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Motivation

Let m(P) denote the logarithmic Mahler measure of a polynomial
P ∈ C[x±1, y±1].

I In 1981, Smyth proved the following formula:

m(1 + x + y) = L′(χ−3,−1),

where χ−3 is the Dirichlet character associated to the
quadratic field Q(

√
−3).

I In 1997, Deninger conjectured the following formula

m(x +
1

x
+ y +

1

y
+ 1) = L′(E , 0),

where E is the elliptic curve that is the projective closure of
the polynomial in the left hand side.

Our goal: Sketch the basic ideas that allow to make sense of the
right hand side of these formulas.
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The Riemann Zeta function

The L-functions are constructed on the model of the Riemann Zeta
function ζ(s), so let us recall properties of this function.

The Riemann Zeta function ζ(s) is defined on C, for Re(s) > 1,
by the formula

ζ(s) =
∑
n≥1

1

ns
.

Euler showed that

ζ(s) =
∏
p

1

1− p−s
.

In particular, Euler’s equality provides an alternative proof of the
existence of infinitely many prime numbers.
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The Riemann Zeta function

Theorem (Riemann)

The Riemann Zeta function ζ(s) can be analytical continued to a
meromorphic function of the complex plane. Its only pole is at
s = 1, and its residue is 1.
Moreover, the function Λ defined by

Λ(s) := π−s/2Γ(s/2)ζ(s)

satisfies the functional equation

Λ(s) = Λ(1− s).



The Gamma function

The function Γ in the previous theorem is defined by

Γ(s) :=

∫ ∞
0

e−tts−1dt.

It admits a meromorphic continuation to all C and satisfies the
functional equation

Γ(s + 1) = sΓ(s).

The function Γ(s/2) has simple poles at the negative even integers.
To compensate these poles we have ζ(−2n) = 0. These are called
the trivial zeros of ζ(s).

Conjecture (Riemann Hypothesis)

All the non-trivial zeros of ζ(s) satisfy Re(s) = 1/2.
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Analytic L-functions

Definition
A Dirichlet series is a formal series of the form

F (s) =
∞∑
n=1

an
ns
, where an ∈ C.

We call an Euler product to a product of the form

F (s) =
∏
p

Lp(s).

The factors Lp(s) are called the local Euler factors.

An analytic L-function is a Dirichlet series that has an Euler
product and satisfies a certain type of functional equation.
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Dirichlet characters

A function χ : Z→ C is called a Dirichlet character modulo N if
there is a group homomorphism χ̃ : (Z/NZ)∗ → C∗ such that

χ(x) = χ̃( x (mod N)) if (x ,N) = 1

and
χ(x) = 0 if (x ,N) 6= 1.

Moreover, we say that χ is primitive if there is no strict divisor
M | N and a character χ̃0 : (Z/MZ)∗ → C∗ such that

χ(x) = χ̃0( x (mod M)) if (x ,M) = 1.

In particular, if N = p is a prime every non-trivial character modulo
N is primitive. Moreover, any Dirichlet character is induced from a
unique primitive character χ̃0 as above. We call M its conductor.
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Dirichlet L-functions

Definition
We associate to a Dirichlet character χ an L-function given by

L(χ, s) =
∑
n≥1

χ(n)

ns

=
∏
p

1

1− χ(p)p−s

For example,

L(χ−3, s) =
∞∑
n=1

(n
3

) 1

ns
= 1− 1

2s
+

1

4s
− 1

5s
+ ...,

where the sign is given by the symbol

(n
3

)
=


1 if n is a square mod 3
−1 if n is not a square mod 3
0 if 3 | n
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Dirichlet L-functions

Let χ be a Dirichlet character. We say that χ is even if
χ(−1) = 1; we say that χ is odd if χ(−1) = −1.

Define also, if χ is even,

Λ(χ, s) := π−s/2Γ(s/2)L(χ, s)

or, if χ is odd,

Λ(χ, s) := π−(s+1)/2Γ((s + 1)/2)L(χ, s)
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Dirichlet L-functions

Theorem
Let χ be a primitive Dirichlet character of conductor N 6= 1. Then,
L(χ, s) has an extension to C as an entire function and satisfies
the functional equation

Λ(χ, s) = ε(χ)N1/2−sΛ(χ, 1− s),

where

ε(χ) =

{
τ(χ)√

N
if χ is even

−i τ(χ)√
N

if χ is odd

and
τ(χ) =

∑
x (mod N)

χ(x)e2iπx/N



Elliptic Curves

Definition
An elliptic curve over a field k is a non-singular projective plane
curve given by an affine model of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where all ai ∈ k . Write O = (0 : 1 : 0) for the point at infinity.

The change of variables fixing O are of the form

x = u2x ′ + r y = u3y ′ + u2sx ′ + t,

where u, r , s, t ∈ k̄ , u 6= 0. If char(k) 6= 2, 3, after a change of
variables, E can be writen as

y2 = x3 + Ax + B, A,B ∈ k , ∆(E ) = 4A3 + 27B2.

If ∆(E ) 6= 0 then E is nonsingular.
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Example

Consider the curve

E : y2 = x3 − 2x + 1,

having attached quantities

∆ = 24 · 5 6= 0, j = 211 · 33 · 5−1.



Another example

Consider the set defined by

x +
1

x
+ y +

1

y
+ 1 = 0

Multiplication by xy followed by homogenization gives

x2y + yz2 + y2x + xz2 + xyz = 0.

Applying the isomorphism (x , y , z) 7→ (y , x − y , z − x) yelds

x3 − 2x2z + xyz − y2z + xz2 = 0.

After setting z = 1 and rearranging we get the elliptic curve with
conductor 15 given by

y2 − xy = x3 − 2x2 + x .
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Theorem
Let E/k be an elliptic curve. There is an abelian group structure
on the set of points E (k̄).

Theorem (Mordell–Weil)

Let E/k be an elliptic curve over a number field k . The group
E (k) is finitely generated.
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E (Q)Tor = {O, (0 : −1 : 1), (0 : 1 : 1), (1 : 0 : 1)},

and they form a cyclic group of order 4.
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Reduction modulo p

Let E/Q be an elliptic curve. There exists a model E/Z such that
|∆(E )| is minimal. For such a model and a prime p, we set ãi = ai
(mod p) and consider the reduced curve over Fp

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x + ã6.

It can be seen that Ẽ has at most one singular point.

Definition (type of reduction)

Let p be a prime. We say that E

I has good reduction at p if Ẽ is an elliptic curve.

I has bad multiplicative reduction at p if Ẽ admits a double
point with two distinct tangents. We say it is split or
non-split if the tangents are defined over Fp or Fp2 ,
respectively.

I has bad additive reduction at p if Ẽ admits a double point
with only one tangent.
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It can be seen that Ẽ has at most one singular point.

Definition (type of reduction)

Let p be a prime. We say that E

I has good reduction at p if Ẽ is an elliptic curve.
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with only one tangent.



The Conductor of an elliptic curve.

Definition
The conductor NE of an elliptic curve E/Q is an integer. It is
computed by Tate’s algorithm, and is of the form

NE =
∏
p

pfp ,

where the exponents fp satisfy

fp =


0 if E has good reduction at p,
1 if E has bad multiplicative reduction at p,
2 if E has bad additive reduction at p ≥ 5,
2 + δp, 0 ≤ δp ≤ 6 if E has bad additive reduction at p = 2, 3.

In particular, NE | ∆(E ) for the discriminant associated with any
model of E .



Example

Consider the curve

E : y2 = x3 − 2x + 1, which is a minimal model

having attached quantities

∆ = 24 · 5, j = 211 · 33 · 5−1.

The reduction type at p = 5 is bad split multiplicative reduction
and at p = 2 is bad additive reduction. Furthermore,

NE = 23 · 5 = 40

Its rational torsion points are

E (Q)Tor = {O, (0 : −1 : 1), (0 : 1 : 1), (1 : 0 : 1)} ∼= (Z/4Z)
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Artin Zeta Function
Let E/Fp be an elliptic curve given by

y2 + a1xy + a3y − x3 + a2x
2 + a4x + a6 = 0.

Consider the associated Dedekind domain

A = Fp[X ,Y ]/(E )

For a non-zero ideal I of A we define its norm

N(I) = #(A/I).

The Zeta function associated to A is

ζA(s) =
∑
I6=0

1

N(I)s
=
∏
P

1

1− N(P)−s

Definition
For s ∈ C such that Re(s) > 1, we set

ζE (s) =
1

1− p−s
ζA(s)
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Artin Zeta Function

Theorem (Artin)

Let E/Fp be an elliptic curve and set

aE := p + 1−#E (Fp).

Then,

ζE (s) =
1− aE · p−s + p · p−2s

(1− p−s)(1− p · p−s)

and
ζE (s) = ζE (1− s).
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The Hasse-Weil L-function of E/Q
Let E/Q be an elliptic curve. For a prime p of good reduction, let
Ẽ be the reduction of E mod p, and set

Lp(s) = (1− aẼ · p
−s + p · p−2s)−1.

Define also Euler factors for primes p of bad reduction by

Lp(s) =


(1− p−s)−1 if E has bad split multiplicative reduction at p,
(1 + p−s)−1 if E has bad non-split mult. reduction at p,
1 if E has bad additive reduction at p.

Definition
The L-function of E is defined by

L(E , s) =
∏
p

Lp(s)
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−s + p · p−2s)−1.

Define also Euler factors for primes p of bad reduction by

Lp(s) =


(1− p−s)−1 if E has bad split multiplicative reduction at p,
(1 + p−s)−1 if E has bad non-split mult. reduction at p,
1 if E has bad additive reduction at p.

Definition
The L-function of E is defined by

L(E , s) =
∏
p

Lp(s)



A really brief incursion into modular cuspforms

I A modular form is a function on the upper-half plane that
satisfies certain transformation and holomorphy conditions.

I Let N ≥ 1 be an integer. Define

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡
[
∗ ∗
0 ∗

]
(mod N)

}
I In particular, a cuspform f for Γ0(N) (of weight 2) admits a

Fourier expansion

f (τ) =
∞∑
n=1

an(f )qn/N , an(f ) ∈ C, q = e2πiτ .

I There is a family of Hecke operators {Tn}n≥1 acting on the
C-vector space of cuspforms for Γ0(N) of weight 2.

I To a cuspform that is an eigenvector of all Tn we call an
eigenform. Furthermore, we assume they are normalized
such that a1(f ) = 1.
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The L-function of an eigenform

Definition
The L-function attached to an eigenform for Γ0(N) is defined by

L(f , s) =
∞∑
n≥1

an(f )

ns

Theorem
Let f be an eigenform for Γ0(N) of weight 2. The function L(f , s)
has an entire continuation to C. Moreover, the function

Λf (s) := (

√
N

2π
)−sΓ(s)L(f , s)

satisfies the functional equation

Λf (s) = wΛf (2− s),

where w = ±1.



Modularity and the L-function of E/Q

Theorem (Wiles, Breuil–Conrad–Diamond–Taylor)

Let E/Q be an elliptic curve of conductor NE . There is an
eigenform f for Γ0(NE ) (of weight 2) such that

L(E , s) = L(f , s).

Corollary

Let E/Q be an elliptic curve of conductor NE . Define the function

ΛE (s) := (

√
NE

2π
)−sΓ(s)L(E , s).

The function L(E , s) has an entire continuation to C and ΛE (s)
satisfies

ΛE (s) = wΛE (2− s),

where w = ±1.
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Example

Consider the curve

E : y2 = x3 − 2x + 1, ∆ = 24 · 5 6= 0, j = 211 · 33 · 5−1.

It has conductor NE = 23 · 5 = 40.

The cuspform of weight 2 for
Γ0(40) corresponding to E by modularity is

f := q + q5 − 4q7 − 3q9 + O(q10).

The rational torsion points are

E (Q)Tor = {O, (0 : −1 : 1), (0 : 1 : 1), (1 : 0 : 1)} ∼= (Z/4Z)
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The BSD conjecture

Theorem (Mordell–Weil)

Let E/Q be an elliptic curve. Then the group E (Q) is finitely
generated. More precisely,

E (Q) ∼= E (Q)Tor ⊕ ZrE

Conjecture (Birch–Swinnerton-Dyer)

The rank rE of the Mordell-Weil group of an elliptic E/Q is equal
to the order of the zero of L(E , s) at s = 1.
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L(E , 1) = 0.742206236711.

Thus E (Q) ∼= (Z/4Z).
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Counting Points on Varieties

Let V /Fq be a projective variety, given by the set of zeros

f1(x0, . . . , xN) = · · · = fm(x0, . . . , xN) = 0

of a collection of homogeneous polynomials. The number of points
in V (Fqn) is encoded in the zeta function

Definition
The Zeta function of V /Fq is the power series

Z (V /Fq;T ) := exp(
∑
n≥1

#V (Fqn)
T n

n
)



The Zeta function of the Projective space

Let N ≥ 1 and V = PN . A point in V (Fqn) is given by
homogeneous coordinates (x0 : .. : xN) with xi not all zero. Two
choices of coordinates give the same point if they differ by
multiplication of a non-zero element in Fqn . Hence,

#V (Fqn) =
qn(N+1) − 1

qn − 1
=

N∑
i=0

qni so

logZ (V /Fq;T ) =
∞∑
n=0

(
N∑
i=0

qni )
T n

n
=

N∑
i=0

− log(1− qiT ).

Thus,

Z (PN/Fq;T ) =
1

(1− T )(1− qT ) . . . (1− qNT )



The Zeta function of E/Fp

Theorem
Let E/Fp be an elliptic curve and define

aE = p + 1−#E (Fp).

Then,

Z (E/Fp;T ) =
1− aET + pT 2

(1− T )(1− pT )

Moreover,

1− aET + pT 2 = (1− α)(1− β) with |α| = |β| =
√
p

Note that by setting T = p−s we obtain the equality

Z (E/Fp; p−s) = ζE (s)
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Example

Consider the curve E : y2 = x3 − 2x + 1 which has bad additive
reduction at 2.
Let p = 2. Its mod p reduction is given by

Ẽ2 : (y − 1)2 = x3

and satisfies #Ẽ2(F2n) = 2n + 1. Hence,

logZ (Ẽ2/F2n ;T ) =
∞∑
n=1

2n + 1

n
T n

= log(
1

1− 2T
) + log(

1

1− T
)

Thus,

Z (Ẽ2/F2n ;T ) =
1

(1− 2T )(1− T )
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