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Solutions

a) According to Cartan’s structure equations, we have
dw’ =0 = w* AW,
= w“’/\w$+w9/\w5p,
= sinhwdcp/\w$+cosh@/)d0/\wg),
dw? =coshydy Adp = w* Aw?,
= w¢Aw$+w9Aw;",
= —dY Awf 4 coshp df A wy,
dw? =sinhdyp Ad) = w*Aw?,
= ww/\wZ—i—ws"/\wZ,
= —di) Aw) —sinhipdp A w?.
We readily conclude that the nonzero connection forms are
wﬁ = —cosh ¢ dp, w}f = —sinh¢ df, wy =0.
b) According to Cartan’s structure equations, we have

dw? = —sinhydy Adp = QY +w Awy,
= QY +w! Awy,
— Qg

dw;p:—coshz/}dw/\de = Qg+w§“/\ww

= Qg +wz’/\w$,
dwy =0 = QF +wy Aw?
= Qf +w Auf,
= QF —sinh cosh df A dy,
= QF +sinht cosh ¢ de A d6.

Hence, we have

sz_ww/\ww’ Q;ﬂ:_ww/\we’ sz—w*"mﬂ.
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c) From
Qg = —wYAW® = ZRaﬁwwwa/\wﬁ,
a<f
QZ = —wAw! = ZRaﬁewwO‘/\wﬁ,
a<f
QF = —wfAW = ZRQ69¢WGAWB,
a<f

it follows that, in particular, we have
Rygpe =1, Ryoyo =1, Roppp = 1.
The curvature tensor is
R=uw’Aw?@w’ Aw? +w’ Al @w? A’ +w? Aw? @ w? Al

Therefore, the sectional curvatures are

K(I)) = — Rypue - =1,
Juu9pe — (Gip)
T I
Guw oo — (Guo)
R
K (I1,) 2020 = 1.

GopJo0 — (gwe)Q B

This implies that the sectional curvature of any 2-plane is equal to —1.
d) The curves ¢ — (¢, p, tanhvy) and 1 — (¥, @, tanh)) lie on M.
They have tangent vectors J, = sinh ¢ X, and

Oy + sech®t) 0y = Xy +sech ¢ Xy

/1 + cosh? ¢ (cosh@Z)Xw + Xg)

cosh ¢ \/1 4+ cosh? 1)
2
_ v/ 1+ cosh wy’
cosh v

respectively.
Vi, X = w’ (Vx,Xp) Xy +w? (Vx, Xp) X, + 0’ (Vx, Xy) Xo
= w$<Xe0>Xw + ij(X@)X@ + wt,i(X‘P)X@

1
= —coshydp (m@,) Xy
= —cothy Xy.
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f) The equation
—cothyy Xy, = Vx X, =Vy X,+ (Vx, X, N)N

N coth (—X¢+cosh1pX9>

o /1 + cosh? ) /1 + cosh? 1

implies that

3 2
Ty X, = —— cosh” 1 X, - — cosh® 1) __x,
’ sinh ¢ (1 4 cosh® ) sinh ¢ (1 4 cosh® )
cosh? 1

- Y.
sinh ¢ /1 + cosh? 1)

The normal curvature and the geodesic curvature of the integral curves
coth ¢ cosh? ¢

f X ———==— and — tively.
of X, are v an RN v respectively.
g) The matrix that represents the second fundamental form of M in the

basis (X,,Y) is

coth ¢
(_VX¢N7 Xga) <_VYN7 Xgo) _ \/1+cosh21/1
(-Vx,N.Y) (=VyN,Y) 0 __tamhy
(14-cosh? ¢)3

The curvature of M is
9(B(X,, X,), B(Y,Y)) — g(B(X,,Y), B(X,,Y))
Q(Xsov Xs@)g(Ya Y) - (Q(Xsov Y))?
1
* (1 + cosh? )2’

KM = -1+

h) Since K is nonvanishing, we may write the normal to the hypersurface S
as N = fK, for some function f. For X and Y orthogonal to K, we
have

(VxN,Y) = (Vx(fK),Y) = f(VxK,Y)

—f(X,VyK) = —(X,Vy(fK))
—(X,VyN).

This shows that the second fundamental form of S is anti-symmetric.
But the second fundamental form is always symmetric. We conclude
that the second fundamental form of S is zero. Therefore, S is totally
geodesic.
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The following are auxiliary calculations that justify the information given
in g).

VXde, = w;ﬁ(Xw)Xd, + wi(Xw)Xg, + wZ(Xw)Xg = O,

Vx,Xo = wy(Xy)Xy +wi(Xy) X, + wh(Xy) Xy =0,

Vi, Xy = w$<Xe0>Xw +wh(Xp) Xy + w1€p<Xe0)X€

1
= coshy dp (m%) X,
= cothy X,

Vx,Xo = w(19p<Xe0>X¢ + wg(Xga)Xeo + Wg(Xga)XG =0,

©

Vi, Xy = wi(Xe)Xy +wi(Xe) X, + wi(Xe) Xy

= SlIlh’(/Jd@ ( 89) Xg
= tanh X,

cosh ¢

Vx, X, = wg(Xg))@ + wh(Xg) X, + wg(Xg)Xg =0,

Vi, Xo = wy(Xe)Xy + wi(Xe) Xy + wi(Xe) Xo

i 1
= —sinhy dd <Coshwae> Xy
= —tanhvy Xy.

We are now ready to calculate the covariant derivatives of N with respect to
X, and Y

1 h
VN = ——QVX¢X¢+LQZ}2VX¢X9
v/ 1+ cosh” ¢ /14 cosh” ¢y
1
= — cothy X
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cosh ¢ 1
VyN = ————=V ——X
i /1 + cosh® ¢ o ( /1 + cosh® ¢ w)
cosh ¢ cosh ¢
=V — X,
/1 + cosh® ¢ o <\/1 + cosh? ¢ 0)
+ ! \Y ! X
/1 + cosh? ) o /1 + cosh? ¢ v
1 cosh ¢
=V — X
/1 + cosh® ¢ o (Vl + cosh? ¢ 9)

B cosh? 1 sinh ¢ . cosh v sinh v

~ (14 cosh?4)? v (1 4 cosh®v))2
tanh 1) sinh v

Xy

1+ cosh™ v 1 + cosh”

tanh v cosh i Xy + Xy

- (1 + cosh® )3 ( V/1+ cosh?® ¢ )

L tanh v

(14 cosh? )3

0

Xy




