
Riemannian Geometry, Fall 2016/17
Instituto Superior Técnico, Pedro Girão

The 2nd Test, given on January 18, 2017, consists of this problem

1. Consider the one-sheeted hyperboloid

M = {(x, y, z) ∈ R
3 : x2 + y2 − z2 = 1},

with coordinates

(x, y, z) = (cosh γ cos θ, cosh γ sin θ, sinh γ),

and metric induced by the euclidean metric of R3.

a) The lines x = 1 ∧ y = z e x = 1 ∧ y = −z are contained in M . Are
they geodesics of M?

b) Check that in coordinates (γ, θ) the metric is written as

ds2 = cosh(2γ) dγ2 + cosh2 γ dθ2.

c) Using the orthonormal frame

(Eγ , Eθ) =

(

1
√

cosh(2γ)

∂

∂γ
,

1

cosh γ

∂

∂θ

)

and Cartan’s structure equations, show that M has curvature

K = − 1

cosh2(2γ)
.
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Note: It might be useful to check that

d

dγ

sinh γ
√

cosh(2γ)
=

cosh γ
√

cosh3(2γ)
,

d

dγ

cosh γ
√

cosh(2γ)
= − sinh γ

√

cosh3(2γ)
.

d) Using the connection form ω
γ
θ , compute the geodesic curvature of the

curve

c(s) =

(

γ0,
s

cosh γ0

)

,

where γ0 ∈ R
+
0 . Note that ċ(s) = (Eθ)c(s).

e) Obtain
(

∇̃ċċ
)⊤

by directly calculating ∇̃ċċ, and then projecting on Eγ

and Eθ. Confirm your answer to the previous question.
f) Verify the equality of the Gauss-Bonnet Theorem applied to the portion

of M with 0 ≤ γ ≤ γ0.
g) Compute

∫

M
K.

h) Compute the Gauss map, that associates to each point of M the unit
normal n to M that points to the region in R

3 in the interior of M .
i) Compute the matrix that represents the second fundamental form of

M in the base (Eγ, Eθ). Confirm the result of c).
j) Consider M only with its differential structure. Do there exist Rieman-

nian metrics on M such that
∫

M
K = 4π? If so, give an example of one

of them, writing it explicitly in the coordinates (γ, θ) above. If there
do not exist metrics satisfying this condition, explain why.

1. Solution.

a) Yes, the two lines are images of geodesics of M . Indeed, consider two
points on one of the lines. The segment joining them is the shortest
path in R

3 between the two points. Since this segment is contained in
M , it is the shortest path among the family of curves in M joining the
two points. Hence, the segment is the image of a geodesic in M .

b) As

dx = sinh γ cos θ dγ − cosh γ sin θ dθ,

dy = sinh γ sin θ dγ + cosh γ cos θ dθ,

dz = cosh γ dθ,

we have

ds2 = dx2 + dy2 + dz2 = cosh(2γ) dγ2 + cosh2 γ dθ2.
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c) The dual frame is

ωγ =
√

cosh(2γ) dγ, ωθ = cosh γ dθ.

Using the Cartran structure equations

dωγ = 0 = −ω
γ
θ ∧ ωθ,

dωθ = sinh γ dγ ∧ dθ = −ωθ
γ ∧ ωγ = −ωθ

γ ∧
√

cosh(2γ) dγ,

we obtain the connection form

ωθ
γ =

sinh γ
√

cosh(2γ)
dθ.

To get the curvature form, we compute

dωθ
γ =

cosh γ
√

cosh3(2γ)
dγ ∧ dθ = Rγθγ

θ ωγ ∧ ωθ

= Rγθγθ

√

cosh(2γ) cosh γ dγ ∧ dθ.

So,

Rγθγθ =
1

cosh2(2γ)

and

K = −Rγθγθ = − 1

cosh2(2γ)
.

d) The velocity is

ċ(s) =
1

cosh γ0

(

∂

∂θ

)

= Eθ.

Note that (Eθ,−Eγ) has positive orientation. The geodesic curvature
is

kg = (∇Eθ
Eθ,−Eγ) = −ω

γ
θ (Eθ) = ωθ

γ(Eθ)

=
sinh γ

√

cosh(2γ)
dθ

(

1

cosh γ

∂

∂θ

)

=
tanh γ

√

cosh(2γ)
.

e) The derivatives of c are

c(s) =

(

cosh γ0 cos

(

s

cosh γ0

)

, cosh γ0 sin

(

s

cosh γ0

)

, sinh γ0

)

,

ċ(s) =

(

− sin

(

s

cosh γ0

)

, cos

(

s

cosh γ0

)

, 0

)

,

∇̃ċ(s)ċ(s) = c̈(s) = − 1

cosh γ0

(

cos

(

s

cosh γ0

)

, sin

(

s

cosh γ0

)

, 0

)

.
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The vectors Eγ and Eθ have coordinates in R
3 equal to

Eγ =
1

√

cosh(2γ)
(sinh γ cos θ, sinh γ sin θ, cosh γ),

Eθ =
1

cosh γ
(− cosh γ sin θ, cosh γ cos θ, 0).

We compute the projections of ∇̃ċ(s)ċ(s) on Eγ and Eθ:
(

∇̃ċ(s)ċ(s), Eγ

)

= − tanh γ
√

cosh(2γ)
,

(

∇̃ċ(s)ċ(s), Eθ

)

= 0.

We conclude that
(

∇ċ(s)ċ(s)
)⊤

=
(

∇̃ċ(s)ċ(s),−Eγ

)

(−Eγ) +
(

∇̃ċ(s)ċ(s), Eθ

)

Eθ

=
tanh γ

√

cosh(2γ)
(−Eγ).

This confirms that the geodesic curvature of c is tanh γ0√
cosh(2γ0)

.

f) Let S be the portion of M with 0 ≤ γ ≤ γ0. According to the Gauss-
Bonnet Theorem,

∫

S

K +

∫

∂S

kg = 2πχ = 0,

because the Euler characteristic of the S is 0 (as ∂
∂γ

is a nonvanishing

vector field). We verify this equality by noting that the two terms on
the left-hand side cancel each other:

∫

S

K =

∫

S

− 1

cosh2(2γ)
ωγ ∧ ωθ

= −
∫

S

1

cosh2(2γ)

√

cosh(2γ) cosh γ dγ ∧ dθ

= −2π

∫ γ0

0

cosh γ
√

cosh3(2γ)
dγ

= −2π
sinh γ0

√

cosh(2γ0)
,

∫

∂S

kg =

∫ π

−π

tanh γ0
√

cosh(2γ0)
cosh γ0 dθ = 2π

sinh γ0
√

cosh(2γ0)
.

The frame (Eγ , Eθ) is positively oriented. We remark that Eγ points
out of S on the portion of ∂S where γ = γ0 > 0, and so Eθ gives
the positive orientation of the portion of ∂S where γ = γ0 > 0. The
orientation of γ = 0 is −Eθ.
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g) The integral of the curvature on M is
∫

M

K = 2 lim
γ0→∞

∫

S

K = −4π lim
γ0→∞

sinh γ0
√

cosh(2γ0)
= −2

√
2π.

h) The normal to M which points to the region in R
3 in the interior of M

is

n = − ∇(x2 + y2 − z2)

‖∇(x2 + y2 − z2)‖ =
(−x,−y, z)
√

x2 + y2 + z2

=
1

√

cosh(2γ)
(− cosh γ cos θ,− cosh γ sin θ, sinh γ)

= Eγ ×Eθ.

i) The derivative of n (considered as a function of (γ, θ)) is

(Dn)(γ, θ) =











sinhγ√
cosh3(2γ)

cos θ cosh γ√
cosh(2γ)

sin θ

sinh γ√
cosh3(2γ)

sin θ − cosh γ√
cosh(2γ)

cos θ

cosh γ√
cosh3(2γ)

0











The derivatives of n with respect to Eγ and Eθ are

∇̃Eγ
n =

1√
cosh γ

∂

∂γ
n =

1

cosh2(2γ)
(sinh γ cos θ, sinh γ sin θ, cosh γ),

∇̃Eθ
n =

1

cosh γ

∂

∂θ
n =

1
√

cosh(2γ)
(sin θ,− cos θ, 0).

The components of the second fundamental form are
(

−∇̃Eγ
n,Eγ

)

= − 1√
cosh3(2γ)

,
(

−∇̃Eθ
n,Eγ

)

= 0,
(

−∇̃Eγ
n,Eθ

)

= 0,
(

−∇̃Eθ
n,Eθ

)

= 1√
cosh(2γ)

.

The second fundamental form is

II(γ, θ) =





− 1√
cosh3(2γ)

0

0 1√
cosh(2γ)



 .

This confirms the result of c) as

K = det II = − 1

cosh2(2γ)
.
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j) We know that the integral of the curvature of S2 is 4π. So, the integral
of the curvature of S2 without the North and South poles is also 4π.
S2 without the North and South poles is diffeomorphic to a cylinder.
Thus, all we have to do is pull-back the metric of the S2 without the
North and South poles to the cylinder. The metric of S2 is

ds2 = dσ2 + sin2 σ dθ2.

We consider the diffeomorphism

(γ, θ) −→ (σ, θ) with σ =
π

2
− arctan γ.

Note that

γ = +∞ ⇒ σ = 0,

γ = −∞ ⇒ σ = π.

In order to compute the pull-back of the metric, note that

dσ =
1

1 + γ2
dγ

and

sin σ = sin
(π

2
− arctan γ

)

= cos(arctan γ)

= cos z when z = arctan γ ⇔ γ = tan z

=
1

√

1 + γ2
.

Hence, the pull-back of the metric of the S2 without the North and
South poles to the cylinder is

ds2 =
1

(1 + γ2)2
dγ2 +

1

1 + γ2
dθ2.


