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FORMULATION OF THE PROBLEM

Neural Field Equations (NFE) are a powerful tool for analysing the dynamical
behaviour of populations of neurons.
Literature on computational methods for NFE: [1], [2], [3] (deterministic case);
[4] (stochastic models).
The main goal of the present work is to analyse the effect of noise in certain
neural fields . The stochastic neural field equation with delay has the form:

dUt(x) =

(
I (x , t) −

1

c
Ut(x) +

∫
Ω

K (|x − y |)S(Ut−τ(y))dy

)
dt + εdWt(x), (1)

where t ∈ [0,T ], x ∈ Ω = [−l , l ] ⊂ IR , S(x) is the Firing rate function; K is the
Connectivity kernel; I is the External input; τ is a delay, depending on the
distance |x − y |; Wt is a Q-Wiener process. Initial condition:

Ut(x) = U0(x , t), t ∈ [−τmax, 0], x ∈ Ω, (2)

where U0(x , t) is some given stochastic process, τmax is the maximum value of
the delay.

SPACE DISCRETIZATION

We apply a numerical scheme which uses the Galerkin method. Consider the
following expansion of the solution:

Ut(x) =
∞∑
k=0

ukt vk(x), (3)

where vk - eigenfunctions of the covariance operator of the noise in (1); we define

vk(x) = exp(ikx), k = 0, 1, ..,N . (4)

Take the inner product of equation (1) with the basis functions vi :

(dUt, vi) =

[
(I (x , t), vi) −

1

c
(Ut, vi) +

(∫
Ω

K (|x − y |)S(Ut−τ(y))dy , vi

)]
dt+ε(dWt, vi).

(5)
We expand dWt as

dWt(x) =
∞∑
k=0

vk(x)λkdβ
k
t , (6)

where βk
t - independent white noises in time ; λk are the eigenvalues of the

covariance operator of the noise.
We define an approximate solution (3)

UN
t (x) =

N−1∑
k=0

uk ,N
t vk(x). (7)

The coefficients uk ,N
t satisfy the following nonlinear system of stochastic delay

differential equations:

dui ,Nt =

[
(I (x , t), vi) −

1

c
ui ,Nt + (KS)i ,N(ūt−τ)

]
dt + ελidβ

i
t, (8)

where (KS)i ,N(ūt−τ) is given by

(KS)i ,N(ūt−τ) = h2
N∑
j=1

vi(x)

 N∑
l=1

K (|xl − yj |)S

 N∑
k=1

ukt−τvk(yj)

 (9)

i = 0, ...,N − 1. In this case we are introducing in [−l , l ] a set of N equidistant
gridpoints xj = −l + j ∗ h, j = 1, ...,N , where h = 2l/N , and using the
rectangular rule to evaluate the integrals.

TIME DISCRETIZATION

we can apply the Euler-Maruyama method to the solution of the system (8). Let
tj = jht, j = 0, 1, ..., n;

uk ,N
j ≈ uk ,N

tj .

In these notations, the Euler-Maruyama method may be written as

ui ,Nj+1 =
ui ,Nj + ht

[
(I (xi , tj), vi) + (KS)i ,N(ūtj−τ)

]
+
√
htελiwi

1 + 1
cht

, (10)

COMPUTATIONAL COMPLEXITY

The straightforward computation of each integral in (9) requires about N3

evaluations of the integrand function. However two of the sums in (9) can be
evaluated efficiently by the Fast Fourier Transform (FFT). This reduces the
number of function evaluations to O(N(logN)2).
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NUMERICAL EXAMPLE

We investigate the effect of noise in the formation of spatio-temporal patterns in
dynamic neural fields. The stability analysis of these patterns in the deterministic
case was carried out in [5], p.37. This numerical example does not include delays.
Firing rate function S(x) - Heaviside function;
Connectivity kernelK (x) = A exp(−kx) (K sin(αx) + cos(αx));

External input I (x) = −I0 + B exp
(
− x2

2σ2

)
.

Deterministic Case
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Fig. 1. Stationary solution
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Fig.2. Evolution of umin(t).
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Fig.3. Evolution of umax(t)

umin(t) and umax(t) are the minimum and the maximum of the solution (on the
whole domain) at time t

Case ε = 0.01

20 40 60 80 100
x

-10

10

20

u

Fig.4. One-bump stationary
solution.
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Fig.5. Three-bump
stationary solution
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Fig.6. Five-bump stationary
solution
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Fig.7. Evolution of umin(t).
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Fig. 8. Evolution of umax(t)

Case ε = 0.1
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Fig. 9. First trajectory.
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Fig. 10. Second trajectory
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Fig. 11. Third trajectory
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Fig. 12. Evolution of umin(t).
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Fig. 13. Evolution of umax(t)

Summary of Numerical Results

I In the case ε = 0.01 the trajectories of the stochastic equation converge to some
stationary states, which are similar to the stationary states of the deterministic
equation. From 10 trajectories, 6 have converged to the five-bump stationary solution
(fig. 6), 3 have converged to the three-bump stationary solution (fig. 5) and one has
converged to the one-bump stationary solution (fig. 4). In fig. 7 (fig. 8) the graphs of
umin(t)(umax(t)) are plotted for five different trajectories.

I In the case ε = 0.1 the trajectories of the stochastic equation stabilize after a certain
time, but the resulting patterns (see Figs. 9-11) are rather different from the
stationary solutions of the deterministic equation. In fig. 12 (fig. 13) the graphs of
umin(t)(umax(t)) are plotted for five different trajectories.

CONCLUSIONS AND FUTURE WORK

I The Galerkin approximation combined with the Euler-Maruyama method provide an
effective computational method for the numerical solution of stochastic neural field
equations.

I The efficiency of the algorithm is guaranteed by the use of the Fast Fourier Transform
for the evaluation of integrals.

I The numerical simulations carried out so far suggest that for sufficiently small noise
the stochastic Neural Field Equations have stable stationary solutions, close to the
ones of the deterministic case.

I Using this algorithm we plan to analyse other types of dynamic neural fields, including
the case of finite propagation speed (delay equations).

I This algorithm can be extended to the case of multidimensional neural fields.


