Geometria Diferencial – Outono de 2003 Ficha 3

Entregar na Aula de 28 de Outubro de 2003

- 1. Seja $X \in \mathfrak{X}(M)$ um campo vectorial.
 - (a) Se $\lambda \in \mathbb{R}$, qual é a relação entre as curvas integrais de X e de λX ?
 - (b) Se $\Phi: M \to N$ é uma aplicação diferenciável, e $Y \in \mathfrak{X}(N)$ é Φ relacionado com X, qual é a relação entre as curvas integrais de X e de Y?
- 2. Seja $X \in \mathfrak{X}(M)$ um campo vectorial que não se anula. Mostre que as curvas integrais de X formam uma folheação \mathcal{F} de M, de dimensão 1. Reciprocamente, mostre que, localmente, as folheações de dimensão 1 são todas desta forma. Dê um exemplo de uma folheação que não é (globalmente) definida por um campo vectorial.
- 3. Verifique que a distribuição 2-dimensional em \mathbb{R}^3 definida pelos campos vectoriais

$$X_1 = \frac{\partial}{\partial x}, \quad X_2 = e^{-x} \frac{\partial}{\partial y} + e^{-x} \frac{\partial}{\partial z},$$

não possui qualquer variedade integral.

4. Considere a distribuição D em \mathbb{R}^3 gerada pelos campos vectoriais:

$$\frac{\partial}{\partial x} + \cos x \cos y \frac{\partial}{\partial z}, \qquad \frac{\partial}{\partial y} - \sin x \sin y \frac{\partial}{\partial z}.$$

Verifique que D é involutiva e determine a folheação \mathcal{F} que a integra.

(VSFF)

- 5. Sejam $X_1, \ldots, X_k \in \mathfrak{X}(M)$ campos vectoriais numa variedade M, tais que:
 - (a) $\{X_1|_p,\ldots,X_k|_p\}$ são linearmente independentes, para todo o $p\in M$:
 - (b) $[X_i, X_j] = 0$ para quaisquer $i, j = 1, \dots, k$.

Mostre que existe uma única folheação k-dimensional \mathcal{F} de M tal que, para todo o $p \in M$, se tem

$$T_pL = \langle X_1|_p, \dots, X_1|_p \rangle,$$

onde $L \in \mathcal{F}$ é a folha que contém p.

- 6. Mostre que o fibrado tangente TG de um grupo de Lie G é trivial, i.e., existem campos vectoriais $X_1, \ldots, X_d \in \mathfrak{X}(G)$ que em cada $g \in G$ formam uma base de T_gG . Conclua que uma esfera de dimensão par \mathbb{S}^{2n} não admite uma estrutura de grupo de Lie.
- 7. Considere $\mathbb{S}^3 \subset \mathbb{H}$ como o conjunto dos quaterniões unitários. Verifique que \mathbb{S}^3 , com o produto de quaterniões, é um grupo de Lie e determine a sua álgebra de Lie. Mostre, ainda, que \mathbb{S}^3 e SU(2) são grupos de Lie isomorfos.