
Riemannian Geometry
2nd Test - January 21, 2020

LMAC and MMA

Solutions

a) The metric g in coordinates (x, y) is

g = φ∗(dx2 + dy2 + dz2) = dx2 + dy2 + (d(xy))2

= (1 + y2) dx2 + (1 + x2) dy2 + 2xy dxdy.

b) The frame (E1, E2) is orthonormal since

g(E1, E1) = (1 + y2)
(x

r

)2

+ (1 + x2)

(−y

r

)2

+ 2xy
(

− xy

r2

)

= 1,

g(E1, E2) = (1 + y2)
(x

r

)

(

y

rρ

)

+ (1 + x2)

(−y

r

)(

x

rρ

)

+xy

(

x2

r2ρ

)

+ xy

(

− y2

r2ρ

)

= 0,

g(E2, E2) = (1 + y2)

(

y

rρ

)2

+ (1 + x2)

(

x

rρ

)2

+ 2xy

(

xy

r2ρ2

)

= 1.

The dual of (E1, E2) is (ω
1, ω2) since

ω1(E1) = 1, ω1(E2) = 0, ω2(E1) = 0, ω2(E2) = 1.

The volume form is
ω1 ∧ ω2 = ρ dx ∧ dy.

c) Clearly,

d

(

1

r

)

= − x

r3
dx− y

r3
dy and dρ =

x

ρ
dx+

y

ρ
dy.

Thus, we have that

dω1 =
(

− x

r3
dx− y

r3
dy

)

∧ (x dx− y dy)

=
2xy

r3
dx ∧ dy.
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d) Writing ω1
2 = a dx+ b dy, according to Cartan’s structure equations,

dω1 =
2xy

r3
dx ∧ dy = ω2 ∧ ω1

2

=
ρ

r
(y dx+ x dy) ∧ (a dx+ b dy)

=
ρ

r
(−ax+ by) dx ∧ dy,

dω2 =
1

r3ρ
(y2 − x2) dx ∧ dy = ω1 ∧ (−ω1

2),

=
ρ

r
(x dx− y dy) ∧ (−a dx− b dy)

=
1

r
(−ay − bx) dx ∧ dy.

Thus, (a, b) solves the system
[

−x y

−y −x

] [

a

b

]

=
1

r2ρ

[

2xy
y2 − x2

]

whose solution is
[

a

b

]

=
1

r2ρ

[

−y

x

]

.

We conclude that

ω1
2 =

1

r2ρ
(−y dx+ x dy).

e) According to Cartan’s structure equations, we have

Ω1
2 = dω1

2 =
2

r2ρ
dx ∧ dy

− 2

r4ρ
(x dx+ y dy) ∧ (−y dx+ x dy)

− 1

r2ρ3
(x dx+ y dy) ∧ (−y dx+ x dy)

=
1

r2ρ3
(2ρ2 − 2ρ2 − r2) dx ∧ dy

= − 1

ρ3
dx ∧ dy.

This shows that

Ω2
1 =

1

ρ3
dx ∧ dy.

Since we have that
Ω2

1 = R 2
121 ω1 ∧ ω2,
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it follows that

R 2
121 =

1

ρ4
.

Finally, as the frame is orthonormal, R 2
121 = R1212 and the curvature

of M is

K = −R1212 = − 1

ρ4
.

f) The hyperbola {(x, y) ∈ R
2 : xy = α} can be parameterized by r :

R \ {0} → R, defined by

r(x) =
(

x,
α

x

)

.

Since

r′(x) =
(

1,− α

x2

)

=
1

x

(

x,− α

x

)

,

r′(x) is a multiple (the multiple 1
x
) of (r1(x),−r2(x)). This shows that

E1 is tangent to the hyperbola.
The geodesic curvature of the hyperbola is

kg = ω2
1(E1) =

1

r2ρ
(y dx− x dy)

(x∂x − y∂y)

r
=

2xy

r3ρ
=

2α

r3ρ
.

g) We have

Ẽ1 = φ∗E1 = dφ(E1) =
x

r
∂x −

y

r
∂y + dφ3(E1)∂z

=
x

r
∂x −

y

r
∂y + (y dx+ x dy)

(x

r
∂x −

y

r
∂y

)

∂z

=
x

r
∂x −

y

r
∂y,

Ẽ2 = φ∗E2 = dφ(E2) =
y

rρ
∂x +

x

rρ
∂y + dφ3(E2)∂z

=
y

rρ
∂x +

x

rρ
∂y + (y dx+ x dy)

(

y

rρ
∂x +

x

rρ
∂y

)

∂z

=
1

ρ

(y

r
∂x +

x

r
∂y + r∂z

)

.

These vectors have norm equal to one since E1 and E2 have norm equal
to one. Moreover, they are orthogonal. Indeed, denoting the Euclidean
norm in R

3 by g̃, we have that

g(Ei, Ej) = φ∗g̃(Ei, Ej) = g̃(φ∗Ei, φ∗Ej) = g̃(Ẽi, Ẽj).
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The unit normal to the surface is given by

N := Ẽ1 × Ẽ2 =
1

ρ
(−y∂x − x∂y + ∂z).

h) Since the Christoffel symbols are zero, we have that

∇̃Ẽ1
N =

x

r

(

− 1

ρ
∂y

)

+
x

r

(

− x

ρ3

)

(−y∂x − x∂y + ∂z)

− y

r

(

− 1

ρ
∂x

)

− y

r

(

− y

ρ3

)

(−y∂x − x∂y + ∂z)

=
1

rρ3

(

y(x2 − y2 + ρ2)∂x − x(−x2 + y2 + ρ2)∂y + (y2 − x2)∂z
)

=
1

rρ3

(

y(1 + 2x2)∂x − x(1 + 2y2)∂y + (y2 − x2)∂z
)

.

Although it was not asked, we also have that

∇̃Ẽ2
N =

y

rρ

(

− 1

ρ
∂y

)

+
y

rρ

(

− x

ρ3

)

(−y∂x − x∂y + ∂z)

+
x

rρ

(

− 1

ρ
∂x

)

+
x

rρ

(

− y

ρ3

)

(−y∂x − x∂y + ∂z)

=
1

rρ4

(

−x(ρ2 − 2y2)∂x − y(ρ2 − 2x2)∂y − 2xy∂z
)

= − 1

rρ4

(

x(1 + x2 − y2)∂x + y(1− x2 + y2)∂y + 2xy∂z
)

.

A trivial computation shows that

(∇̃Ẽ1
N, Ẽ1) =

2xy

r2ρ
.

Moreover, we also have the following non required results:

(∇̃Ẽ1
N, Ẽ2) = (∇̃Ẽ2

N, Ẽ1) =
1

r2ρ4
(y4 + y2 − x2 − x4),

(∇̃Ẽ2
N, Ẽ2) = − 2xy

r2ρ3
.

i) The matrix representation S of the second fundamental form of M
with respect to the basis (Ẽ1, Ẽ2) is

[

−(∇̃Ẽ1
N, Ẽ1) −(∇̃Ẽ2

N, Ẽ1)

−(∇̃Ẽ1
N, Ẽ2) −(∇̃Ẽ2

N, Ẽ2)

]

.
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In fact, if we multiply this matrix on the right by the column vector
[

X1

X2

]

,

corresponding to the vector X = X1Ẽ1 +X2Ẽ2, we obtain

[

−(X1∇̃Ẽ1
N, Ẽ1)− (X2∇̃Ẽ2

N, Ẽ1)

−(X1∇̃Ẽ1
N, Ẽ2)− (X2∇̃Ẽ2

N, Ẽ2)

]

=

[

−(∇̃X1Ẽ1+X2Ẽ2
N, Ẽ1)

−(∇̃X1Ẽ1+X2Ẽ2
N, Ẽ2)

]

=

[

−(∇̃XN, Ẽ1)

−(∇̃XN, Ẽ2)

]

=

[

(−∇̃XN)1

(−∇̃XN)2

]

,

the components of −∇̃XN in the base (Ẽ1, Ẽ2), since this base is ortho-
normal.
Although it was not required, we mention that in local coordinates (x, y)
the matrix S is written as

[

− 2xy
r2ρ

− 1
r2ρ4

(y4 + y2 − x2 − x4)

− 1
r2ρ4

(y4 + y2 − x2 − x4) 2xy
r2ρ3

]

.

Of course, the determinant of this matrix is equal to the curvature of
M, that is − 1

ρ4
.

j) According to the Gauss-Bonnet Theorem,
∫∫

[0,a]2
K ω1 ∧ ω2 +

∫

∂([0,a]2)

kg ds = 2πχ([0, a]2) = 2π.

But we have to be careful, this is only true for regular domains. To
apply the theorem to a square, we have to approximate the square
by smooth domains and then pass to the limit. We know that the
integral of the geodesic curvature along a curve measures the change in
direction of the tangent to the curve with respect to a vector field which
is parallel along the curve. Now, the restriction of M to the boundary
of the domain of integration consists of the curves parameterized by
φ( · , 0), φ(a, · ), φ( · , a) and φ(0, · ), and these are segments in R

3.
Thus, they are images of geodesics of R3, and hence they are images
of geodesics of M. Therefore, the tangents to the boundaries of the
domain of integration are parallel along these curves.
We conclude that, in the present case, the integral of the geodesic
curvature of the boundary of the region of integration measures the
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sum of the supplementary angles of the angles at the four vertices of
the square, which we will call R. We proceed to compute these angles.
The vector (1, 0) is unitary and tangent to the base of the square R.

The vector
(

0, 1√
1+a2

)

is unitary and tangent to the right side of the

square R.

The vector
(

− 1√
1+a2

, 0
)

is unitary and tangent to the top of the squareR.

The vector(−1, 0) is unitary and tangent to the left side of the squareR.
Hence, the angles of the vertices at (0, 0), (a, 0) and (0, a) are right
angles. However, we have that

g

((

0,
1√

1 + a2

)

,

(

− 1√
1 + a2

, 0

))

= − a2

1 + a2

So, the angle β which measures the change of direction of the tangent
to the boundary of R at (a, a) is such that

β = arccos

(

− a2

1 + a2

)

(and the angle of the vertex at (a, a) is π − β).
We conclude that

∫∫

[0,a]2
K ω1 ∧ ω2 +

3π

2
+ arccos

(

− a2

1 + a2

)

= 2π.

This of course is equivalent to

I(a) =

∫∫

[0,a]2
K ω1 ∧ ω2 =

π

2
− arccos

(

− a2

1 + a2

)

.

Clearly, it follows that

lim
a→+∞

I(a) = − π

2
.


