞, a 2-parameter set of orbits converge to each point on the line of fixed points with
asymptotics

Σ+(N) =
(

(1 − Σ2
0+)CΣ+ ∓ Σ0+

√
1 − Σ2

0+CΣ−

)
+ Σ0+

(
Σ0+CΣ+ ±

√
1 − Σ2

0+CΣ−

)
e3(2−γpf)N

(4.31a)

Σ−(N) = Σ0+

(
Σ0+CΣ− ∓

√
1 − Σ2

0+

)
+
(
Σ0+

√
1 − Σ0+CΣ+ + (1 − Σ2

0+)CΣ−

)
e3(2−γpf)N

(4.31b)

T̃ (N) = CT e
3N (4.31c)

with CΣ+, CΣ− > 0, and CT > 0.

4.2.2 The T = 1 Boundary

The flow induced in this boundary is given by

dΣ+
dN

= −(2 − q)Σ+
dΣ−
dN

= −(2 − q)Σ−,
dT

dN
= 0, (4.32)
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subjected to the constraint Ωpf = 1 − Σ2
+ − Σ2

−. Since the system is similar to the T = 0
boundary we once again have a line of fixed points (LΣ, 1) in the shear subset (Ωpf = 0) and
one isolated fixed point (FL1) in the matter subset (Ωpf = 1). The isolated fixed point in the
matter subset is

FL1 : Σ+ = 0, Σ− = 0, T = 1 (4.33)

with q = 1
2(3γpf − 1) corresponding once again to the flat FL self-similar solution. The

linearisation around this fixed point yields to the eigenvalues −3
2(2 − γpf), −3

2(2 − γpf) and
−3γpf

2 where the eigenvectors are the canonical basis of R3. FL1 has three negative eigenvalues
being a hyperbolic sink.

The circle of fixed points is given by

LΣ1 : Σ+ = Σ0, Σ− = ±
√

1 − Σ2
0, T = 1. (4.34)

with q = 2 that is the Kasner vacuum solution. The linearisation around this line of fixed
points yields to the eigenvalues 3(2 − γpf), 0 and −3 were the respective eigenvectors are(

Σ0√
1−Σ2

0
, 1, 0

)
, (−

√
1−Σ2

0
Σ0

, 1, 0), and (0, 0, 1). As in the T = 0 the Kasner circle as a similar
dynamic in the center manifold, i.e. the center manifold is unstable

The system admits a similar conserved quantity as the one described in (4.30).

An inspection of the eigenvalues in this boundary tells us that the circular line of fixed points,
LΣ,1, is a saddle and FL1 is a sink, see Fig.4.1b.

Theorem 4.4. The ω-limit set of orbits, consists of fixed points on T = 1. A 1-parameter
set converges to FL1 as N → +∞ with asymptotics

Σ+(N) = CΣ+e
− 3

2 (2−γpf)N , Σ−(N) = CΣ−e
− 3

2 (2−γpf)N , T̃ (N) = CT e
−

3γpf
2 N (4.35)

4.2.3 Global Dynamics

We now make use of the previous analysis to prove the following result

Proposition 4.5. Consider solutions of the system (4.25) with 0 < Ωpf < 1: For γpf ∈ (0, 2),
a 1-parameter set of solutions converges, for τ̄ → −∞, to each point of the circle of fixed
points (LΣ,0) with Ωpf = 0, while, for τ̄ → ∞, all solutions converge to the fixed point FL1

with Ωpf = 1.

This means that the model is past asymptotic dominated by the anisotropy (Kasner vacuum
solution) and future asymptotic dominated by the perfect fluid (flat FL solution), see figure
4.2 for the representative solution.
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Proof. To prove this we need to use Lemma 4.2 were it says that the α-limit sets are fixed
points at T = 0 and the ω-limit sets are fixed points at T = 1 together with analysis of the
fixed points.

In order to study the asymptotic behaviour, we make use of the auxiliary equation (4.24). So
for Σσ ∈ (0, 1) and γpf ∈ (2/3, 2) we get

(
1 − Σσ

Σ
γpf

2
σ

) 1
2−γpf

= C
T

1 − T
,

where C > 0 is real and parameterize the solution. From the above equation its easy to
see that when T → 0 then Σσ → 1 and when T → 1 then Σσ → 0, i.e. all solution with
0 < Ωpf < 1 start in the line of fixed points LΣ,0 and end at FL1.

a
Figure 4.2: Qualitative global evolution for the dynamical system (4.23) in S̄pf ,σ for γpf = 4

3 ,
illustrating the results of Proposition 4.5.

4.3 Model with a scalar field and Perfect Fluid

Consider now the full 5-dimensional system (4.13) with scalar field and perfect fluid.

4.3.1 The T = 0 Boundary

The flow induced in the T = 0 boundary is given by
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dX

dτ
= 1
n

(1 + q)X (4.36a)
dΣϕ

dτ
= −(2 − q)Σϕ (4.36b)

dΣ+
dτ

= −(2 − q)Σ+ (4.36c)
dΣ−
dτ

= −(2 − q)Σ−, (4.36d)

subjected to the constraint Ωpf = 1 − Ωϕ − Σσ = 1 −X2n − Σ2
ϕ − Σ3

+ − Σ2
−. In this case the

system (4.36) admits a circle of fixed points in the pure anisotropic subset (Σσ = 1), four
fixed points in the scalar field subset (Ωϕ = 1) and one isolated fixed point in the pure matter
subset (Ωpf = 1).

The two first equivalent fixed points in the intersection of T = 0 with the pure scalar field
subset Ωϕ = 1 are

K± : X = 0, Σϕ = ±1, Σ+ = 0, Σ− = 0, T = 0 (4.37)

with q = 2 corresponding to the massless scalar field solution. The linearisation around
this fixed points yields to the eigenvalues 3

n , 3(2 − γpf), 0, 0 and 3
n where the eigenvectors

are (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), and (∓1, 0, 0, 0, 1). In the {Σσ = 0}
subset K± is a source. We also have two zero eigenvalues in the Kasner subset corresponding
to a center manifold. In order to study what happens in the Kasner circle we will make use of
unbounded system (4.7) for the variable T̃ . This allow us to introduce the adapted variables

X̄ = X − T̃ , Σ̄ϕ = Σϕ ± 1, Σ̄+ = Σ+, Σ̄− = Σ−, T̄ = T̃ (4.38)

which leads to the adapted system

dX̄

dN
= 3
n
X̄ + F (x̄), dΣ̄ϕ

dN
= 3(2 − γpf)Σ̄ϕ +G(x̄), dΣ̄±

dN
= H±(x̄), dT̄

dN
= 3
n
T̄ +N(x̄)

(4.39)
where x̄ = (X̄, Σ̄ϕ, Σ̄+, Σ̄−, T̄ ) and F , G, H±, and N are functions of higher order. With
this new adapted variables we relocated the fixed points K± to the origin of coordinates
(x̄) = (0, 0, 0, 0, 0). The 2-dimensional center manifold can be locally represented by the
graph h : Ec → Eu, i.e,

(
X̄, Σ̄ϕ, T̄

)
=
(
h1
(
Σ̄+, Σ̄−

)
, h2

(
Σ̄+, Σ̄−

)
, h3

(
Σ̄+, Σ̄−

))
satisfying

the fixed point h(0, 0) = 0 and the tangency ∇h(0, 0) = 0 conditions which solves the following



4. Global dynamics of Scalar field and perfect-fluid in Bianchi I 133

nonlinear partial differential equations

H+(x̄)∂Σ̄+
h1(Σ̄+, Σ̄−) +H−(x̄)∂Σ̄−

h1(Σ̄+, Σ̄−) = 3
n
h1(Σ̄+, Σ̄−) + F (x̄) (4.40a)

H+(x̄)∂Σ̄+
h2(Σ̄+, Σ̄−) +H−(x̄)∂Σ̄−

h2(Σ̄+, Σ̄−) = 3(2 − γpf)h2(Σ̄+, Σ̄−) +G(x̄) (4.40b)

H+(x̄)∂Σ̄+
h3(Σ̄+, Σ̄−) +H−(x̄)∂Σ̄−

h3(Σ̄+, Σ̄−) = 3
n
h3(Σ̄+, Σ̄−) +N(x̄) (4.40c)

.

In general is very difficult to solve h explicitly. However we can approximate the solutions by
making a formal multi-power expansion series for h(Σ̄+, Σ̄−) = ∑

aijΣ̄i
+Σ̄j

− and solving for
the coefficients (Σ̄+, Σ̄−) → 0.

The flow on the center manifold reads

dΣ̄+
dN

= 3
8(2 − γpf)Σ̄+

(
Σ̄2

+ + Σ̄2
−

)2
,

dΣ̄−
dN

= 3
8(2 − γpf)Σ̄−

(
Σ̄2

+ + Σ̄2
−

)2
(4.41)

and therefore it is two dimensional unstable center manifold.

The remaining other two equivalent fixed points in the intersection of T = 0 with a pure
scalar field subset are

dS±
0 : X = ±1, Σϕ = 0, Σ+ = 0, Σ− = 0, T = 0 (4.42)

and corresponds to a quasi-de-Sitter state with q = −1. The linearisation around these
fixed points yields the eigenvalues −3γpf , −3, −3, −3, and 0 with the associated eigenvectors
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), and (0,∓n

3 , 0, 0, 1). The fixed points dS±
0

have four negative eigenvalues (since γpf > 0) and a zero eigenvalue corresponding to a center
manifold. Due to the monotonicity of T it is clear that a single orbit originates from each
dS±

0 into S corresponding to the 1-dimensional center manifold (see A.5) of each fixed point.
This center manifold is usually called the inflationary attractor solution. Again to solve the
center manifold problem we will make use of the system (4.7) for the unbounded variable T̃ ,
and introduce the adapted variables

X̄ = X ∓ 1, Σ̄ϕ = Σϕ ∓ n

3 T̄ , Σ̄+ = Σ̄+, Σ̄− = Σ−, T̄ = T̃ (4.43)

which leads to the adapted system

dX̄

dN
= −3γpfX̄ + F (x̄), dΣ̄ϕ

dN
= −3Σ̄ϕ +G(x̄), dΣ̄+

dN
= −3Σ̄+ +H+(x̄)

dΣ̄−
dN

= −3Σ̄− +H−(x̄), dT̄

dN
= N(x̄)

(4.44)
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here x̄ = (X̄, Σ̄ϕ, Σ̄+, Σ̄−, T̄ ) and F , G, H±, and N are functions of higher order. With
this new adapted variables we relocated the fixed points K± to the origin of coordinates
(x̄) = (0, 0, 0, 0, 0). The 1-dimensional center manifold can be locally represented by the
graph h : Ec → Es, i.e,

(
X̄, Σ̄ϕ, Σ̄+, Σ̄−

)
=
(
h1
(
T̄
)
, h2

(
T̄
)
, h3

(
T̄
)
, h4

(
T̄
))

satisfying the
fixed point h(0) = 0 and the tangency dh(0)

dT̃
= 0 conditions which solves the following nonlinear

partial differential equations

N(x̄)h′
i(T̄ ) = λihi(T̄ ) + F̄i(x̄), i = 1, 2, 3, 4 (4.45)

where h′
i(T̃ ) is the first derivative of h with respect to T̄ , λi = (−3γpf ,−3,−3,−3) and

F̄i(x̄) = (F (x̄), G(x̄), H+(x̄), H−(x̄)). In general founding an explicit solution of h can be
very challenging and almost impossible, however, we can approximate the solutions using
Taylor power series expansion for h(T̃ ) = ∑

aiT̃ i so using the expansion (X̄ ± 1)2n = 1 ±
2nX̄ +

( 2n
2n−2

)
X̄2 + ... and solving the resulting linear system of equations for the coefficients

of the expansion as T̃ → 0,

X = ±1 ∓ n

18 T̃
2 ± n2

648(5 − 2n)T̃ 4 + O(T̃ 6) (4.46a)

Σϕ = ∓n

3 T̃
(

1 ∓ n

18 T̃
2 ± n2

648(17 − 6n)T̃ 4
)

+ O(T̃ 7) (4.46b)

Σ± = 0 (4.46c)

Therefore, it follows that to the leading order on the center manifold

dT̃

dN
= n

3 T̃
3 + O(T̃ 4), as T̃ → 0 (4.47)

which shows explicitly that dS±
0 are center saddles with unique center manifold orbit origi-

nating from each fixed point into the interior orbit of S.

The circular line of fixed points that lie in the intersection of T = 0 with the pure anisotropic
subset {Σσ = 1} are

LΣ : X = 0, Σϕ = 0, Σ+ = Σ0, Σ− = ±
√

1 − Σ2
0, T = 0 (4.48)

which has q = 2 and corresponds to the Kasner vacuum solution. The linearisation around
these line of fixed points yields the eigenvalues 3

n , 0, 0, 3(2−γpf), and 3
n with associated eigen-

vectors (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0,± Σ0√
1−Σ2

0
1, 0), (0, 0,∓

√
1−Σ2

0
Σ0

, 1, 0) and (0, 0, 0, 0, 1). In
the {Ωϕ = 0} subset, LΣ is a semi-hyperbolic source and the same can be said for the line of
fixed points in the {Σσ = 0} subset. We have a center manifold between two subsets. Doing
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a similar approach as in (4.40) but using (Σϕ,Σ+) as independent variables we see that

dΣϕ

dN
= 3

8(2 − γpf)Σϕ

(
Σ2
ϕ +

(Σ+
Σ0

)2
)
,

dΣ+
dN

= 3
8(2 − γpf)Σ+

(
Σ2
ϕ +

(Σ+
Σ0

)2
)

(4.49)

and therefore it is a two dimensional unstable center manifold.

The last fixed point, is located at the intersection of T = 0 with the pure matter subset
{Ωϕ = 1}, as is given by

FL0 : X = 0, Σϕ = 0, Σ+ = 0, Σ− = 0, T = 0 (4.50)

with q = 1
2(3γpf − 2) corresponding to the flat FL self-similar solution. The linearisation

around this fixed point yields the eigenvalues 3
2nγpf , −3

2(2 − γpf), −3
2(2 − γpf), −3

2(2 − γpf)
and 3

2nγpf where the eigenvectors are the canonical basis of R5. Since γpf ∈ (0, 2), FL0 has
two positive real eigenvalues and three negative real eigenvalues, being a hyperbolic saddle,
and the α-limit point of a 1-parameter set of orbits n S.

We can now show that on T = 0 the above fixed points are the only possible α-limit sets where
the structure on T = 0 consists only of heteroclinic orbits that connect these fixed points.

Lemma 4.6. The T = 0 invariant boundary consists only of heteroclinic orbits connecting
the fixed points as depicted in Fig.4.3

Proof. Taking into considerations the monotonic functions, Z1, Z2 and Z3, a straightforward
inspection of {Σσ = 1} show us that this is a 2-dimensional subset consisting of heteroclinic
orbits LΣ → FL0. Moreover it is also easy to check that {Σϕ = 0} and {X = 0} are 1-
dimensional subsets consisting of heteroclinic orbits FL0 → dS±

0 , and K± → FL0 respectively.
Therefore the two axis will divide the deformed circle {X2n+Σ2

ϕ = 1} consisting of heteroclinic
orbits K+ → dS±

0 and K− → dS±
0 into 4-invariant quadrants. Since we don’t have any fixed

points in the interior of each quadrant by the index theorem we also don’t have closed curves.
It follows by the Poincaré-Bendixson theorem that each quadrant consists of heteroclinic orbits
connecting the fixed points. A similar approach can be taken when looking to the Kasner
circle. Since we don’t have any fixed point in the interior of Kasner circle other than the
FL0 then by the index theorem (see A.28) we have no closed curves. So by the Poincaré-
Bendixson theorem (see A.25) the interior of the Kasner circle consists only of heteroclinic
orbits connecting each point of the circle to FL0. Moreover in this case the T = 0 invariant
boundary admits the following conserved quantity.

Spf,ϕ : Σϕ
γpfX(2−γpf)nΩϕ = const, (4.51a)

Spf,σ : Σ+Σ−1
− = const (4.51b)
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(a) Σ = 0 plane in the T =
0 boundary.
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(b) The Kasner circle in
the Ωϕ = 0 plane in the

T = 0 boundary.

Figure 4.3: he invariant T = 0 boundary and the invariant subset for a monomial potential
V = 1

4 (λϕ)4.

which determines the solution trajectories on T = 0, see Figure 4.3

Theorem 4.7. The α-limit set of orbits consists of fixed points on T = 0. In particular as
τ → −∞ (N ↣ −∞), a 2-parameter set of orbits converge to each K±, with asymptotics

X(N) = (CX ± CTN) e
3
n
N , Σϕ(N) = ±1 + CΣe

3(2−γpf)N , T̃ (N) = CT e
3
n
N (4.52a)

Σ+ = ±
(3

2(2 − γpf)(1 + CΣ+)2N + 8CΣ−

)− 1
4
, Σ− = ±CΣ+

(3
2(2 − γpf)(1 + CΣ+)2N + 8CΣ−

)− 1
4

(4.52b)

with CX , CΣ, CΣ+, CΣ− > 0 and CT > 0. A unique center manifold converge to each dS±
0 ,

with asymptotics

X(N) = ±1 ∓ n

18

(
1 − 2n

N

)−1
, Σϕ(N) = ∓n

3

(
1 − 2n

N

)−1/2
T̃ (N) =

(
1 − 2n

N

)−1/2

(4.53a)

Σ+(N) = 0, Σ−(N) = 0. (4.53b)

A 2-parameter set converges to each point on the line of fixed points, LΣ, with asymptotics

X(N) = CXe
3
n
N , Σϕ(N) = −nCT

6CX

(
CXe

3
n
N
)2n

, T̃ = CT e
3
n
N (4.54a)

Σ+(N) = ∓Σ0+

√
1 − Σ2

0

(
1 − e3(2−γpf)N

)
CΣ− + CΣ+

(
1 − Σ2

0

(
1 − e3(2−γpf)N

))
(4.54b)

Σ−(N) = ±Σ0

√
1 − Σ2

0+

(
1 − e3(2−γpf)N

)
CΣ+ + CΣ−

(
1 − Σ2

0

(
1 − e3(2−γpf)N

))
. (4.54c)
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with CX , CΣ+, CΣ− and CT > 0. A 1-parameter set converges to FL0 with asymptotics

X(N) = CXe
3γpf
2n

N , Σϕ(N) = 0, Σ+(N) = 0, Σ−(N) = 0, T̃ = CT e
3γpf
2n

N (4.55)

with CX , and CT > 0.

Proof. The proof follows by Lemmas 4.1, and 4.6, and the local analysis of fixed points.

Remark 4.8. The orbit solutions which approach K± behaves as the self-similar massless
scalar field or kinaton solution, the ones approaching LΣ behaves as the self-similar Kas-
ner vacuum solution, and the orbits approaching FL0 as the self-similar Friedmann-Lemâıtre
solution whose asymptotics towards the past exhibit well-known Big-Bang singularities. In
context of cosmological inflation, the physical interesting solution is the inflationary attractor
solution, i.e. the center manifold originating from dS±

0 whose asymptotics are given by

n = 1 : H ∼ −t, ϕ ∼ −t, σ ∼ 0, ρpf ∼ (−t)−2, as t → −∞ (4.56a)

n = 2 : H ∼ e− 2
3 t, ϕ ∼ e− t

3 , σ ∼ 0, ρpf ∼ e
−4
3 t, as t → −∞ (4.56b)

n ≥ 3 : H ∼ (−t)
n

n−2 , ϕ ∼ (−t)
2

n−2 , σ ∼ 0, ρpf ∼ (−t)− 2n
n−2 , as t → −∞ (4.56c)

4.3.2 The T = 1 Boundary

On the T = 1 boundary, the system (4.13) reduces to

dX

dτ
= Σϕ,

dΣϕ

dτ
= −nX2n−1,

dΣ+
dτ

= 0, dΣ−
dτ

= 0, dT

dτ
= 0. (4.57)

System (4.57) presents one fixed point in the {Σσ = 0} subset and an infinite amount of fixed
points displayed on the disk {Σ2

+ + Σ2
− ≤ 1} in the pure anisotropic subset. The fixed points

are
FL1 : X = 0, Σϕ, Σ+ = c1, Σ− = c2, T = 1, (4.58)

where c1, c2 ∈ [−1, 1] and Ωpf = 1 − c2
1 − c2

2. Notice that when c1 = c2 = 0 we only have
one fixed point that corresponds to the flat FL solution similar to the one found in [68].
This fixed points have null eigenvalues however FL1 resides in the intersection between two
invariant subsets: the T = 1 invariant subset and the Ωϕ = 0 subset. The infinite disk of fixed
points is located in (Σ+,Σ−)-plane and can be seen in Fig. 4.4a.

On T = 1 we see that

Ωϕ = X2n + Σ2
ϕ = const, Σσ = Σ2

+ + Σ2
− (4.59)
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(a) The Kasner circle in
the Ωϕ = 0 plane in the

T = 1 boundary.

FL1

Ωφ=1 pf=0( (

Ω

P1
1
2
P

1
4
P

ΣΦ

X

(b) Σ = 0 plane in the T =
1 boundary..

Figure 4.4: he invariant T = 0 boundary and the invariant subset for a monomial potential
V = 1

4 (λϕ)4.

so the subset T = 1 is foliated by periodic orbits in the neighbourhood of fixed points FL1 in
the (X,Σϕ)-plane, see Fig. 4.4b. Instead of studying this infinite amount of fixed points we
will use averaging theory alongside the auxiliary functions (4.14) to see the behaviour of the
internal orbits in the T = 1 boundary and reduce a disk of infinite fixed points into a line of
infinite fixed points.

Theorem 4.9. Consider the system (4.13) with 0 < Ωpf < 1 and γpf ∈ (0, 2):

(i) If γpf > ⟨γϕ⟩, then all solutions will converge to the outer periodic orbit P1 with Ωpf = 0
and Σσ = 0.

(ii) If γpf < ⟨γϕ⟩ then all solutions will converge to the fixed point FL1 with Ωpf = 1.

(iii) If γpf = ⟨γϕ⟩, then a 1-parameter set of solutions converge to each inner periodic orbit
PΩϕ

.

Proof. To prove this theorem we need to use Lemma 4.1 alongside with generalized averaging
techniques based on the methods used in [50, 68, 80]. We make the same approach regarding
ϵ as previous seen in Chapters 2-3. So given real function f , its average over a time period
associated to Ωϕ is given by

⟨f⟩ = 1
P (Ωϕ)

∫ τ0+P (Ωϕ)

τ0
f(τ)dτ. (4.60)

Taking the time averaging for dX
dτ in (4.57) and using the equation for Σϕ it gives

d

dτ

(
X
dX

dτ

)
−
(
dX

dτ

)2
+ nX2n = 0. (4.61)
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Taking the time averaging for the orbit we get〈(
dX

dτ

)2〉
= ⟨Σ2

ϕ⟩ = n⟨X2n⟩. (4.62)

Thus, using this result for a periodic orbit on T = 1 in (4.10) we get

⟨γϕ⟩ = 2n
n+ 1 . (4.63)

We now set ϵ(τ) = 1 − T (τ) and consider the system

dΩϕ

dτ
= 3ϵ

[
(γpf − γϕ)(1 − Ωϕ) + (2 − γpf)Σ2

σ

]
Ωϕ (4.64a)

dΣσ

dτ
= −3

2ϵ
[
(2 − γpf)(1 − Σ2

σ) + (γpf − γϕ)Ωϕ

]
Σσ (4.64b)

dϵ

dτ
= − 1

n
ϵ2(1 − ϵ)(1 + q) (4.64c)

where (X,Σϕ,Σ+,Σ−) solves (4.13) and

q + 1 = 3
2(2Σ2

ϕ + 2Σ2
+ + 2Σ2

− + γpf(1 − Ωϕ − Σ2
σ)). (4.65)

The general idea of this averaging method is based on making the near identity transformation

Ωϕ(τ) = y(τ) + ϵ(τ)w(y, z, τ, ϵ) (4.66a)

Σσ(τ) = z(τ) + ϵ(τ)g(y, z, τ, ϵ), (4.66b)

and then prove that the evolution of the variables y and z are approximated, at first order,
by the solution of ȳ and z̄ respectively of the averaged equation.

So starting with y the evolution equation for this new variable can be obtained using equations
(4.64a) and (4.64c) together with the evolution equation for Ωϕ. This then gives

dy

dτ
=

(
1 + ϵ

∂w

∂y

)−1 [dΩϕ

dτ
−
(
w + ϵ

∂w

∂ϵ

)
dϵ

dτ
− ϵ

∂w

∂τ
− ϵ

∂w

∂z

dz

dτ

]

=
(

1 + ϵ
∂w

∂y

)−1 [
3ϵ
(
(γpf − ⟨γϕ⟩) y (1 − y) + (⟨γϕ⟩ − γϕ) y(1 − y) + (2 − γpf)yz2

)
− 3ϵ2

(
(γpf − γϕ) (1 − 2y)w + w (2 − γpf) z2 + g(2 − γpf)y

)
(4.67)

+ 3ϵ3
(
(2 − γpf) gw − (γpf − γϕ)w2 + (2 − γpf)g2y

)
−
(
w + ϵ

∂w

∂ϵ

)
dϵ

dτ
− ϵ

∂w

∂τ
− ϵ

∂w

∂z

dz

dτ

]
.
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For z we made a similar thing using the equations (4.64b) and (4.64c) and we get

dz

dτ
=

(
1 + ϵ

∂g

∂z

)−1 [dΣσ

dτ
−
(
g + ϵ

∂g

∂ϵ

)
dϵ

dτ
− ϵ

∂w

∂τ
− ϵ

∂g

∂y

dy

dτ

]

=
(

1 + ϵ
∂g

∂z

)−1 [
− 3

2ϵ
(
(2 − γpf)z(1 − z2) + (γpf − ⟨γϕ⟩)yz + (⟨γϕ⟩ − γϕ)yz

)
− 3

2ϵ
2
(
(2 − γpf)g

(
(1 − z)2 − 2

)
+ (γpf − γϕ)wz + (γpf − γϕ)gy

)
(4.68)

+ 3
2ϵ

3
(
(2 − γpf)zg2 + (2 − γpf)g3 − (γpf − γϕ)gw

)
−
(
g + ϵ

∂g

∂ϵ

)
dϵ

dτ
− ϵ

∂g

∂τ
− ϵ

∂g

∂y

dy

dτ

]
.

Setting

∂w

∂τ
= f1(y, z, τ, ϵ) − ⟨f1(y, z, ., 0)⟩ = 3

(
⟨γϕ⟩y − 2Σ2

ϕ

)
y (1 − y) (4.69a)

∂g

∂τ
= f2(y, z, τ, ϵ) − ⟨f2(y, z, ., 0)⟩ = 3 (γϕ − ⟨γϕ⟩) yz (4.69b)

and expanding (4.67) and (4.68) in powers of ϵ small enough, we get

dy

dτ
= ϵ⟨f1⟩(y, z) + ϵ2h1(y, z, w, g, τ, ϵ) + O(ϵ3) (4.70a)

dz

dτ
= ϵ⟨f2⟩(y, z) + ϵ2h2(y, z, w, g, τ, ϵ) + O(ϵ3) (4.70b)

where

⟨f1⟩(y, z) =⟨f1(y, z, ., 0)⟩ = 3(γpf − ⟨γϕ⟩)y(1 − y) + 3(2 − γpf)yz2 (4.71a)

⟨f2⟩(y, z) =⟨f2(y, z, ., 0)⟩ = −3
2(2 − γpf)z(1 − z2) − 3

2(γpf − ⟨γϕ⟩)yz (4.71b)

h1(.) =3
(
(γpf − γϕ)(1 − 2y)w + w(2 − γpf)(wz2 + gy)

)
+ 1
n

(1 + q)(1 − ϵ)w (4.71c)
3
2
∂w

∂z

(
(2 − γpf)z(1 − z2) + (γpf − ⟨γϕ⟩)yz

)
− 3∂w

∂y

(
(γpf − ⟨γϕ⟩)y(1 − y) + (2 − γpf)yz2

)
h2(.) = − 3

2
(
(2 − γpf)g

(
(1 − z)2 − 2

)
+ (γpf − γϕ)(wz − gy)

)
+ 1
n

(1 + q)(1 − ϵ)w

(4.71d)

− 3∂g
∂y

(
(γpf − ⟨γϕ⟩)y(1 − y) + (2 − γpf)yz2

)
+ 3

2
∂g

∂z

(
(2 − γpf)z(1 − z2) + (γpf − ⟨γϕ⟩)yz

)
.

Notice that for large times, T ≈ 1, ϵ ≈ 0, the right-hand side of (4.70a) and (4.70b) is almost
periodic meaning that ⟨γϕ⟩ − γϕ ≈ 0 which implies that w and g are bounded. So it follows
from (4.66) that y and z are also bounded. We can now drop the high order terms in ϵ in
(4.70) and study the truncated averaged equation, which leads to then system
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dȳ

dτ
= 3ϵ (γpf − ⟨γϕ⟩) ȳ (1 − ȳ) + 3ϵ (2 − γpf) ȳz̄2 (4.72a)

dz̄

dτ
= −3

2ϵ (2 − γpf) z̄
(
1 − z̄2

)
− 3

2ϵ (γpf − ⟨γϕ⟩) ȳz̄ (4.72b)
dϵ

dτ
= − 1

n
ϵ2(1 − ϵ)(1 + q). (4.72c)

Without loss of generality we can introduce a new time variable

1
ϵ

d

dτ
= d

dτ̄
, (4.73)

that will reduce the system. The new system reads

dȳ

dτ
= 3 (γpf − ⟨γϕ⟩) ȳ (1 − ȳ) + 3 (2 − γpf) ȳz̄2 (4.74a)

dz̄

dτ
= −3

2 (2 − γpf) z̄
(
1 − z̄2

)
− 3

2 (γpf − ⟨γϕ⟩) ȳz̄ (4.74b)
dϵ

dτ
= − 1

n
ϵ(1 − ϵ)(1 + q). (4.74c)

Fixed points and stability in the case γpf ̸= ⟨γϕ⟩

For γpf ̸= ⟨γϕ⟩ the dynamical system admits four fixed points. One in scalar field subset
(Ωϕ = 1), two equivalent fixed points in the pure anisotropic subset (Σσ = 1) and one isolated
fixed point in the pure matter subset (Ωpf = 1). The first fixed point is located on the
intersection of ϵ = 0 (T = 1) with the pure scalar field subset and is

F1 : ȳ = 1, z̄ = 0, ϵ = 0. (4.75)

The linearisation around this fixed point yields to the eigenvalues −3(γpf −⟨γϕ⟩), −3
2(2−⟨γϕ⟩),

and −3⟨γϕ⟩
2n were the associated eigenvectors are the canonical basis of R3.

The two equivalent fixed points located in the intersection of ϵ = 0 with the pure anisotropic
subset are

F±
2 : ȳ = 0, z̄ = ±1, ϵ = 0. (4.76)

The linearisation around this fixed points yields to the eigenvalues 3(2 − ⟨γϕ⟩), 3(2 − γpf) and
− 3
n whose eigenvectors are (∓2, 1, 0), (0, 1, 0) and (0, 0, 1).

The isolated fixed point is
F3 : ȳ = 0, z̄ = 0, ϵ = 0, (4.77)

the linearisation around this fixed points yields to the eigenvalues 3(γpf − ⟨γϕ⟩), −3
2(2 − γpf),

and −3γpf
2n whose eigenvectors are the canonical basis of R3.
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Regarding the eigenvalues of each fixed point we need to split the analysis depending on the
sign of γpf − ⟨γpf⟩.

• If γpf > ⟨γϕ⟩, F1 has three negative eigenvalues since ⟨γϕ⟩ ∈ (0, 2) so it is a hyperbolic
sink. For F±

2 since γpf ∈ (0, 2) we see that two eigenvalues are positive and the one
in the ϵ-direction is negative, so F±

2 is an hyperbolic saddle, being a source in the
{ϵ = 0}-subset. Lastly F3 as two negative eigenvalues and one positive eigenvalue being
a hyperbolic saddle. So in this case F1 is the future attractor, so the universe will
asymptotically approach the pure scalar field solution when τ̄ → +∞.

• If γpf < ⟨γϕ⟩, F1 has two negative eigenvalues an one positive eigenvalue so it is a
hyperbolic saddle. Regarding F±

2 we have two positive eigenvalues and one negative
eigenvalue, moreover in the {ϵ = 0} subset F±

2 is a hyperbolic source. Lastly, F3 has
three negative eigenvalues being a hyperbolic sink. In this case F3 is the future attractor,
so the universe will asymptotically approach the the flat FL solution when τ̄ → +∞.

Convergence of the solutions in the case γpf − ⟨γϕ⟩

Now we need to prove that the variables y and Ωϕ follows this evolution and the same need
to be done for z and Σσ.

We start by introducing two new variables

|η(τ)| := |y(τ) − ȳ(τ)|, |ζ(τ)| := |z(τ) − z̄(τ)| (4.78)

that we need to estimate. In order to do so we define the sequences {τn} and {ϵn} such that
ϵn = ϵ(τn), with n ∈ N and

τn+1 − τn = 1
ϵn
, τ0 = 0, ϵ0 > 0 (4.79)
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where lim τn = +∞ and lim ϵn = 0. So starting with the estimation of |η(τ)| we get

|η(τ)| =
∣∣∣ ∫ τ

τn

3ϵ(γpf − ⟨γϕ⟩)y(1 − y) + 3ϵ(2 − γpf)yz2 + ϵ2h1(y, z, w, g, s, ϵ)ds

−
∫ τ

τn

(3ϵ(γpf − ⟨γϕ⟩) ȳ(1 − ȳ) + 3ϵ(2 − γpf)ȳz̄2
∣∣∣

≤ 3ϵn
∫ τ

τn

|γpf − ⟨γϕ⟩|︸ ︷︷ ︸
|.|≤C1

|(y − ȳ)| |1 − (y + ȳ)|︸ ︷︷ ︸
|.|≤1

ds+ 3ϵn
∫ τ

τn

|2 − γpf |︸ ︷︷ ︸
C2

|yz2 − ȳz̄2|︸ ︷︷ ︸
|.|≤|y−ȳ|+|z2−z̄2|

ds

+ ϵ2n

∫ τ

τn

|h1(y, z, w, g, s, ϵ)|︸ ︷︷ ︸
|.|M1

ds+ O(ϵ3n)

≤ 3ϵn (C1 + C2)
∫ τ

τn

|η(s)|ds+ 3ϵn
∫ τ

τn

|z2 − z̄2|︸ ︷︷ ︸
|.|≤|z−z̄||z+z̄|≤2|z−z̄|

+ϵ2nM1(τ − τn) + O(ϵ3n)

≤ 3ϵn (C1 + C2)
∫ τ

τn

|η(s)|ds+ 6C2ϵn

∫ τ

τn

|ζ(s)|ds+ ϵ2nM1(τ − τn) + O(ϵ3n). (4.80)

For |ζ(τ)| = |z(τ) − z̄(τ)|, in this case we get

|ζ(τ)| =
∣∣∣ ∫ τ

τn

−3
2ϵ (2 − γpf) z(1 − z2) − 3

2ϵ (γpf − ⟨γϕ⟩) yz + ϵ2h2(y, z, w, g, s, ϵ)ds

−
∫ τ

τn

(
−3

2ϵ (2 − γpf) z̄(1 − z̄2) − 3
2ϵ (γpf − ⟨γϕ⟩) ȳz̄

) ∣∣∣
≤ 3

2ϵn
∫ τ

τn

|2 − γpf |︸ ︷︷ ︸
|.|≤C2

|z − z̄| |1 − zz̄ − z2 − z̄2|︸ ︷︷ ︸
|.|≤2

ds+ 3
2ϵn

∫ τ

τn

|γpf − ⟨γϕ⟩|︸ ︷︷ ︸
|.|≤C1

|yz − ȳz̄|︸ ︷︷ ︸
|.|≤|y−ȳ|+2|z−z̄|

ds

+ ϵ2n

∫ τ

τn

|h2(y, z, w, g, s, ϵ)|︸ ︷︷ ︸
|.|≤M2

ds+ O(ϵ3n)

≤ 3ϵn (C1 + C2)
∫ τ

τn

|ζ(s)|ds+ 3
2ϵnC1

∫ τ

τn

|η(s)|ds+ ϵ2nM2(τ − τn) + O(ϵ3n). (4.81)

where C1, C2, M1, and M2 are positive constants.

Let’s introduce a new function |ψ(τ)| = |η(τ)| + |ζ(τ)| so adding the two above equations to
each other we get

|ψ(τ)| = 3ϵn (C1 + C2)
∫ τ

τn

|η(s)|ds+ 6C2ϵn

∫ τ

τn

|ζ(s)|ds+ ϵ2nM1(τ − τn)

+ 3ϵn (C1 + C2)
∫ τ

τn

|ζ(s)|ds+ 3
2ϵnC1

∫ τ

τn

|η(s)|ds+ ϵ2nM2(τ − τn) + O(ϵ3n)

= 3ϵn(C1 + C2)
∫ τ

τn

(|η(s)| + |ζ(s)|) ds+ 6C2ϵn

∫ τ

τn

|ζ(s)|ds+ 3
2ϵnC1

∫ τ

τn

|η(s)|ds

+ ϵ2n(M1 +M2)(τ − τn) + O(ϵ3n)

Using the fact that

6C2

∫ τ

τn

|ζ(s)|ds+ 3
2C1

∫ τ

τn

|η(s)|ds ≤ 2 max{6C2,
3
2C1}

(∫ τ

τn

|ζ(s)|ds+
∫ τ

τn

|η(s)|ds
)
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we get

|η(τ)| ≤ ϵnC∗

∫ τ

τn

|ψ(s)|ds+ ϵ2nM∗(τ − τn) (4.82)

≤ ϵn
M∗
C∗

(
eC∗ϵn(τ−τn) − 1

)
+ O(ϵ2n) (4.83)

where C∗ = 3 (C1 + C2) + 2 max{6C2,
3
2C1} and M∗ = M1 +M2 are positive constants .

So for τ − τn ∈ [0, 1/ϵn] the above inequality becomes

|ψ(τ)| ≤ ϵnK (4.84)

where K > 0. Since |ψ(τ)| = |η(τ)| + |ζ(τ)| → 0 as ϵn → 0 it follows that |η(τ)| → 0 and
|ζ(τ)| → 0 as ϵn → 0. It follows than from (4.66a) , the triangle inequality, and the fact that
ϵ → 0 as τ → +∞, it follows from that Ωϕ has the same limit as ȳ and, therefore converges for
0 or 1 depending on the sign of γpf −⟨γϕ⟩. Regarding Σσ using (4.66b), the triangle inequality
and ϵ → 0 as τ → +∞, it follow that Σσ goes to zero since the system will converge to the
point (Ωϕ,Σσ, ϵ) = (1, 0, 0) if γpf > ⟨γϕ⟩ and will converge to the point (Ωϕ,Σσ, ϵ) = (0, 0, 0)
if γpf < ⟨γϕ⟩. This completes the proof for the cases (i) and (ii) of the theorem.

Fixed points and stability in the case γpf = ⟨γϕ⟩

Now we analyse the case γpf = ⟨γϕ⟩. In this case our averaged system (4.74) reads

dȳ

dτ
= 3(2 − γpf)ȳz̄2 (4.85a)

dz̄

dτ
= −3

2(2 − γpf)z̄(1 − z̄2) (4.85b)
dϵ

dτ
= − 1

n
ϵ(1 − ϵ)(1 + q). (4.85c)

The system admits a line of fixed points in the intersection of the scalar field subset with
ϵ = 1 that is given by

Ly : ȳ = y0, z̄ = 0, ϵ = 0 (4.86)

the linearisation around this line of fixed points yields to the eigenvalues 0, − 3
n+1 , and − 3

n+1

whose eigenvectors are the canonical basis of R3. In this case we have two negative eigenvalues
(since γpf ∈ (0, 2)) and a zero eigenvalue corresponding to a center manifold. To solve this we
will introduce adapted variables

ỹ = ȳ − ȳ0, z̃ = z̄, ϵ̃ = ϵ (4.87)
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which leads to the adapted system

dỹ

dτ
= F (ỹ, z̄, ϵ), dz̄

dτ
= −3

2(2 − γpf)z̄ +G(ỹ, z̄, ϵ), dϵ

dτ
= −3γpf

2n ϵ+N(ỹ, z̄, ϵ) (4.88)

where F , G and N are high order functions. With this new adapted variables we relocated
the fixed points on the line Ly to the origin. The 1-dimensional center manifold can be locally
represented by the graph h : Ec → Es, i.e., (z̄, ϵ) = (h1(ỹ), h2(ỹ)) satisfying the fixed point,
h(0) = 0 and the tangency, dh(0)

dỹ = 0 conditions which solves the following equations

F (ỹ, h1(ỹ), h2(ỹ))h′
1(ỹ) = −3

2(2 − γpf)h1(ỹ) +G(ỹ, h1(ỹ), h2(ỹ)) (4.89a)

F (ỹ, h2(ỹ), h2(ỹ))h′
1(ỹ) = −3γpf

2n h2(ỹ) +N(ỹ, h1(ỹ), h2(ỹ)) (4.89b)

In general is not possible to find the exact solution for hi and Taylor expansion are used,
however in this particular case the can find an exact solution for h1 and h2 so we get

h1(ỹ) = ±
√

1 + e2Cz (ỹ + y0), h2(ỹ) = 1

1 +
(

ỹ+y0
1+Cϵe2Cz(ỹ+y0)

) γpf
2n(2−γpf )

(4.90)

Therefore, it follows that the center manifold reads

dỹ

dτ
= 3y(1 + e2Cz (y + y0))(2 − γpf) (4.91)

which shows explicitly that each point on the line Ly are center saddles.

The system also admits two more fixed points in the intersection of the subset {z = 1} and
{ϵ = 0} given by

F±
2 : y = 0, z = ±1, ϵ = 0. (4.92)

The linearisation around this fixed points yields to the eigenvalues 3
n+1 , 3

n+1 , and − 3
n were

the associated eigenvectors are the canonical basis of R3. In this case we have two positive
eigenvalues and a negative eigenvalue, so we are in a presence of a saddle. Moreover in the
{ϵ = 0} subset we see that F±

2 are sources.

Therefore the line of fixed is normally hyperbolic and each point on the line is the ω-limit
point of a unique interior orbit. So there exists an orbit of the dynamical system (4.85) with
ϵ > 0 initially that converges to (y0, 0, 0) for each y0 as τ → +∞.
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Convergence of solutions in the case γpf = ⟨γϕ⟩

Just as in the proof of the cases (i) and (ii), we can again estimate |η(τ)| and |ζ(τ)| however the
estimation is very similar to the ones introduced in (4.80) and (4.81) since the only difference
is that γpf − ⟨γϕ⟩ = 0. As ϵn → 0 then |η(τ)| → 0 and so y and ȳ have the same limit and the
same can be said regarding z and z̄. Finally, from equation (4.66a), the triangle inequality,
and the fact that ϵ → 0 as τ → +∞, it follows from that Ωϕ has the same limit as ȳ and
therefore will converge to a point between (0, 1). In the case of Σσ using (4.66b), the triangle
inequality and ϵ → 0 as τ → +∞, it follow that Σσ goes to zero. This concludes the proof of
the case (iii).

The global profile for our solutions in the (X,Σϕ, T )-plane can be seen in Fig. 4.5. While the
qualitative solutions for the (Σ+,Σ−, T )-plane can be found in Fig.4.6

(a) Global picture for
γpf = 1.

(b) Global picture for
γpf = 4

3 .
(c) Global picture for

γpf = 3
2 .

Figure 4.5: Qualitative solutions for the scalar field potential V (ϕ) = 1
4 (λϕ)4 in the

(X,Σϕ, T )-plane for various matter of state.
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Figure 4.6: Qualitative solutions for the scalar field potential V (ϕ) = 1
4 (λϕ)4 in the

(Σ+,Σ−, T )-plane for γpf = 4
3 .

4.4 Concluding Remarks

We used a dynamical system’s approach to study spatially homogeneous but anisotropic cos-
mologies of Bianchi type I with a scalar field co-evolving with a perfect fluid. We have built a
new regular 5-dimensional dynamical system on a compact phase-space by finding appropriate
variables. We have analysed the geometry of the invariant boundaries including a thorough
characterization of the past and future asymptotic boundaries regarding the existence and
stability of fixed points and limit cycles.

In comparison to the FLRW case the Bianchi I model, the past asymptotic dynamics is
dominated by the Kasner vacuum solution, due to the presence of shear. Crucial to the
proof of this result are some monotonic functions which exclude the existence of periodic and
recurrent orbits and ensure the existence of a circle of fixed points, the Kasner cycle. This
allows the existence of an anisotropies which can will play a role of the physical processes of
the early universe such as nucleosynthesis and structure formation [117, 118].

We also found the existence of a quasi-de Sitter solution that is commonly known as the
inflationary attractor solution. This solution corresponds to a 1-dimensional center manifold
on the 4-dimensional past boundary. Central manifold analysis showed that those fixed point
solutions are center saddles.Lastly, we have derived precise asymptotic estimates for the dy-
namics towards the past and our main results for this part are in Lemma 4.2 and Theorem
4.7.

Regarding the late time dynamics we conclude that the shear terms are diluted and the
dynamics is similar to the late flat FLRW case. However, the proofs in this case are more
elaborate since we needed to use averaging methods for a 3-dimensional non-linearly coupled
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system. So we found that the quantities that will dominate the universe at late times will
depend on the values of γpf .

In the case where γpf is large enough, the future behaviour is dominated by the scalar field
and described by a limit cycle where the deceleration parameter oscillates toward the future.
A consequence of this is that this type of models exhibit a future asymptotic manifest self-
similarity breaking. For γpf small enough the future state will be dominated by the perfect
fluid solution which is self-similar. Finally, for the critical value γpf = ⟨γϕ⟩ all solution
oscillate towards the future so there is also a self-similarity breaking as neither the scalar
field or perfect fluid will dominate the dynamics. In the case where we only have the perfect
fluid in an anisotropic universe we recover the well-known results that towards the future the
universe will simply isotropize.



Appendix A

Theory of Dynamical Systems

The results presented in this appendix are a collection of useful results taken well-known
textbooks in dynamical systems including Hirsch & Smale (1974) [119]; Wiggins (1990) [120]
;Guckenheimer & Holmes (1990) [111]; Arrowsmith & Place (1990) [121]; Verhulst (1996)
[122]; Perko (2001) [102]. For an approach more related to the cosmological point of view see
Wainwright & Ellis (1997) [8], A. A Coley (2003) [66] and S. Bahamonde et al (2018) [67].

A.1 Principles of Dynamical Systems

A dynamical system describes the evolution of a given system in a geometrical space called
phase or state space. Here we consider continuous dynamical systems.

Introduce x = (x1, x2, ...., xn) ∈ X as an element of the state space X ⊆ Rn. A system of
ordinary differential equations (ODEs) can be written as

ẋ = f(x), (A.1)

where f : X → X, f(x) = (f1(x), . . . , fn(x)) is viewed as a vector field and the dot represents
the differentiation with respect to some parameter t ∈ R that we are going to refer to as
time although in general, this t does not need to refer to any physical quantity. In this work,
we only consider the dynamical systems that are autonomous , i.e. where f does not depend
explicitly on t as opposed to nonautonomous systems where f can depend on t, i.e. ẋ = f(x, t).

The solution of (A.1) is normally referred to as orbit or trajectory of the phase space. Since
in cosmology most of the dynamical systems are finite and continuous, we restrict our work
to those systems. However, it is possible in more complex cases to have a function f that
presents some singularities. Also, it is important to note that since the function f is smooth,
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it is possible to prove the local existence and uniqueness of a solution for given initial conditions
(see [119]).

Definition A.1. (Flow)

Let ϕ : X → X be the flow of (A.1) so that the orbit is given by

ϕt(x0) = xs(t,x0) (A.2)

where xs(t, x0) is the solution of (A.1) for a given initial condition x0 at some time t = t0. At
any time t, the flow ϕt gives the state of the system x = ϕt(x0) for all initial states x0.

The flow obeys the following properties

• Identity
ϕ0(x) = x

• Differentiability
d

dt
ϕt(x)|t=0 = f(x)

• Group
ϕt+s(x) = ϕt(ϕs(x))

The group property is related to the fact that the orbits of the flow are solutions of the ODE
system.

The flow of a dynamical system is important regarding to the following concept.

Definition A.2. (Invariant set)

A subset S ⊂ X is an invariant set of the flow ϕt if for all x ∈ S and all t ∈ R then ϕt(x) ∈ S.
Moreover, if ϕt ∈ S only for t < 0 (t > 0) then S is called a negatively (positively) invariant
set.

Also related to flow is the concept of a periodic orbit.

The main goal of the theory of dynamical systems is not to solve analytically the ODEs,
instead, one tries to understand and characterize the geometry inherent to the phase space
(its parameters dependence and how the orbits evolve with the time under the variation of
such parameters).

A.2 Fixed Points

One of the most important concepts in dynamical system theory is the concept of a fixed
point.
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Definition A.3. (Fixed, critical or equilibrium point)

Equation (A.1) is said to have a fixed (critical / equilibrium) point at x = x0 if and only if
f(x0) = 0.

Definition A.4. (Heteroclinic and Homoclinic orbit)

An orbit connecting two different fixed points is said to be heteroclinic while an orbit con-
necting a fixed point to itself is said to be homoclinic.

An important note is the fact that the fixed points are not part of a heteroclinic or homoclinic
orbit; instead, they are approached by the orbit as t → ±∞.

So, finding the fixed points of a system is the first step when analyzing a dynamical system.
The next step is to linearise the system around the fixed points, this will allow us to understand
the stability properties of each fixed point. This leads to the following definitions.

Definition A.5. (Stable fixed point)

Let x0 be a fixed point of the system (A.1). This fixed point is called stable if and only if for
every ϵ > 0 there exists a δ such that if ϕ(t) is a solution of (A.1) satisfying ||ϕ(t0) − x0|| < δ,
then the solution ϕ(t) exists for every t ≥ t0 and the solution remains in a distance of ϵ, i.e
||ϕ(t) − x0|| < ϵ for all t ≥ t0.

Definition A.6. (Asymptotically stable fixed points)

A fixed point is asymptotically stable if it is stable and if exists a δ such that if ϕ(t) is a
solution of (A.1) satisfying ||ϕ(t0) − x0|| < δ, then limt→∞ ϕ(t) = x0.

As one can see from definition A.6 all the trajectories near an asymptotically stable fixed
point eventually will reach the fixed point, while taking into consideration definition A.5 the
solution can, for example, circle around the stable fixed point. If we take these concepts to the
theory of dynamical systems in cosmology, we see that almost every stable point in cosmology
is also asymptotically stable [67]. A fixed point is called unstable if it is not stable.

After introducing the concepts of fixed points and the stability of fixed points, we can now
introduce how we study this stability. The most common method to study such stability
is to use linear stability techniques that often are sufficient to understand the flow in the
neighborhood of such points; however, we also introduce Lyapunov stability alongside the
center manifold theory.
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A.3 Linear Stability Theory

So let x0 be a fixed point of the system (A.1). Assuming the regularity of f we can linearise
the system around this fixed point. So considering the Taylor expansion,

f = f(x0) + Df(x0)(x − x0) + O(||x − x0||2), (A.3)

where Df(x0) is the Jacobian matrix of the function f at x0.

The information about the stability of the fixed points x0 is related to the eigenvalues of the
Jacobian matrix evaluated in such fixed points. This matrix is a n× n matrix where n is the
dimension of the dynamical system. The most important concept related to linear stability is
the concept of the hyperbolic fixed point.

Definition A.7. (Hyperbolic fixed point)

Let x0 be a fixed point of a give ODE system. x0 is said to be hyperbolic if none of the
eigenvalues of the Jacobian matrix has a zero real part. Otherwise, the point is called non-
hyperbolic.

This leads to the following theorem:

Theorem A.8. (Hartman-Grobman theorem)

Let S be a open subset of Rn containing the origin and let f ∈ C1(S) such that f(x0) = 0
and the matrix A = Dx(x0) has no eigenvalues with zero real part. Then there exists a
homeomorphism H of an open set U containing the origin onto a open set V containing the
origin such that for each x0 ∈ U , there exists an open interval I0 ⊂ R containing zero such
that for all x0 ∈ U and t ∈ I0

H(ϕ(t,x)) = etAH(x)

for all x ∈ U and |t| ≤ 1.

Proof. See [102].

The Hartman-Grobman Theorem basically tells us that the stability of a fixed point concerning
the linearised ODE corresponds to the stability of the full non-linear ODE. This theorem fails
when the fixed point is non-hyperbolic. In this case further studies need to be made to
understand what happens in the neighborhood of these fixed points.

Definition A.9. (Stable, unstable and center subspaces)
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Let λi be the eigenvalues with corresponding eigenvectors ei (i = 1, 2, . . . , n) of the Jacobian
matrix in some fixed point x0. Which can generate the following subspaces of X:

Stable subspace Es = span(e1, . . . , es) (A.4a)

Unstable subspace Eu = span(es+1, . . . , es+u) (A.4b)

Center subspace Ec = span(es+u+1, . . . , es+u+c) (A.4c)

where {e1, . . . , es} are all the eigenvectors for the eigenvalues with negative real part, {es+1, . . . , es+u}
are all the eigenvectors for the eigenvalues with positive real part and {es+u1, . . . , es+u+c} are
all the eigenvectors for the eigenvalues with null real part . This leads to the following result
(see Perko, 2001, p.55)

Es ⊕ Eu ⊕ Ec = X ⊆ Rn, i.e s+ u+ c ≤ n (A.5)

It is now possible to classify a specific fixed point x0 to better understand the orbits in its
neighborhood,

Definition A.10. (Sink, source, saddle)

Let x0 be the fixed point of a dynamical system. Considering Df(x0), the fixed point is

• a sink if all eigenvalues have negative real part;

• a source if all eigenvalues have positive real part;

• a saddle point if the eigenvalues have positive and negative real part.

The stable point is regarded as an attractor and the unstable point is often called repeller.

Although the Hartman–Grobman theorem tells us that it is possible to study the stability of
the system (A.1) using only a linear system (if the fixed points are hyperbolic) it is important
to notice that the subspaces Es, Eu, and Ec are only invariant sets of such system. For the
non-linear ODE (A.1) we need to introduce the following invariant sets.

Definition A.11. (Stable, unstable and center manifold )

Let x0 be a fixed point of the ODE (A.1). The stable (unstable) manifold W s of this fixed point
is the differential manifold that has tangent space in x0 that coincides with asymptotically
with Es (Eu) as t → +∞ (t → −∞). The center manifold W c of this fixed point is the
differential manifold that has tangent space in x0 that coincides asymptotically with Ec.
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A.3.1 Example 1: Generic 2D Dynamical System

Let us use the example from [119] (p. 62) with a 2D dynamical system that is given by

ẋ = f(x, y), ẏ = g(x, y), (A.6)

where we assume that f(x, y) and g(x, y) are smooth functions in x and y. Let us assume that
the dynamical system presents a fixed point (x0, y0) such that f(x0, y0) = 0 and g(x0, y0) = 0.
The jacobian matrix of this system reads

J =

∂f(x,y)
∂x

∣∣∣
x0,y0

∂f(x,y)
∂y

∣∣∣
x0,y0

∂g(x,y)
∂x

∣∣∣
x0,y0

∂g(x,y)
∂y

∣∣∣
x0,y0

 =

fx fy

gx gy

 (A.7)

The system presents two eigenvalues

λ1,2 = 1
2(fx + gy) ± 1

2

√
(fx + gy)2 − 4(fxgy − fygx). (A.8)

So using the fact that T = Tr J = fx + gy and D = det J = fxgy − fygx, the eigenvalues can
be written as

λ1,2 = 1
2
(
T ±

√
T 2 − 4D

)
. (A.9)

We can now display these results in a trace-determinant plane. The geometry of each phase
portrait will depend on the location in the TD-plane. The possible outcomes of the eigenvalue
analysis are the following:

1. If T 2 − 4D < 0 the eigenvalues have non-zero imaginary part and are a

(a) Spiral sink if T < 0

(b) Spiral source if T > 0

(c) Center if T = 0

2. If T 2 − 4D > 0 (for T ̸= 0 and D ̸= 0) the eigenvalues are real and distinct and are a

(a) Sink if T < 0 and D > 0

(b) Source if T > 0 and D > 0

(c) Saddle if T > 0 and D < 0

3. If T 2 − 4D > 0 and D = 0 we have

(a) a zero and non-zero eigenvalues if T ̸= 0
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(b) two zero eigenvalues if T = 0

4. If T 2 − 4D = 0 the eigenvalues are real and equal to each other (T ̸= 0) and are a

(a) Sink if T < 0

(b) Saddle if T > 0

5. If T 2 − 4D = 0 the eigenvalue are both zero if T = 0.

More examples can be found in [123].

A.4 Lyapunov Stability Theory

As mentioned in Sec. A.3 when a fixed point is hyperbolic the linear stability theory alongside
the Hartman-Grobman theory is enough to obtain the dynamics in the neighborhood of such
point. However, many dynamical systems, in cosmology, for example, present non-hyperbolic
fixed points. So for a complete description of the local and global stability of such points,
we need more powerful tools. One of these tools is Lyapunov’s method which can be used
for both hyperbolic and non-hyperbolic points. This method does not rely on linear stability,
however we need to find the so-called Lyapunov function without having a method to do so.

So let’s introduce the following theorem (see [102], p. 132)

Theorem A.12. (Lyapunov Stability)

Let x0 be a fixed point of the dynamical system (A.1). Let us assume that there exists a C1

function V : Rn → R in the neighborhood U of x0 such that V (x0) < V (x) for all x ∈ U \{x0}.
Then

1. V̇ ≤ 0 ∀x ∈ U , x0 is stable;

2. V̇ < 0 ∀x ∈ U \ {x0}, x0 is asymptotically stable;

3. V̇ > 0 ∀x ∈ U \ {x0}, x0 is unstable;

which leads to the following definition:

Definition A.13. (Lyapunov function)

Let V the function that satisfies the conditions of the theorem A.12. If

1. V̇ (x) = dV (x)
dt = ∇V · f(x) ≤ 0 then V is a Lyapunov function;

2. V̇ (x) = dV (x)
dt = ∇V · f(x) < 0 then V is a strict Lyapunov function.
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Some applications of the Lyapunov function in cosmology can be found in [124, 125] where
the authors used the Lyapunov function in form of a first integral. Also notice that, in physics
a viable Lyapunov function candidate is the total energy stored in the system.

Some useful examples using this technique can be found in [123] (p.127).

Although Lyapunov stability is a fair method for studying the stability of an equilibrium
solution it is possible to be more general. The LaSalle invariance principle gives us conditions
to describe the behavior of all solutions as t → ∞. So consider an autonomous ODE system
like (A.1) and let ϕt(.) denote the flow generated by (A.1) and let M ⊂ Rn be a positive
invariant set that is compact. Suppose that we have a scalar valued function

V : Rn → R, V̇ (x) ≤ 0 in M (A.10)

Let E = {x ∈ M|V̇ (x) = 0} and M ={the union of all trajectories that start in E and
remain in E for all t ≥ 0}, then the LaSalle’s invariance principle states that for all x ∈ M,
ϕt(x) → M as t → ∞.

A.5 Center Manifold Theory

As already mentioned, linear stability theory and the Hartman-Grobman theorems fails when
one of the eigenvalues has a null real part. We saw in Sec A.4 that it is possible to study
non-hyperbolic fixed points using the Lyapunov function, however, in a variety of cases such
function is not possible to find or even guess. So in this particular situation we can use center
manifold theory that reduces the dimension of a dynamical system. So let us consider the
ODE (A.1) where x0 is a fixed point of the system. To better study the center manifold let
us move the fixed point to the origin. To do this we use the transformation

x̄ = P−1(x − x0) (A.11)

where P is the matrix that has the eigenvectors of the jacobian matrix as columns. This
transformation allows us to write the dynamical system as

˙̄x = Ax̄ + f(x̄, ȳ) (A.12a)
˙̄y = Bȳ + g(x̄, ȳ) (A.12b)
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where (x̄, ȳ) ∈ Rc × Rs where c and s are the dimension of the center (Ec) and the stable
(Es) manifold. The functions f and g satisfy

f(0, 0) = 0, ∇f(0, 0) = 0 (A.13a)

g(0, 0) = 0, ∇g(0, 0) = 0 (A.13b)

that are the fixed point and tangency conditions. In (A.12) A is a c × c matrix where the
eigenvalues have vanishing real part, B is a s× s matrix with all eigenvalues having negative
real part and f and g are at least C1 functions.

Definition A.14. (Center manifold) A geometrical space is a center manifold of (A.12) if it
can be locally represented as

W c(0) = {(x̄, ȳ) ∈ Rc × Rs
∣∣ȳ = h(x̄), |x̄| < δ, h(0) = 0,∇h(0) = 0} (A.14)

for δ sufficiently small and for some h that is a function of Rs.

The center manifold theory, is based on three theorems (whose the proofs can be found in
[5]):

Theorem A.15. (Existence)

If there exists a center manifold for (A.12), then the dynamics of the system (A.12) restricted
to the center manifold is given by

u̇ = Au + f(u, h(u)) (A.15)

for a sufficiently small u ∈ Rc.

Theorem A.16. (Stability)

Let the zero solution be a stable (asymptotic stable or unstable) solution of (A.15). Then
the zero solution of (A.12) is also stable (asymptotic stable or unstable) . Furthermore, if
(x̄(t), ȳ(t)) is also a solution of (A.12) with a (x̄(0), ȳ(0)) sufficient small, then there exists a
solution u(t) of (A.15) such that

x̄(t) = u(t) + O
(
e−γt

)
(A.16a)

ȳ(t) = h(u(t)) + O
(
e−γt

)
(A.16b)

as t → ∞, where γ > 0 is a constant.
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From the previous two theorems we see that if we are able to find the function h(x), then the
stability restricted to the center manifold is given by (A.15). Moreover when t → +∞ the
orbits passing close to the origin will approximate the orbits in the center manifold, W c. So
we are going now to provide the tools to find h(x̄). Accordingly to definition A.14 we have
ȳ = h(x̄), applying the time derivative alongside the chain rule we get

˙̄y = ∇h(x̄) · ˙̄x (A.17)

From theorem A.15 we know that the stability of W c(0) is given by (A.12) so taking this into
consideration we get

Bh(x̄) + g(x̄, h(x̄)) = ∇h(x̄) · [Ax̄ + f(x̄, h(x̄))] . (A.18)

where we used the fact that ȳ = h(x̄)

Re-arranging the previous equation we get

N (h(x̄)) := Dh(x̄) [Ax̄ + f(x̄, h(x̄))] −Bh(x̄) − g(x̄, h(x̄)) = 0, (A.19)

which is a quasilinear partial differential equation satisfied by h(x̄) to characterize the center
manifold.

Generally, it is not possible to solve (A.19) and find h(x̄) explicitly, however, this next theorem
tells us that we do not need to know the entire function and provides us with a method to
find the approximated solution with a given degree of accuracy.

Theorem A.17. (Approximated solution)

Let ψ : Rc → Rs be a C1 map that obeys the fixed point and tangency conditions (ψ(0) =
0,∇ψ(0) = 0) such that N (ψ(x̄)) = O (||x̄||p) as x̄ → 0 for some p > 1. Then

|h(x̄) − ψ(x̄)| = O (||x̄||p) as x̄ → 0 (A.20)

So the collection of these three theorems (Carr(1981)) tells us that the approximated solution
of the center manifold expansion will return the same qualitative information as the exact
solution of (A.18) with a great degree of accuracy. Moreover, the approximated solution for
the center manifold can be often found assuming a Taylor expansion in h and finding the
coefficients that satisfy (A.18).

We refer the reader to [102] (p.156 and 158) for some useful examples when dealing with the
center manifold in one and two dimensions.
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A.6 Limit sets and Attractors

In the previous section, we focused on the study of the local stability of fixed points. However,
in some cases, we are also interested in studying how the orbits will evolve when t → ±∞. To
achieve this we require advanced methods of dynamical systems theory, such as bifurcation
theory. Here we will only introduce concepts that are important in this thesis. For a more
advanced study see [102, 119, 120]

Definition A.18. (Limit point)

Let x be a point on the phase space X ⊆ Rn and ϕt the flow of a given dynamical system. x
is an α-limit (ω-limit) point of xi ∈ Rn if there exist a sequence tN → −∞(+∞) such that

lim
N→−∞(+∞)

ψtN (xi) = x. (A.21)

Definition A.19. (Limit sets)

The set of all α-limit (ω-limit) points of xi is called the α-limit (ω-limit) set of xi and is
denoted by α(xi)(ω(xi))

Theorem A.20. The α(xi)-limit (ω(xi))-limit sets are closed subsets of X ⊆ Rn and if
the negative (positive) orbits passing through xi are bounded, then α(xi)(ω(xi)) is bounded,
non-empty and connected.

Proof. See [102] (p. 175).

There are many examples of an α-limit (ω-limit) set such as: periodic orbits; homoclinic
orbits; heteroclinic cycle (a sequence of critical points that are joined by heteroclinic orbits).

One goal of the dynamical system theory is to obtain the asymptotic behaviour of a given
system and to do so we need to consider the α-limit and ω-limit sets for all points in the state
space. This leads to the introduction of past and future attractors.

Definition A.21. (Past and Future Attractors)

The future (past attractor) {A±} is the smallest closed invariant set such that ω(xi)(α(xi)) ⊂
A± for all xi ∈ X ⊆ Rn a part from a set of measure zero. If the subset X is compact, then
each point x ∈ X has a non-empty α and ω-limit sets and then A± ̸= ∅.

A.7 Special Theorems in Dynamical System Theory

In this section we will turn our attention to advanced methods and special theorems to analyse
dynamical systems in R2. It’s important to notice that several results that arise from the study
of a 2-dimensional dynamical system cannot be applied in higher dimensions.
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A.7.1 Global Behaviour Of The State Space: Special Theorems

We will introduce some important results that help to determine the absence of periodic orbits
and fixed points.

Definition A.22. Monotone functions

Let ϕt be the flow on X ⊆ Rn, let S be an invariant set of ϕt, and let Z : S → R be a
continuous function. Z is a monotone decreasing (increasing) function for the flow on S if for
all x ∈ S, Z(ϕt(x)) is a monotone decreasing (increasing) function of t.

Consider the ODE (A.1) and the corresponding flow ϕt and suppose that Z is C1. If

Z ′ := ∇Z.f < 0, on S (A.22)

then Z is a monotone decreasing on S.

The following proposition shows that the existence of a monotone function on an invariant
set S simplifies the orbits in S significantly.

Proposition A.23. Monotonicity principle

Let S ⊂ R be an invariant set of a flow ϕt. If there exists a monotone function Z : S → R

on S, then S contains no equilibrium points, periodic orbits, recurrent orbits or homoclinic
orbits.

Proof. See [114] (p. 1418).

Another important result is the Bendixson-Dulac theorem (see [102], p.246) which is useful to
exclude the presence of periodic orbits in the state-space.

Theorem A.24. (Bendixson-Dulac)

Let ẋ = f(x) be a ODE on X ⊆ R2 where x = (x, y) and f = (f1, f2). Let us assume that
exists a scalar function Φ in a simply connected domain such that

∇ · (Φf) = ∂

∂x
(Φf1) + ∂

∂y
(Φf2) > 0 or < 0. (A.23)

Then the phase space does not contain periodic-orbits.

Note that this criterion is only valid to infer the non-existence of periodic orbits.

The next result characterizes all the possible asymptotic behaviors in the 2-dimensional phase
space and is called Poincaré-Bendixson theorem (see Wiggins, 1990, p. 46).
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Theorem A.25. (Poincaré-Bendixson)

Let S be a negative (positive) invariant set of ẋ = f(x) on X ⊆ R2 that contains a finite
number of fixed points. Let xi ∈ S and consider the α-limit (ω-limit) set α(xi)(ω(xi)). Then
if α(xi)(ω(xi)) ̸= ∅, one of the following possibilities must hold:

i. α(xi)(ω(xi)) is a critical point;

ii. α(xi)(ω(xi)) is a periodic orbit;

iii. α(xi)(ω(xi)) is a finite heteroclinic sequence;

When S is compact then α(xi)(ω(xi)) ̸= ∅.

Corollary A.26. Let S be a bounded close set containing no fixed points and suppose that S
is positively invariant. Then there exists a limit cycle contained in S.

For some useful examples we refer the reader to [123] (p. 96-98).

Another important theorem that will be useful later on is the index theorem. Before we present
this theorem we need to introduce the definition of index of a curve.

Definition A.27. (Index of a curve)

For a vector field on the plane given by

ẋ = f(x, y), ẏ = g(x, y)

the index, k, of the curve C is given by

k = 1
2π

∮
C
dϕ = 1

2π

∮
C
d

(
tan−1 g(x, y)

f(x, y)

)
= 1

2

∮
C

fdg − gdf

f2 + g2 (A.24)

Theorem A.28. (Index Theorem)

• The index of a sink, a source, or a center is +1.

• The index of a hyperbolic saddle is −1.

• The index of a closed orbit is +1.

• The index of a closed curve not containing any fixed point is 0.

• The index of a closed curve is equal to the sum of the indices of the fixed points within
it.

Corollary A.29. Inside any closed orbit γ there must be at least one fixed point. If there is
only one fixed point, then it must be a sink, source or center. If all the fixed points within γ

are hyperbolic, then there must be an odd number, 2n + 1, of which n are saddles and n + 1
are either sinks, sources, or centers.
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A.7.2 Liénard Systems

In the previous section we revised the Poincaré-Bendixson theorem that allows us to infer the
existence of limit cycles for a given planar system and although this is a powerful tool when
analysing a dynamical system this does not tell us how many limit cycles are present in a
dynamical system. However there are classic result about the uniqueness of limit cycles for
the giving equation

ẍ+ f(x)ẋ+ g(x) = 0 (A.25)

that can be converted into a non-standard autonomous system

ẋ = y − F (x) ẏ = −g(x) (A.26)

where F (x) =
∫ x

0 f(u)du. This result was introduced by Liénard in 1928 and the equation
above is referred as Liénard equation. This second-order differential equation includes a special
case, the famous Van der Pol equation

ẍ+ µ(x2 − 1)ẋ+ x = 0. (A.27)

One of the most important results of for the Liénard system is the following theorem

Theorem A.30. (Liénard’s Theorem)

Suppose that:

• F and g are continuous differentiable

• F and g are odd functions of x

• xg(x) > 0 for x ̸= 0.

• F (0) = 0 and F ′(0) < 0

• F (x) > 0 and increasing for x > a and has a single positive zero at x = a.

Then it follows that the Liénard system (A.26) has exactly one limit cycle and it is stable.

Proof. See [102] p. 254.

A.7.3 Poincaré Compactification

The Poincaré compactification allows us to map the phase plane onto the so-called Poincaré
sphere. This allows to study the flow at the infinity by mapping points (at the infinity) onto
the sphere equator.
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Definition A.31. (Poincaré sphere)

Let the unit sphere

S3 = {(X,Y, Z, U) ∈ R3|X2 + Y 2 + Z2 + U2 = 1}, (A.28)

be the Poincaré sphere such that its north (or south) pole is tangent to the (x, y)-plane in the
origin. In order to map points of the (x, y)-plane on the upper hemisphere (note that is also
possible to map in the lower hemisphere) we need to make the variable transformation

X = xU, Y = yU, Z = zU, U = 1√
1 + x2 + y2 + z2 (A.29)

We will now introduce two theorems that have great importance to determine the flow at
infinity. Specific details and proofs of such theorems will not be given instead we refer the
readers to [102].

Consider the flow defined by a dynamical system in R3

ẋ = P (x, y, z) (A.30a)

ẏ = Q(x, y, z) (A.30b)

ż = R(x, y, z) (A.30c)

where P , Q, and R are polynomial functions of x, y, and z. Let m denote the maximum
degree of the terms in P , Q, and R and let Pj , Qj , and Rj be the jth degree polynomials in
x, y, and z.

Theorem A.32. (Fixed Points at infinity)

The fixed points at infinity for the mth degree polynomial of the system (A.30) arise at
(X,Y, Z, 0) of the equator of the Poincaré sphere where X2 + Y 2 + Z2 = 1 and

XQm(X,Y, Z) − Y Pm(X,Y, Z) = 0 (A.31a)

XRm(X,Y, Z) − ZPm(X,Y, Z) = 0 (A.31b)

Y Rm(X,Y, Z) − ZQm(X,Y, Z) = 0 (A.31c)

The stability of the fixed points at infinity can be described by projecting the flow onto three
planes (y, z, u), (x, z, u) and (x, y, u), tangent to the equator points X = 1, Y = 1 and Z = 1
respectively. This can be seen as follows:

Theorem A.33. (Stability at infinity)

The flow defined on (A.30) in a neighbourhood
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(a) of (±1, 0, 0, 0) ∈ S3 is topologically equivalent to the flow defined by the system

±ẏ = yumP

(1
u
,
y

u
,
z

u

)
− umQ

(1
u
,
y

u
,
z

u

)
(A.32a)

±ż = zumP

(1
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,
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,
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)
− umR

(1
u
,
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u
,
z

u

)
(A.32b)

±u̇ = um+1P

(1
u
,
y

u
,
z

u

)
(A.32c)

(b) of (0,±1, 0, 0) ∈ S3 is topologically equivalent to the flow defined by the system

±ẋ = xumQ
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u
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1
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u
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(A.33a)

±ż = zumQ
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(A.33b)

±u̇ = um+1Q
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1
u
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z

u

)
(A.33c)

and

(c) of (0, 0,±1, 0) ∈ S3 is topologically equivalent to the flow defined by the system

±ẋ = xumR
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±ẏ = yumR
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±u̇ = um+1R

(
x

u
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y

u
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1
u

)
(A.34c)

The direction of the flow is not determined by Theorem A.33, instead it is determined by the
original system (A.30).

A.8 Averaging

The averaging method is a powerful tool when analyzing nonlinear dynamical systems that
allow us to sort out fast oscillations and observe the qualitative behaviour of the resulting
dynamics. The use of this method can be traced back to 1788 when Lagrange try to formulate
the gravitational three-body problem as a perturbation of a two-body problem. However
only in 1920 Fatou was able to prove some asymptotic results which lead to more important
results in the 1930′s making the averaging method an important tool when analyzing nonlinear
oscillations.

The averaging method is applicable to system of the form

ẋ = ϵf(x, t, ϵ), x ∈ U ⊆ Rn, ϵ ≪ 1, (A.35)
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where f : Rn × R × R+ is Cr, r ≥ 1 bounded on bounded sets, and of period P > 0 in t; U is
bounded and open. The associated autonumous averaged system is defined as

ẏ = 1
P
ϵ

∫ P

0
f(y, t, 0)dt ≡ ϵf̄(y). (A.36)

The averaging method approximates the original system in x by the averaged system y, which
in general it is easier to study.

However in general weakly nonlinear system is usually given ẋ = Ax + ϵf(x, t, ϵ) it is possible
to apply the Lagrange Standard Form that use the comoving coordinates as x = Φ(t)y where
Φ(t) is the fundamental matrix of the unperturbed system (ϵ = 0) which allows, without loss
of generality, to write the system as

ẏ = ϵf(y, t). (A.37)

The important question that comes into mind is: how the qualitative properties of the solu-
tions of the averaged system corresponds to those of original system? To answer this we use
The Averaging Theorem

Theorem A.34. (The Averaging Theorem)

There exists a Cr change of coordinates x = y + ϵg(y, t, ϵ) under which (A.35) becomes

ẏ = ϵf̄(y) + ϵ2f1(y, t, ϵ) (A.38)

where f1 is of period P in t. Moreover

(i) If x(t) and y(t) are solutions of (A.35) and (A.36) based at x0, y0, respectively, at t = 0,
and |x0 − y0|, then |x(t) − y(t)| = O(ϵ) on a time scale t ∼ ϵ−1.

(ii) If p0 is a hyperbolic fixed point of (A.36) then there exists ϵ0 > 0 such that, for all
0 < ϵ ≤ ϵ0, (A.35) possesses a unique hyperbolic periodic orbit γϵ = p0 + O(ϵ) of the
same stability type as p0.

(iii) If xs(t) ∈ W s(γϵ) is a solution of (A.35) lying in the stable manifold of the hyperbolic
periodic orbit γϵ = p0 + O(ϵ), ys ∈ W s(p0) is a solution of (A.36) lying in the stable
manifold of the hyperbolic fixed point p0 and |xs(0)−ys(0)| = O(ϵ), then |xs(t)−ys(t)| =
O(ϵ) for t ∈ [0,∞). Similar results apply to solutions lying in the unstable manifolds on
the time interval t ∈ (−∞, 0].

Proof. See [111, 120, 122].
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In general the standard averaging theory uses ϵ as a parameter however in Chapters 3,2 and
4, ϵ is not treated as a parameter but as a variable that slowly goes to zero.
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Friedmann–Lemâıtre–Robertson–Walker models, Eur. Phys. J. C 81 (2021),
10.1140/epjc/s10052-021-09580-0, arXiv:2102.05551 [gr-qc] .

[83] G. Leon, S. Cuellar, E. Gonzalez, S. Lepe, et al., Averaging general-
ized scalar field cosmologies II: locally rotationally symmetric Bianchi I and
flat Friedmann–Lemâıtre–Robertson–Walker models, Eur. Phys. J. C 81 (2021),
10.1140/epjc/s10052-021-09230-5, arXiv:2102.05495 [gr-qc] .

[84] D. Fajman, G. Heißel and J. W. Jang, Averaging with a time-dependent perturbation
parameter, Classical and Quantum Gravity 38 (2021), 10.1088/1361-6382/abe883.

http://dx.doi.org/10.1088/0264-9381/20/14/301
http://dx.doi.org/10.1088/0264-9381/20/14/301
http://arxiv.org/abs/gr-qc/0303014
http://dx.doi.org/10.1088/0264-9381/27/1/015009
http://dx.doi.org/10.1088/0264-9381/23/10/016
http://dx.doi.org/10.1088/0264-9381/23/10/016
http://arxiv.org/abs/gr-qc/0512031
http://dx.doi.org/ 10.1088/1361-6382/aab3a7
http://dx.doi.org/ 10.1088/0264-9381/25/22/225013
http://dx.doi.org/ 10.1088/0264-9381/25/22/225013
http://arxiv.org/abs/0806.0759
http://dx.doi.org/ 10.1007/s00023-009-0407-y
http://dx.doi.org/ 10.1007/s00023-009-0407-y
http://dx.doi.org/ 10.1088/0264-9381/17/22/310
http://dx.doi.org/ 10.1088/0264-9381/17/22/310
http://arxiv.org/abs/gr-qc/0005116
http://dx.doi.org/10.1063/1.4906081
http://arxiv.org/abs/1406.0438
http://dx.doi.org/10.1140/epjc/s10052-021-09185-7
http://dx.doi.org/10.1140/epjc/s10052-021-09185-7
http://arxiv.org/abs/2102.05465
http://dx.doi.org/10.1140/epjc/s10052-021-09580-0
http://dx.doi.org/10.1140/epjc/s10052-021-09580-0
http://arxiv.org/abs/2102.05551
http://dx.doi.org/10.1140/epjc/s10052-021-09230-5
http://dx.doi.org/10.1140/epjc/s10052-021-09230-5
http://arxiv.org/abs/2102.05495
http://dx.doi.org/ 10.1088/1361-6382/abe883


Bibliography 173

[85] A. Alho, V. Bessa and F. C. Mena, Global dynamics of Yang–Mills field and perfect-
fluid Robertson–Walker cosmologies, J. Math. Phys. 61 (2020), 10.1063/1.5139879,
arXiv:1910.04678 [gr-qc] .

[86] J. Beltran Jimenez, L. Heisenberg, R. Kase, R. Namba and S. Tsujikawa, Instabilities in
Horndeski Yang-Mills inflation, Phys. Rev. D 95 (2017), 10.1103/PhysRevD.95.063533,
arXiv:1702.01193 [hep-th] .

[87] C. G. Hewitt and J. Wainwright, Dynamical systems approach to titled Bianchi cosmolo-
gies: Irrotational models of type V, Phys. Rev. D 46 (1992), 10.1103/PhysRevD.46.4242.

[88] J. D. Barrow, Y. Jin and K.-i. Maeda, Cosmological coevolution of Yang-Mills fields and
perfect fluids, Phys. Rev. D 72 (2005), 10.1103/PhysRevD.72.103512.

[89] A. Alho and C. Uggla, Inflationary α-attractor cosmology: A global dynamical systems
perspective, Phys. Rev. D 95 (2017), 10.1103/PhysRevD.95.083517, arXiv:1702.00306
[gr-qc] .

[90] F. V. J. A. Sanders and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems
(Springer New York, NY, 2007).

[91] B. K. Darian and H. P. Kunzle, Axially symmetric Bianchi I Yang-Mills cosmology
as a dynamical system, Class. Quant. Grav. 13 (1996), 10.1088/0264-9381/13/10/005,
arXiv:gr-qc/9608024 .

[92] B. K. Darian and H. P. Kunzle, Cosmological Einstein Yang-Mills equations, J. Math.
Phys. 38 (1997), 10.1063/1.532116, arXiv:gr-qc/9610026 .

[93] J. D. Barrow and J. J. Levin, Chaos in the Einstein Yang-Mills equations, Phys. Rev.
Lett. 80 (1998), 10.1103/PhysRevLett.80.656, arXiv:gr-qc/9706065 .

[94] Y. Jin and K.-i. Maeda, Chaos of Yang-Mills field in class a Bianchi spacetimes, Phys.
Rev. D 71 (2005), 10.1103/PhysRevD.71.064007, arXiv:gr-qc/0412060 .

[95] I. G. Moss and C. Xiong, On the consistency of warm inflation, JCAP 11 (2008),
10.1088/1475-7516/2008/11/023.

[96] A. P. Billyard and A. A. Coley, Interactions in scalar field cosmology, Phys. Rev. D 61
(2000), 10.1103/PhysRevD.61.083503.

[97] K. V. Berghaus, P. W. Graham and D. E. Kaplan, Minimal Warm Inflation, JCAP 03
(2020), 10.1088/1475-7516/2020/03/034, arXiv:1910.07525 .

http://dx.doi.org/ 10.1063/1.5139879
http://arxiv.org/abs/1910.04678
http://dx.doi.org/ 10.1103/PhysRevD.95.063533
http://arxiv.org/abs/1702.01193
http://dx.doi.org/ 10.1103/PhysRevD.46.4242
http://dx.doi.org/10.1103/PhysRevD.72.103512
http://dx.doi.org/10.1103/PhysRevD.95.083517
http://arxiv.org/abs/1702.00306
http://arxiv.org/abs/1702.00306
http://dx.doi.org/10.1088/0264-9381/13/10/005
http://arxiv.org/abs/gr-qc/9608024
http://dx.doi.org/10.1063/1.532116
http://dx.doi.org/10.1063/1.532116
http://arxiv.org/abs/gr-qc/9610026
http://dx.doi.org/10.1103/PhysRevLett.80.656
http://dx.doi.org/10.1103/PhysRevLett.80.656
http://arxiv.org/abs/gr-qc/9706065
http://dx.doi.org/10.1103/PhysRevD.71.064007
http://dx.doi.org/10.1103/PhysRevD.71.064007
http://arxiv.org/abs/gr-qc/0412060
http://dx.doi.org/ 10.1088/1475-7516/2008/11/023
http://dx.doi.org/ 10.1088/1475-7516/2008/11/023
http://dx.doi.org/ 10.1103/PhysRevD.61.083503
http://dx.doi.org/ 10.1103/PhysRevD.61.083503
http://dx.doi.org/ 10.1088/1475-7516/2020/03/034
http://dx.doi.org/ 10.1088/1475-7516/2020/03/034
http://arxiv.org/abs/1910.07525


174 Dynamical Systems in General Relativity and Modified Gravity Theories

[98] M. R. Setare, A. Sepehri and V. Kamali, Constructing warm inflationary model
in brane-antibrane system, Phys. Lett. B 735 (2014), 10.1016/j.physletb.2014.05.081,
arXiv:1405.7949 [gr-qc] .

[99] X.-B. Li, Y.-Y. Wang, H. Wang and J.-Y. Zhu, Dynamic analysis of noncanonical warm
inflation, Phys. Rev. D 98 (2018), 10.1103/PhysRevD.98.043510, arXiv:1804.05360 [gr-
qc] .

[100] M. Bastero-Gil, A. Berera, R. O. Ramos and J. G. Rosa, General dissipation coefficient
in low-temperature warm inflation, JCAP 01 (2013), 10.1088/1475-7516/2013/01/016.

[101] B. Aulbach, Continuous and Discrete Dynamics near Manifolds of Equilibria (Springer
Berlin, 1984).

[102] L. Perko, Differential Equations and Dynamical Systems (Springer, 2001).

[103] F. Dumortier, Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms,
Nilpotent Bifurcations, Singular Perturbations (Springer Netherlands, 1993).

[104] F. Dumortier, J. Llibre and J. C. Artes, Qualitative theory of planar differential systems
(Springer Netherlands, 2006).

[105] M. Brunella and M. Miari, Topological equivalence of a plane vector field with its princi-
pal part defined through Newton Polyhedra, Journal of Differential Equations 85 (1990),
https://doi.org/10.1016/0022-0396(90)90120-E.

[106] A. M. Liapunov, Stability of Motion, Math. Sci. Eng. 3 3 (1966).

[107] A. Lins, W. de Melo and C. C. Pugh, On Liénard’s equation in Lecture Notes in Math
(Springer Berlin Heidelberg, 1977).

[108] F. Dumortier and C. Herssens, Polynomial Liénard Equations near Infinity, Journal of
Differential Equations 153 (1999), https://doi.org/10.1006/jdeq.1998.3543.

[109] M. Sabatini and G. Villari, “On the uniqueness of limit cycles for liénard equation: the
legacy of g. sansone,” (2011).

[110] A. Gasull and H. Giacomini, Effectiveness of the Bendixson–Dulac theorem, Journal of
Differential Equations 305 (2021), https://doi.org/10.1016/j.jde.2021.10.011.

[111] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifur-
cations of vector fields, Applied mathematical sciences (Springer New York, NY, 1990).

[112] J. Wainwright, M. J. Hancock and C. Uggla, Asymptotic selfsimilarity breaking at
late times in cosmology, Class. Quant. Grav. 16 (1999), 10.1088/0264-9381/16/8/302,
arXiv:gr-qc/9812010 .

http://dx.doi.org/10.1016/j.physletb.2014.05.081
http://arxiv.org/abs/1405.7949
http://dx.doi.org/ 10.1103/PhysRevD.98.043510
http://arxiv.org/abs/1804.05360
http://arxiv.org/abs/1804.05360
http://dx.doi.org/10.1088/1475-7516/2013/01/016
http://dx.doi.org/https://doi.org/10.1007/BFb0071569
https://link.springer.com/book/10.1007/978-1-4613-0003-8
http://dx.doi.org/10.1007/978-94-015-8238-4_2
http://dx.doi.org/10.1007/978-94-015-8238-4_2
http://dx.doi.org/10.1007/978-3-540-32902-2
http://dx.doi.org/ https://doi.org/10.1016/0022-0396(90)90120-E
http://dx.doi.org/ https://doi.org/10.1016/0022-0396(90)90120-E
http://dx.doi.org/https://doi.org/10.1006/jdeq.1998.3543
http://dx.doi.org/https://doi.org/10.1006/jdeq.1998.3543
http://dx.doi.org/10.48550/ARXIV.1101.2761
http://dx.doi.org/10.48550/ARXIV.1101.2761
http://dx.doi.org/https://doi.org/10.1016/j.jde.2021.10.011
http://dx.doi.org/https://doi.org/10.1016/j.jde.2021.10.011
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+027129993&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+027129993&sourceid=fbw_bibsonomy
http://dx.doi.org/10.1088/0264-9381/16/8/302
http://arxiv.org/abs/gr-qc/9812010


Bibliography 175

[113] C. B. Collins and J. M. Stewart, Qualitative Cosmology, Monthly Notices of the Royal
Astronomical Society 153 (1971), 10.1093/mnras/153.4.419.

[114] J. Wainwright and L. Hsu, A dynamical systems approach to Bianchi cosmologies: Or-
thogonal models of class A, Class. Quant. Grav. 6 (1989), 10.1088/0264-9381/6/10/011.

[115] I. S. Kohli and M. C. Haslam, Dynamical systems approach to a Bianchi type I viscous
magnetohydrodynamic model, Phys. Rev. D 88 (2013), 10.1103/PhysRevD.88.063518,
arXiv:1304.8042 [gr-qc] .

[116] A. P. Billyard, A. A. Coley, R. J. van den Hoogen, J. Ibanez and I. Olasagasti, Scalar
field cosmologies with barotropic matter: Models of Bianchi class B, Class. Quant. Grav.
16 (1999), 10.1088/0264-9381/16/12/320.

[117] K. S. Thorne, Primordial Element Formation, Primordial Magnetic Fields, and the
Isotropy of the Universe, Astrophys. J. 148 (1967), 10.1086/149127.

[118] S. W. Hawking and R. J. Tayler, Helium Production in an Anisotropic Big-Bang Cos-
mology, Nature 209 (1966), 10.1038/2091278a0.

[119] M. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra
(Academic Press, 1974).

[120] S. Wiggins, Introduction to Applied No nlinear Dynamical Systems and Chaos (Springer,
1990).

[121] D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems. (Cambridge
University Press, 1990).

[122] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems (Springer Berlin
Heidelberg, 2006).

[123] S. Lynch, Dynamical Systems with Applications using Mathematica (Birkhäuse, 2007).
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