On pro-C*-algebras of profinite groups

Paulo R. Pinto (IST-Lisbon, Portugal) (with Rachid El Harti and N.C. Phillips)

Noncommutative Geometry and applications Poiana Braşov, Romania, 1 – 8 September 2013

Projective system or inverse system (of groups)

1 directed set (I, \leq) , groups G_{α} , $\alpha \in I$ and compatible cont. group hom's $\pi_{\alpha\beta}: G_{\beta} \to G_{\alpha}$ whenever $\beta \leq \alpha$ so that $\pi_{\alpha\alpha} = I$ and

$$\pi_{\alpha\beta} \circ \pi_{\beta\gamma} = \pi_{\alpha\gamma}, \quad \text{if } \alpha \le \beta \le \gamma$$

2 projective limit or inverse limit of the inverse system $((G_{\lambda}), (\pi_{\alpha\beta}), I)$ is the following group

$$G = arprojlim_{\stackrel{\scriptstyle lpha \in I}{lpha \in I}} G_lpha = \left\{ g = (g_lpha) \in \prod G_lpha : \pi_{lpha eta}(g_eta) = g_lpha, \quad lpha \le eta
ight\}$$

Then G is a subgroup of $\prod G_{\alpha}$

Projective system or inverse system (of groups)

1 directed set (I, \leq) , groups G_{α} , $\alpha \in I$ and compatible cont. group hom's $\pi_{\alpha\beta}: G_{\beta} \to G_{\alpha}$ whenever $\beta \leq \alpha$ so that $\pi_{\alpha\alpha} = I$ and

$$\pi_{\alpha\beta} \circ \pi_{\beta\gamma} = \pi_{\alpha\gamma}, \quad \text{if } \alpha \le \beta \le \gamma$$

2 projective limit or inverse limit of the inverse system $((G_{\lambda}), (\pi_{\alpha\beta}), I)$ is the following group

$$G = arprojlim_{\stackrel{\longleftarrow}{lpha \in I}} G_lpha = \left\{ g = (g_lpha) \in \prod G_lpha : \pi_{lpha eta}(g_eta) = g_lpha, \quad lpha \leq eta
ight\}$$

Then G is a subgroup of $\prod G_{\alpha}$

A profinite group is a topological group which is obtained as the inverse limit of a collection of finite groups, each given the discrete topology

Remark

Also projective limits of sets $\lim_{\alpha} X_{\alpha}$, topological *-algs, etc....

Example

G top. group, and $\mathcal{N}_G := \{N: N \text{ closed normal finite index subgroup of } G\}.$

$$N_1, N_2 \in \mathcal{N}_G \implies N_1 \cap N_2 \in \mathcal{N}_G.$$

Then G/N is a finite group and a standard finite group result leads to a surjective hom

$$G/N_1 \rightarrow G/N_2$$
 if $N_2 \leq N_1$ (if $N_1 \subseteq N_2$ by def.)

Profinite completion of G is the projective limit $\widehat{G} = \varprojlim_{N \lhd_i G} G/N$.

Example

G top. group, and $\mathcal{N}_G := \{N: N \text{ closed normal finite index subgroup of } G\}.$

$$N_1, N_2 \in \mathcal{N}_G \implies N_1 \cap N_2 \in \mathcal{N}_G.$$

Then G/N is a finite group and a standard finite group result leads to a surjective hom

$$G/N_1 \rightarrow G/N_2$$
 if $N_2 \leq N_1$ (if $N_1 \subseteq N_2$ by def.)

Profinite completion of G is the projective limit $\widehat{G} = \varprojlim_{N \triangleleft_r G} G/N$.

Remark

- \bigcirc \widehat{G} is a Hausdorff, **compact**, totally disconnected
- 2 Natural diagonal group hom $\phi: G \to \widehat{G}$ with

$$\phi(g)=(gN)_{N\in\mathcal{N}_G}.$$

 ϕ is injective iff G is a residually finite group (RF),i.e. $\bigcap_{N \in \mathcal{N}_{\mathcal{O}}} N = \{e\}$

G, \widehat{G} , $\phi: G \to \widehat{G}$, ϕ injective iff G is RF

Replace G by a C*-alg A

- what is the C*-analog of the above map ϕ ?
- 2 if such a map exists, when is it injective?
- onotion of a profinite completion \widehat{A} of a C*-alg. A?

 $G, \ \widehat{G}, \ \phi: G \to \widehat{G}, \ \phi \text{ injective iff } G \text{ is RF}$

Replace G by a C*-alg A

- \bullet what is the C*-analog of the above map ϕ ?
- 2 if such a map exists, when is it injective?
- onotion of a profinite completion \widehat{A} of a C*-alg. A?

Remark (G a locally compact group)

- Group C^* -algebra $C^*(G) = \overline{L^1(G,\mu)}^{||\cdot||}$ with $||f|| = \sup_{\pi \text{ *-rep. of } L^1(G)} ||\pi(f)||$
- 2 In general, a hom $G_1 \rightarrow G_2$ does not extend to a C*-hom

$$C^*(G_1) \to C^*(G_2)$$
 and in general $G_i \nsubseteq C^*(G_i)$ $i = 1, 2$.

If the groups are discrete, then yes, but the topology of \widehat{G} is the product topology...

- **1** (A, || · ||) C*-alg $||aa^*|| = ||a||^2$
- ② $p:A o\mathbb{R}^+_0$ C*-**seminorm** if p is an seminorm and $p(aa^*)=p(a)^2$
- **3** Then $p(a) \le ||a||$ and $ker(p) = \{a \in A : p(a) = 0\}$ is a *-ideal
- **6** C*-seminorms of $A \longleftrightarrow *$ -homs of A

$$A \xrightarrow[\pi_p]{\text{quotient map}} A_p \xrightarrow[\rho]{\text{GNS}} B(H_p)$$

- **1** (A, $||\cdot||$) C*-alg $||aa^*|| = ||a||^2$
- 2 $p: A \to \mathbb{R}_0^+$ C*-seminorm if p is an seminorm and $p(aa^*) = p(a)^2$
- **3** Then $p(a) \le ||a||$ and $ker(p) = \{a \in A : p(a) = 0\}$ is a *-ideal
- **6** C*-seminorms of $A \longleftrightarrow *$ -homs of A

$$A \xrightarrow[\pi_{
ho}]{\text{quotient map}} A_{
ho} \xrightarrow[
ho]{\text{GNS}} B(H_{
ho})$$

- 1 a directed set, $(p_{\alpha})_{\alpha \in I}$ C*-seminorms such that $\alpha \leq \beta$ implies $p_{\alpha} \leq p_{\beta}$, where $A_{\alpha} := A/ker(p_{\alpha})$ we also get surjective maps $\pi_{\alpha\beta} : A_{\beta} \to A_{\alpha}$ if $\alpha \leq \beta$ (and $p_{\alpha} \leq p_{\beta}$ so $ker(p_{\beta}) \subseteq ker(p_{\alpha})$).

Get a projective system $(I, A_{\alpha}, (\pi_{\alpha\beta}))$

Projective limit

$$\varprojlim A_{\alpha} := \Big\{ a = (a_{\alpha}) \in \prod A_{\alpha} : \pi_{\alpha\beta}(a_{\beta}) = a_{\alpha}, \quad \alpha \leq \beta \Big\}$$

is a *-top. alg, the top τ is the weakest making the restriction to $\varprojlim A_{\alpha}$ of the projs $P_{\alpha}: \prod_{\alpha} A_{\alpha} \to A_{\alpha}$ conts.

- $\pi: A \to \varprojlim A_{\alpha}$ such that $a \mapsto (\pi_{\alpha}(a))$ with $\pi_{\alpha}: A \to A/ker(p_{\alpha})$
- if $\varprojlim A_{\alpha}$ is a top *-alg, set $||a||_{\infty} := \sup_{\alpha} p_{\alpha}(a), \ p_{\alpha} \in \mathit{all cont}. \ C^*$ -seminorms of $\varprojlim A_{\alpha}$

 $\underline{\text{bounded part: } (\varprojlim A_{\alpha})_b = \{a \in \varprojlim A_{\alpha} : ||\cdot||_{\infty} \leq \infty\}.}$

Then $(\varprojlim A_{\alpha})_b$ is a C*-alg. and $A = \pi(A) \subseteq (\varprojlim A_{\alpha})_b$ if π is injective.

- $\pi: A \to \varprojlim A_{\alpha}$ such that $a \mapsto (\pi_{\alpha}(a))$ with $\pi_{\alpha}: A \to A/\ker(p_{\alpha})$
- if $\varprojlim A_{\alpha}$ is a top *-alg, set $||a||_{\infty} := \sup_{\alpha} p_{\alpha}(a), \ p_{\alpha} \in \mathit{all cont}. \ C^*$ -seminorms of $\varprojlim A_{\alpha}$

 $\underline{\text{bounded part}} \colon (\varprojlim A_\alpha)_b = \{a \in \varprojlim A_\alpha : ||\cdot||_\infty \leq \infty\}.$

Then $(\underline{\lim} A_{\alpha})_b$ is a C*-alg. and $A = \pi(A) \subseteq (\underline{\lim} A_{\alpha})_b$ if π is injective.

Example (A = C(X), X Hausdorff loc. cpt set)

compact $K\subseteq X\implies p_K(f)=\sup_{t\in K}|f(t)|$ a C*-seminorm. Then $(\lim A_K)_b:=C_b(X)\simeq C(\beta X)$

where βX is the Stone-Čheck compactification of X.

"bounded part = noncommutative version of Stone-Čheck compactification"

- $\pi: A \to \lim A_{\alpha}$ such that $a \mapsto (\pi_{\alpha}(a))$ with $\pi_{\alpha}: A \to A/\ker(p_{\alpha})$
- if $\varprojlim A_{\alpha}$ is a top *-alg, set

$$||a||_{\infty}:=\sup_{\alpha}\;p_{\alpha}(a),\;p_{\alpha}\in\mathit{all\;cont.}\;C^{st} ext{-seminorms of }\varprojlim_{\alpha}A_{\alpha}$$

bounded part: $(\varliminf A_{\alpha})_b = \{a \in \varliminf A_{\alpha} : ||\cdot||_{\infty} \leq \infty\}.$

Then $(\lim A_{\alpha})_b$ is a C*-alg. and $A = \pi(A) \subseteq (\lim A_{\alpha})_b$ if π is injective.

Example (A = C(X), X Hausdorff loc. cpt set)

compact $K \subseteq X \implies p_K(f) = \sup_{t \in K} |f(t)|$ a C*-seminorm. Then

$$(\underline{\lim} A_K)_b := C_b(X) \simeq C(\beta X)$$

where βX is the Stone-Čheck compactification of X.

"bounded part = noncommutative version of Stone-Čheck compactification"

Definition

Given such projective system $(A,(p_{\alpha}))$, we naturally get a topology on A: a net $a_j \to a$ if $p_{\alpha}(a_j - a) \to 0$ for all α . Let \overline{A} its completion.

 $(A,(p_{\alpha}))$ equivalent to $(A,(q_i))$ if (p_{α}) and (q_i) define the same topology.

Definition (Voiculescu, J. Op. Theory 1987)

A pro-C*-alg is a C^* -alg A equipped with a directed family of C*-seminorms (p_{α}) , such that

- **1** $\alpha \leq \beta$ implies $p_{\alpha} \leq p_{\beta}$
- 2 $\sup_{\alpha}(a) = ||a||$ (FAITHFULL)

where 1 indicates the unit ball.

Definition (Voiculescu, J. Op. Theory 1987)

A pro-C*-alg is a C^* -alg A equipped with a directed family of C*-seminorms (p_{α}) , such that

- $0 \quad \alpha \leq \beta \text{ implies } p_{\alpha} \leq p_{\beta}$
- 2 $\sup_{\alpha}(a) = ||a||$ (FAITHFULL)

where 1 indicates the unit ball.

- 1 If $(A, (p_{\alpha}))$ is a pro-C*-algebra then $(\lim_{n \to \infty} A_{\alpha})_b = A$.
- (4, (p_{α})) is a pro-C*-algebra \iff ($\varprojlim A_{\alpha}$)_b \simeq A isometrically
- **3** $(A,(p_{\alpha}))$ faithfull iff $\pi:A\to \varprojlim A_{\alpha}$ injective iff $\bigcap_{\alpha} \ker(p_{\alpha})=0$
- $(A,(p_{\alpha})) \text{ full iff } \pi(A) = (\varprojlim A_{\alpha})_{b}.$

Definition

- **1** A projective system $(A,(p_{\alpha}))$ is profinite if $\dim(A_{\alpha}) < \infty$, for all α .
- ② The projective system $(A,(p_{\alpha}))$ of all C*-seminorms p_{α} of A so that $\dim(A_{\alpha}) < \infty$ is the **profinite completion** of A (denote it by \widehat{A}).

Definition

- **1** A projective system $(A,(p_{\alpha}))$ is profinite if $\dim(A_{\alpha}) < \infty$, for all α .
- ② The projective system $(A,(p_{\alpha}))$ of all C*-seminorms p_{α} of A so that $\dim(A_{\alpha}) < \infty$ is the **profinite completion** of A (denote it by \widehat{A}).

This profinite completion projective syst is faithfull iff A is **residually finite dimensional** (RFD) = if *-hom $A \hookrightarrow \prod_{i \in \mathbb{N}} M_{n(i)}(\mathbb{C})$ for some $n(1), n(2), ... \in \mathbb{N}$.

Example

X loc. cpt and $A = C_0(X)$ is RFD. The topology determined by the profinite completion of A is that of pointwise convergence and

$$\widehat{A} = F(X)$$

all functions on X (not necessarily cont. even bounded). In general, this profinite struture is not FUII, even if X is cpt.

Example

if $A=\bigoplus_{i\in\mathbb{N}}M_{n(i)}(\mathbb{C})$ for $n(1),n(2),...\in\mathbb{N}.$ Then

- $\widehat{A} = \widehat{M(A)} = \prod_{i \in \mathbb{N}} M_{n(i)}(\mathbb{C})$
- (im A_{α})_b = (im $M(A)_{\alpha}$)_b = M(A) (bounded parts of profinite systems)
- 4 profinite proj structure of A is faithfull
- profinite completion structure of M(A) is faithfull + full (Voiculescu pro-C*-alg)

if $A = \bigoplus_{i \in \mathbb{N}} M_{n(i)}(\mathbb{C})$ for $n(1), n(2), ... \in \mathbb{N}$. Then

- $\widehat{A} = \widehat{M}(\widehat{A}) = \prod_{i \in \mathbb{N}} M_{n(i)}(\mathbb{C})$
- ($\lim_{h \to \infty} A_{\alpha}$)_h = ($\lim_{h \to \infty} M(A)_{\alpha}$)_h = M(A) (bounded parts of profinite systems)
- profinite proj structure of A is faithfull
- profinite completion structure of M(A) is faithfull + full (Voiculescu pro-C*-alg)
- The C*-seminorms for A are given by $p_F(a) = \sup_{s \in F} ||a_s||$ with finite set $F \subset \{n(1), n(2), ...\};$
- A surjective hom $\rho: A \to B$ between C*-algs leads to $\tilde{\rho}: M(A) \to M(B)$
- If p_{α} C*-seminorm on A and $\pi_{\alpha}: A \to A/ker(p_{\alpha})$, then we get $\widetilde{\pi_{\alpha}}: M(A) \to M(A/\ker(p_{\alpha}))$ and so $a \mapsto ||\widetilde{\pi_{\alpha}}(a)||$ defines a C*-seminorm on M(A).
- A RFD \Longrightarrow M(A) RFD.

Motivation

Example

if $A = \bigoplus_{i \in \mathbb{N}} M_{n(i)}(\mathbb{C})$ for $n(1), n(2), ... \in \mathbb{N}$. Then

- $\widehat{A} = \widehat{M}(\widehat{A}) = \prod_{i \in \mathbb{N}} M_{n(i)}(\mathbb{C})$
- (lim A_{α}) = (lim $M(A)_{\alpha}$) = M(A) (bounded parts of profinite systems)

 $C^*(G) \to M(C(\widehat{G}))$

- profinite proj structure of A is faithfull
- profinite completion structure of M(A) is faithfull + full (Voiculescu pro-C*-alg)
- The C*-seminorms for A are given by $p_F(a) = \sup_{s \in F} ||a_s||$ with finite set $F \subset \{n(1), n(2), ...\};$
- A surjective hom $\rho: A \to B$ between C*-algs leads to $\tilde{\rho}: M(A) \to M(B)$
- If p_{α} C*-seminorm on A and $\pi_{\alpha}: A \to A/ker(p_{\alpha})$, then we get $\widetilde{\pi_{\alpha}}: M(A) \to M(A/\ker(p_{\alpha}))$ and so $a \mapsto ||\widetilde{\pi_{\alpha}}(a)||$ defines a C*-seminorm on M(A).
- A RFD \Longrightarrow M(A) RFD.

Example

The profinite completion $M(C^*(G))$ is full if G is a **compact group!!**

• G loc. compact group, then

unitary reps of $G \longleftrightarrow$ nondegenerate *-reps of C(G)

Given $v: G \to B(H)$ then $\pi(f): C^*(G) \to B(H)$ is given by

$$\langle \pi(f)\xi,\eta\rangle = \int_{G} f(g)\langle v_g\xi,\eta\rangle \ d\mu(g)$$

Given $\pi: C^*(G) \to U(H)$, extend it $\widetilde{\pi}: M(C^*(G)) \to B(H)$. Since $G \subset M(C^*(G))$ using a map $g \to u_g$, then $v_g := \widetilde{\pi}(u_g)$ does the job! [Pedersen textbook]

• \mathcal{N}_G the directed set as before

 $\kappa_N:G o G/N$ the quotient map extends to $\kappa_N:C^*(G) o C^*(G/N)$ and $ilde\kappa_N:M(C^*(G)) o C^*(G/N)$

$$p_N(a) = ||\kappa_N(a)||$$
 leads to a proj. system $(p_N)_{N \in \mathcal{N}_G}$ on $C^*(G)$

 $q_N(a) = ||\tilde{\kappa}_N(a)||$ leads to a proj. system $(q_N)_{N \in \mathcal{N}_G}$ on $M(C^*(G))$

If G is a profinite group, then any unitary rep $v: G \to B(H)$ on a f.dim. Hilbert space H factors through some rep of $w: G/N \to B(H)$ for some $N \in \mathcal{N}_G$.

If G is a profinite group, then any unitary rep $v: G \to B(H)$ on a f.dim. Hilbert space H factors through some rep of $w: G/N \to B(H)$ for some $N \in \mathcal{N}_G$.

Pf.: Choose an open set W of the unitary group U(H) such that W contains no subgroups of U(H) other than $\{1\}$. Let

$$V = \{g \in G \colon v_g \in W\}.$$

Then V is an open subset of G. Since G is profinite, there is $N \in \mathcal{N}_G$ such that $N \subset V$.

Since W contains no nontrivial subgroups, it follows that $v_g = 1$ for all $g \in N$.

Therefore v induces a representation w of G/N on H.

If G is profinite, then $(C^*(G), p_N)$ is a faithfull and $(M(C^*(G)), q_N)$ faithfull and full.

If G is profinite, then $(C^*(G), p_N)$ is a faithfull and $(M(C^*(G)), q_N)$ faithfull and full.

Pf.: We first prove that this profinite structure on $C^*(G)$ is equivalent to the one defining the profinite completion of $C^*(G)$. Since the C^* -algebras of finite groups are finite dimensional, it suffices to prove that if p is a C^* seminorm on $C^*(G)$ such that $C^*(G)/\ker(p)$ is finite dimensional, then there is closed normal subgroup N of finite index in G such that $\|\cdot\|_N \ge p$.

Represent $C^*(G)/\ker(p)$ unitally and faithfully on a finite dimensional Hilbert space H. Thus, we have a homomorphism $\pi\colon C^*(G)\to B(H)$ whose range contains 1 and such that $p(a)=\|\pi(a)\|$ for all $a\in C^*(G)$. Then π comes from a unitary representation $v\mapsto v_g$ of G on H. Let N and $w\colon G/N\to B(H)$ be as in Lemma. Let $\psi\colon C^*(G/N)\to B(H)$ be the corresponding representation of $C^*(G/N)$. Then $\psi\circ\kappa_N$ and π are both nondegenerate homomorphisms from $C^*(G)$ to B(H) whose extensions to homomorphisms $M(C^*(G))\to B(H)$ send u_g to v_g for all $g\in G$. Therefore $\psi\circ\kappa_N=\pi$. For all $a\in A$, we thus have $\|\kappa_N(a)\|\geq \|\pi(a)\|=p(a)$. This proves the equivalence of pro- C^* -algebra structures.

The rest follows from the example above (as *G* is cpt).

Theorem

- 1 There exists a unique hom $\varphi_G : C^*(G) \to \varprojlim C^*(G/N)$ such that $\pi_M = P_M \circ \varphi$ where $\pi_M : C^*(G) \to C^*(G/M)$ and $P_M : \varprojlim C^*(G/N) \to C^*(G/M)$ is the natural projection.
- $(\varprojlim C^*(G/N))_b \simeq M(C^*(\widehat{G})).$
- **3** $ker(\varphi) = \bigcap_{\pi} ker(\pi)$ where π runs over *-reps of $C^*(G)$ associated with finite range rep of G

Theorem

- There exists a unique hom $\varphi_G : C^*(G) \to \varprojlim C^*(G/N)$ such that $\pi_M = P_M \circ \varphi$ where $\pi_M : C^*(G) \to C^*(G/M)$ and $P_M : \varprojlim C^*(G/N) \to C^*(G/M)$ is the natural projection.
- $(\varprojlim C^*(G/N))_b \simeq M(C^*(\widehat{G})).$
- **3** $\ker(\varphi) = \bigcap_{\pi} \ker(\pi)$ where π runs over *-reps of $C^*(G)$ associated with finite range rep of G

Pf.: (1) Universal property for inverse limits...

(2) Known that since $C^*(G)$ is a C*-alg $\varphi(C^*(G)) \subseteq (\varprojlim C^*(G/N))_b$ and by above Example, $M(C^*(\widehat{G})) = (\varprojlim C^*(G/N))_b$, as \widehat{G} is a compact group...

(3) Let $a \in \ker(\varphi_G)$. Let $v \colon G \to B(H)$ be an arbitrary representation of G with finite range, with associated representation $\pi \colon C^*(G) \to B(H)$. Then v factors through \overline{G} , so Lemma implies that π factors through $M(C^*(\overline{G}))$. Therefore $\pi(a) = 0$. This shows that $a \in I$.

Conversely, let $a\in\bigcap\ker(\pi)$. Then $\kappa_N(a)=0$ for all $N\in\mathcal{N}_G$. Therefore $\widetilde{\kappa_N}(\varphi_G(a))=0$ for all $N\in\mathcal{N}_G$. Now since $M(C^*(\widehat{G}))$ is faithfull and full, $\varphi_G(a)=0$.

Proposition

 φ_G injective $\Longrightarrow G$ RF.

Remark

- ① Let $G = S^1$. Then $N \in \mathcal{N}_{S^1} \Longrightarrow N = S^1$. So $\widehat{S^1} = 1$.
 - $\varphi: C^*(S^1) \to M(C^*(\widehat{S^1})) = \mathbb{C} \text{ NOT injective.}$
- ② $G = SL(3,\mathbb{Z})$ is RF, but $C^*(G)$ is NOT RFD [M. Bekka 1999]. Hence $\varphi : C^*(SL(3,\mathbb{Z}) \to M(C^*(\widehat{SL(3,\mathbb{Z})}))$ cannot be injective as the latter alg is RFD and RFD passes to subalgs.

Proposition

 φ_{G} injective $\Longrightarrow \mathsf{G}$ RF.

Remark

① Let $G = S^1$. Then $N \in \mathcal{N}_{S^1} \Longrightarrow N = S^1$. So $\widehat{S^1} = 1$.

$$\varphi: C^*(S^1) \to M(C^*(\widehat{S^1})) = \mathbb{C} \text{ NOT injective.}$$

② $G = SL(3,\mathbb{Z})$ is RF, but $C^*(G)$ is NOT RFD [M. Bekka 1999]. Hence $\varphi : C^*(SL(3,\mathbb{Z}) \to M(C^*(\widehat{SL(3,\mathbb{Z})}))$ cannot be injective as the latter alg is RFD and RFD passes to subalgs.

Problem

Example of a RF G such that $C^*(G)$ is RFD but φ is NOT injective???? Maybe the free group \mathbb{F}_2

Theorem

G is a discrete, profinite and amenable group $\Longrightarrow \varphi_G$ is injective.

Pf.: Since G is amenable, $G \subseteq B(l^2(G))$ via the regular representation. Let $a \in C^*(G)$ be nonzero. We show that a is not in the ideal $\cap \ker(\pi)$ of above result.

Assume that $\|a\|=1$. Choose $b\in C^*(G)$ such that $\|b-a\|<\frac{1}{4}$ and b is a finite linear combination of the standard unitaries u_g . So, there are a finite set $S\subset G$ and numbers $\beta_g\in\mathbb{C}$ for $g\in S$ such that $b=\sum_{g\in S}\beta_gu_g$. Then $\|b\|>\frac{3}{4}$, so there is $\xi\in l^2(G)$ with finite support such that $\|\xi\|=1$ and $\|b\xi\|>\frac{1}{2}$. There are a finite set $T\subset G$ and numbers $\alpha_g\in\mathbb{C}$ for $g\in T$ such that $\xi=\sum_{g\in T}\alpha_g\delta_g$. Let

$$ST = \{gh : g \in S \text{ and } h \in T\} \text{ and } T^{-1} = \{g^{-1} : g \in T\}.$$

Since G is residually finite, there is $N \in \mathcal{N}_G$ such that the restriction to ST of the quotient map $G \to G/N$ is injective.

Let $v \colon G \to B(l^2(G/N))$ be the composition of this quotient map with the regular representation of G/N. Let $\pi \colon C^*(G) \to B(l^2(G/N))$ be the corresponding homomorphism.

Set $\eta = \sum_{g \in T} \alpha_g \delta_{gN}$. Then $||\eta|| = 1$ since the vectors δ_{gN} are orthonormal. For $g \in ST$, define

$$\lambda_g = \sum_{h \in S \cap gT^{-1}} \beta_h \alpha_{h^{-1}g}.$$

Then

$$b\xi = \sum_{g \in \mathcal{ST}} \lambda_g \delta_g \quad \text{and} \quad \pi(b) \eta = \sum_{g \in \mathcal{ST}} \lambda_g \delta_{gN}.$$

As g runs through ST, the elements δ_g and δ_{gN} form orthonormal systems in $l^2(G)$ and in $l^2(G/N)$. Therefore

$$\|\pi(b)\eta\|^2 = \sum_{g \in ST} |\lambda_g|^2 = \|b\xi\|^2.$$

So

$$\|\pi(a)\| > \|\pi(b)\| - \frac{1}{4} \ge \|\pi(b)\eta\| - \frac{1}{4} = \|b\xi\| - \frac{1}{4} > \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$

Therefore $\pi(a) \neq 0$. Since π comes from a representation of G which factors through the finite group G/N, this shows that $a \notin \cap \ker(\pi)$. \square

mulţumesc