## Riemannian Geometry, Fall 2016/17 Instituto Superior Técnico, Pedro Girão

The 2nd Test, given on January 18, 2017, consists of this problem

1. Consider the one-sheeted hyperboloid

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=1\right\}
$$

with coordinates

$$
(x, y, z)=(\cosh \gamma \cos \theta, \cosh \gamma \sin \theta, \sinh \gamma),
$$

and metric induced by the euclidean metric of $\mathbb{R}^{3}$.

a) The lines $x=1 \wedge y=z$ e $x=1 \wedge y=-z$ are contained in $M$. Are they geodesics of $M$ ?
b) Check that in coordinates $(\gamma, \theta)$ the metric is written as

$$
d s^{2}=\cosh (2 \gamma) d \gamma^{2}+\cosh ^{2} \gamma d \theta^{2}
$$

c) Using the orthonormal frame

$$
\left(E_{\gamma}, E_{\theta}\right)=\left(\frac{1}{\sqrt{\cosh (2 \gamma)}} \frac{\partial}{\partial \gamma}, \frac{1}{\cosh \gamma} \frac{\partial}{\partial \theta}\right)
$$

and Cartan's structure equations, show that $M$ has curvature

$$
K=-\frac{1}{\cosh ^{2}(2 \gamma)}
$$

Note: It might be useful to check that

$$
\frac{d}{d \gamma} \frac{\sinh \gamma}{\sqrt{\cosh (2 \gamma)}}=\frac{\cosh \gamma}{\sqrt{\cosh ^{3}(2 \gamma)}}, \quad \frac{d}{d \gamma} \frac{\cosh \gamma}{\sqrt{\cosh (2 \gamma)}}=-\frac{\sinh \gamma}{\sqrt{\cosh ^{3}(2 \gamma)}} .
$$

d) Using the connection form $\omega_{\theta}^{\gamma}$, compute the geodesic curvature of the curve

$$
c(s)=\left(\gamma_{0}, \frac{s}{\cosh \gamma_{0}}\right)
$$

where $\gamma_{0} \in \mathbb{R}_{0}^{+}$. Note that $\dot{c}(s)=\left(E_{\theta}\right)_{c(s)}$.
e) Obtain $\left(\tilde{\nabla}_{\dot{c}} \dot{c}\right)^{\top}$ by directly calculating $\tilde{\nabla}_{\dot{c}} \dot{c}$, and then projecting on $E_{\gamma}$ and $E_{\theta}$. Confirm your answer to the previous question.
f) Verify the equality of the Gauss-Bonnet Theorem applied to the portion of $M$ with $0 \leq \gamma \leq \gamma_{0}$.
g) Compute $\int_{M} K$.
h) Compute the Gauss map, that associates to each point of $M$ the unit normal $n$ to $M$ that points to the region in $\mathbb{R}^{3}$ in the interior of $M$.
i) Compute the matrix that represents the second fundamental form of $M$ in the base $\left(E_{\gamma}, E_{\theta}\right)$. Confirm the result of $\mathbf{c}$ ).
j) Consider $M$ only with its differential structure. Do there exist Riemannian metrics on $M$ such that $\int_{M} K=4 \pi$ ? If so, give an example of one of them, writing it explicitly in the coordinates $(\gamma, \theta)$ above. If there do not exist metrics satisfying this condition, explain why.

1. Solution.
a) Yes, the two lines are images of geodesics of $M$. Indeed, consider two points on one of the lines. The segment joining them is the shortest path in $\mathbb{R}^{3}$ between the two points. Since this segment is contained in $M$, it is the shortest path among the family of curves in $M$ joining the two points. Hence, the segment is the image of a geodesic in $M$.
b) As

$$
\begin{aligned}
d x & =\sinh \gamma \cos \theta d \gamma-\cosh \gamma \sin \theta d \theta \\
d y & =\sinh \gamma \sin \theta d \gamma+\cosh \gamma \cos \theta d \theta \\
d z & =\cosh \gamma d \theta
\end{aligned}
$$

we have

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}=\cosh (2 \gamma) d \gamma^{2}+\cosh ^{2} \gamma d \theta^{2} .
$$

c) The dual frame is

$$
\omega^{\gamma}=\sqrt{\cosh (2 \gamma)} d \gamma, \quad \omega^{\theta}=\cosh \gamma d \theta
$$

Using the Cartran structure equations

$$
\begin{aligned}
d \omega^{\gamma} & =0=-\omega_{\theta}^{\gamma} \wedge \omega^{\theta} \\
d \omega^{\theta} & =\sinh \gamma d \gamma \wedge d \theta=-\omega_{\gamma}^{\theta} \wedge \omega^{\gamma}=-\omega_{\gamma}^{\theta} \wedge \sqrt{\cosh (2 \gamma)} d \gamma
\end{aligned}
$$

we obtain the connection form

$$
\omega_{\gamma}^{\theta}=\frac{\sinh \gamma}{\sqrt{\cosh (2 \gamma)}} d \theta
$$

To get the curvature form, we compute

$$
\begin{aligned}
d \omega_{\gamma}^{\theta} & =\frac{\cosh \gamma}{\sqrt{\cosh ^{3}(2 \gamma)}} d \gamma \wedge d \theta=R_{\gamma \theta \gamma}{ }^{\theta} \omega^{\gamma} \wedge \omega^{\theta} \\
& =R_{\gamma \theta \gamma \theta} \sqrt{\cosh (2 \gamma)} \cosh \gamma d \gamma \wedge d \theta .
\end{aligned}
$$

So,

$$
R_{\gamma \theta \gamma \theta}=\frac{1}{\cosh ^{2}(2 \gamma)}
$$

and

$$
K=-R_{\gamma \theta \gamma \theta}=-\frac{1}{\cosh ^{2}(2 \gamma)}
$$

d) The velocity is

$$
\dot{c}(s)=\frac{1}{\cosh \gamma_{0}}\left(\frac{\partial}{\partial \theta}\right)=E_{\theta} .
$$

Note that $\left(E_{\theta},-E_{\gamma}\right)$ has positive orientation. The geodesic curvature is

$$
\begin{aligned}
k_{g} & =\left(\nabla_{E_{\theta}} E_{\theta},-E_{\gamma}\right)=-\omega_{\theta}^{\gamma}\left(E_{\theta}\right)=\omega_{\gamma}^{\theta}\left(E_{\theta}\right) \\
& =\frac{\sinh \gamma}{\sqrt{\cosh (2 \gamma)}} d \theta\left(\frac{1}{\cosh \gamma} \frac{\partial}{\partial \theta}\right)=\frac{\tanh \gamma}{\sqrt{\cosh (2 \gamma)}} .
\end{aligned}
$$

e) The derivatives of $c$ are

$$
\begin{aligned}
c(s) & =\left(\cosh \gamma_{0} \cos \left(\frac{s}{\cosh \gamma_{0}}\right), \cosh \gamma_{0} \sin \left(\frac{s}{\cosh \gamma_{0}}\right), \sinh \gamma_{0}\right), \\
\dot{c}(s) & =\left(-\sin \left(\frac{s}{\cosh \gamma_{0}}\right), \cos \left(\frac{s}{\cosh \gamma_{0}}\right), 0\right), \\
\tilde{\nabla}_{\dot{c}(s)} \dot{c}(s) & =\ddot{c}(s)=-\frac{1}{\cosh \gamma_{0}}\left(\cos \left(\frac{s}{\cosh \gamma_{0}}\right), \sin \left(\frac{s}{\cosh \gamma_{0}}\right), 0\right) .
\end{aligned}
$$

The vectors $E_{\gamma}$ and $E_{\theta}$ have coordinates in $\mathbb{R}^{3}$ equal to

$$
\begin{aligned}
E_{\gamma} & =\frac{1}{\sqrt{\cosh (2 \gamma)}}(\sinh \gamma \cos \theta, \sinh \gamma \sin \theta, \cosh \gamma) \\
E_{\theta} & =\frac{1}{\cosh \gamma}(-\cosh \gamma \sin \theta, \cosh \gamma \cos \theta, 0)
\end{aligned}
$$

We compute the projections of $\tilde{\nabla}_{\dot{c}(s)} \dot{c}(s)$ on $E_{\gamma}$ and $E_{\theta}$ :

$$
\left(\tilde{\nabla}_{\dot{c}(s)} \dot{c}(s), E_{\gamma}\right)=-\frac{\tanh \gamma}{\sqrt{\cosh (2 \gamma)}}, \quad\left(\tilde{\nabla}_{\dot{c}(s)} \dot{c}(s), E_{\theta}\right)=0
$$

We conclude that

$$
\begin{aligned}
\left(\nabla_{\dot{c}(s)} \dot{c}(s)\right)^{\top} & =\left(\tilde{\nabla}_{\dot{c}(s)} \dot{c}(s),-E_{\gamma}\right)\left(-E_{\gamma}\right)+\left(\tilde{\nabla}_{\dot{c}(s)} \dot{c}(s), E_{\theta}\right) E_{\theta} \\
& =\frac{\tanh \gamma}{\sqrt{\cosh (2 \gamma)}}\left(-E_{\gamma}\right)
\end{aligned}
$$

This confirms that the geodesic curvature of $c$ is $\frac{\tanh \gamma_{0}}{\sqrt{\cosh \left(2 \gamma_{0}\right)}}$.
f) Let $S$ be the portion of $M$ with $0 \leq \gamma \leq \gamma_{0}$. According to the GaussBonnet Theorem,

$$
\int_{S} K+\int_{\partial S} k_{g}=2 \pi \chi=0
$$

because the Euler characteristic of the $S$ is 0 (as $\frac{\partial}{\partial \gamma}$ is a nonvanishing vector field). We verify this equality by noting that the two terms on the left-hand side cancel each other:

$$
\begin{aligned}
\int_{S} K & =\int_{S}-\frac{1}{\cosh ^{2}(2 \gamma)} \omega^{\gamma} \wedge \omega^{\theta} \\
& =-\int_{S} \frac{1}{\cosh ^{2}(2 \gamma)} \sqrt{\cosh (2 \gamma)} \cosh \gamma d \gamma \wedge d \theta \\
& =-2 \pi \int_{0}^{\gamma_{0}} \frac{\cosh \gamma}{\sqrt{\cosh ^{3}(2 \gamma)}} d \gamma \\
& =-2 \pi \frac{\sinh \gamma_{0}}{\sqrt{\cosh \left(2 \gamma_{0}\right)}} \\
\int_{\partial S} k_{g} & =\int_{-\pi}^{\pi} \frac{\tanh \gamma_{0}}{\sqrt{\cosh \left(2 \gamma_{0}\right)}} \cosh \gamma_{0} d \theta=2 \pi \frac{\sinh \gamma_{0}}{\sqrt{\cosh \left(2 \gamma_{0}\right)}}
\end{aligned}
$$

The frame $\left(E_{\gamma}, E_{\theta}\right)$ is positively oriented. We remark that $E_{\gamma}$ points out of $S$ on the portion of $\partial S$ where $\gamma=\gamma_{0}>0$, and so $E_{\theta}$ gives the positive orientation of the portion of $\partial S$ where $\gamma=\gamma_{0}>0$. The orientation of $\gamma=0$ is $-E_{\theta}$.
g) The integral of the curvature on $M$ is

$$
\int_{M} K=2 \lim _{\gamma_{0} \rightarrow \infty} \int_{S} K=-4 \pi \lim _{\gamma_{0} \rightarrow \infty} \frac{\sinh \gamma_{0}}{\sqrt{\cosh \left(2 \gamma_{0}\right)}}=-2 \sqrt{2} \pi
$$

h) The normal to $M$ which points to the region in $\mathbb{R}^{3}$ in the interior of $M$ is

$$
\begin{aligned}
n & =-\frac{\nabla\left(x^{2}+y^{2}-z^{2}\right)}{\left\|\nabla\left(x^{2}+y^{2}-z^{2}\right)\right\|}=\frac{(-x,-y, z)}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\frac{1}{\sqrt{\cosh (2 \gamma)}}(-\cosh \gamma \cos \theta,-\cosh \gamma \sin \theta, \sinh \gamma) \\
& =E_{\gamma} \times E_{\theta} .
\end{aligned}
$$

i) The derivative of $n$ (considered as a function of $(\gamma, \theta)$ ) is

$$
(D n)(\gamma, \theta)=\left[\begin{array}{cc}
\frac{\sinh \gamma}{\sqrt{\cosh ^{3}(2 \gamma)}} \cos \theta & \frac{\cosh \gamma}{\sqrt{\cosh (2 \gamma)}} \sin \theta \\
\frac{\sinh \gamma}{\sqrt{\cosh ^{3}(2 \gamma)}} \sin \theta & -\frac{\cosh \gamma}{\sqrt{\cosh (2 \gamma)}} \cos \theta \\
\frac{\cosh ^{2}}{\sqrt{\cosh ^{3}(2 \gamma)}} & 0
\end{array}\right]
$$

The derivatives of $n$ with respect to $E_{\gamma}$ and $E_{\theta}$ are

$$
\begin{aligned}
\tilde{\nabla}_{E_{\gamma}} n & =\frac{1}{\sqrt{\cosh \gamma}} \frac{\partial}{\partial \gamma} n=\frac{1}{\cosh ^{2}(2 \gamma)}(\sinh \gamma \cos \theta, \sinh \gamma \sin \theta, \cosh \gamma) \\
\tilde{\nabla}_{E_{\theta}} n & =\frac{1}{\cosh \gamma} \frac{\partial}{\partial \theta} n=\frac{1}{\sqrt{\cosh (2 \gamma)}}(\sin \theta,-\cos \theta, 0)
\end{aligned}
$$

The components of the second fundamental form are

$$
\begin{array}{ll}
\left(-\tilde{\nabla}_{E_{\gamma}} n, E_{\gamma}\right)=-\frac{1}{\sqrt{\cosh ^{3}(2 \gamma)}}, & \left(-\tilde{\nabla}_{E_{\theta}} n, E_{\gamma}\right)=0 \\
\left(-\tilde{\nabla}_{E_{\gamma}} n, E_{\theta}\right)=0, & \left(-\tilde{\nabla}_{E_{\theta}} n, E_{\theta}\right)=\frac{1}{\sqrt{\cosh (2 \gamma)}}
\end{array}
$$

The second fundamental form is

$$
\mathrm{II}(\gamma, \theta)=\left[\begin{array}{cc}
-\frac{1}{\sqrt{\cosh ^{3}(2 \gamma)}} & 0 \\
0 & \frac{1}{\sqrt{\cosh (2 \gamma)}}
\end{array}\right]
$$

This confirms the result of $\mathbf{c}$ ) as

$$
K=\operatorname{det} \mathrm{II}=-\frac{1}{\cosh ^{2}(2 \gamma)}
$$

j) We know that the integral of the curvature of $S^{2}$ is $4 \pi$. So, the integral of the curvature of $S^{2}$ without the North and South poles is also $4 \pi$. $S^{2}$ without the North and South poles is diffeomorphic to a cylinder. Thus, all we have to do is pull-back the metric of the $S^{2}$ without the North and South poles to the cylinder. The metric of $S^{2}$ is

$$
d s^{2}=d \sigma^{2}+\sin ^{2} \sigma d \theta^{2} .
$$

We consider the diffeomorphism

$$
(\gamma, \theta) \longrightarrow(\sigma, \theta) \quad \text { with } \sigma=\frac{\pi}{2}-\arctan \gamma .
$$

Note that

$$
\begin{aligned}
& \gamma=+\infty \Rightarrow \sigma=0, \\
& \gamma=-\infty \Rightarrow \sigma=\pi .
\end{aligned}
$$

In order to compute the pull-back of the metric, note that

$$
d \sigma=\frac{1}{1+\gamma^{2}} d \gamma
$$

and

$$
\begin{aligned}
\sin \sigma & =\sin \left(\frac{\pi}{2}-\arctan \gamma\right)=\cos (\arctan \gamma) \\
& =\cos z \quad \text { when } z=\arctan \gamma \Leftrightarrow \gamma=\tan z \\
& =\frac{1}{\sqrt{1+\gamma^{2}}}
\end{aligned}
$$

Hence, the pull-back of the metric of the $S^{2}$ without the North and South poles to the cylinder is

$$
d s^{2}=\frac{1}{\left(1+\gamma^{2}\right)^{2}} d \gamma^{2}+\frac{1}{1+\gamma^{2}} d \theta^{2}
$$

