Thompson Group Representations and Euler's Theorem

André Guimarães

Instituto Superior Técnico
Oficina Diagonal, March 2021

The Thompson group F

Definition

Call a rational number dyadic if it can be written in the form $\frac{m}{2^{n}}$ for some $m, n \in \mathbb{Z}$.

Definition

The Thompson group F is the set of piecewise linear homeomorphisms of $[0,1)$ which satisfy:

- non-differentiability in a finite set of dyadic numbers;
- at the points of differentiability, the derivative is a power of 2 ; equipped with the composition operation.

Finite generating set of F

$$
A(x)= \begin{cases}\frac{1}{2} x & \text { if } 0 \leq x \leq \frac{1}{2} \\ x-\frac{1}{4} & \text { if } \frac{1}{2} \leq x \leq \frac{3}{4} \\ 2 x-1 & \text { if } \frac{3}{4} \leq x<1\end{cases}
$$

$$
B(x)= \begin{cases}x & \text { if } 0 \leq x \leq \frac{1}{2} \\ \frac{1}{2} x+\frac{1}{4} & \text { if } \frac{1}{2} \leq x \leq \frac{3}{4} \\ x-\frac{1}{8} & \text { if } \frac{3}{4} \leq x \leq \frac{7}{8} \\ 2 x-1 & \text { if } \frac{7}{8} \leq x<1\end{cases}
$$

Hilbert space

Definition

A Hilbert space is an inner product space which is complete with regard to the norm induced by the inner product.

Definition

Given a Hilbert space H, define $B(H)$ to be the algebra of bounded linear operators from H to itself.

Theorem

Given an operator $S \in B(H)$, there exists a unique operator $S^{*} \in B(H)$, such that for every $u, v \in H,\langle S u, v\rangle=\left\langle u, S^{*} v\right\rangle$.

Unitary group representations

Definition

A unitary representation of F on an Hilbert Space H is a group homomorphism $\tau: F \rightarrow B(H)$ such that $\tau\left(f^{-1}\right)=(\tau(f))^{*}$ for every $f \in F$.

In 2018 Barata \& Pinto introduced a family of representations of F.

$$
\left\{\tau_{x}: F \rightarrow H_{x} \mid x \in[0,1)\right\}
$$

Every $x \in[0,1)$ induces a representation τ_{x} of F on H_{x}.

Unitary equivalence $\tau_{x} \sim \tau_{y}$

Definition

Define the equivalence relation $x \sim y \Leftrightarrow \operatorname{frac}\left(2^{m} x\right)=\operatorname{frac}\left(2^{n} y\right)$, for some $m, n \in \mathbb{Z}_{0}^{+}$.

Definition

We say that τ_{x} is unitarily equivalent to τ_{y}, and write $\tau_{x} \sim \tau_{y}$ if there is some unitary operator $U: H_{x} \rightarrow H_{y}$ such that $U \tau_{x}(g)=\tau_{y}(g) U$ for every $g \in F$.

Problem

$$
\tau_{x} \sim \tau_{y} \Leftrightarrow ?
$$

Proposition (Barata \& Pinto, 2019)

Given a representation τ_{x} of $F, \tau_{x} \sim \tau_{\frac{1}{2}} \Leftrightarrow x \sim \frac{1}{2}$.

The general case

What about the general case? If we find a function which fixes only 0 and some other point, we can use the same idea!

Remark

Linear pieces of functions in F are of the form $f(x)=2^{a} x+\frac{b}{2^{c}}$ with $a, b, c \in \mathbb{Z}$. The only linear piece which may fix an irrational value is $f(x)=x$, which also fixes every value in a neighbourhood of x.

Therefore, this approach doesn't work for $x \in \mathbb{R} \backslash \mathbb{Q}$.
What about $x \in \mathbb{Q}$?

Euler's Theorem

Definition

The function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that, for every $n \in \mathbb{N}, \phi(n)$ is the cardinal of the set $\{x \in \mathbb{N}: x \leq n$ and $\operatorname{gcd}(x, n)=1\}$ is Euler's totient function.

Theorem (Euler)

Given $a, n \in \mathbb{N}$ such that $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)}-1$ is divisible by n.

Lemma

Let $z \in \mathbb{Q} \cap[0,1)$ with $z \nsim \frac{1}{2}$. Write $z=\frac{m}{2^{n_{s}}}$ for some $m, n, s \in \mathbb{N}$ such that $s \neq 1\left(\right.$ since $\left.z \nsim \frac{1}{2}\right)$ and $\operatorname{gcd}(s, 2)=\operatorname{gcd}(s, m)=1$. The linear map

$$
f(x)=2^{\phi(s)} x-\frac{m \cdot \frac{2^{\phi(s)}-1}{s}}{2^{n}}
$$

satisfies $f(x)=x \Leftrightarrow x=z$ and can be a linear piece of an element in F.

The rational case

$$
f(x)=2^{\phi(s)} x-\frac{\frac{2^{\phi(s)}-1}{s}}{2^{n}}
$$

It needs to be checked that some function in F does in fact have this as a linear piece.

The rational case

Theorem

Given a rational $z \in[0,1)$ there exists a function $f \in F$ such that $f(x)=x \Leftrightarrow x \in\{0, z\}$.

Theorem
 Let $x \in \mathbb{Q} \cap[0,1)$. Then, $\tau_{x} \sim \tau_{y} \Leftrightarrow x \sim y$.

The above result completely solves the problem for the rational case. The irrational case remains to be solved.

