Riemannian Geometry
 $2^{\text {nd }}$ Test - January 22, 2021
 LMAC and MMA

Duration: 90 minutes
Show your calculations
Consider $\mathbb{R}^{2} \times S^{1}$ with metric

$$
g=\mathrm{d} \psi^{2}+\sinh ^{2} \psi \mathrm{~d} \varphi^{2}+\cosh ^{2} \psi \mathrm{~d} \theta^{2} .
$$

The frames

$$
X_{\psi}=\partial_{\psi}, \quad X_{\varphi}=\frac{1}{\sinh \psi} \partial_{\varphi}, \quad X_{\theta}=\frac{1}{\cosh \psi} \partial_{\theta},
$$

and

$$
\omega^{\psi}=\mathrm{d} \psi, \quad \omega^{\varphi}=\sinh \psi \mathrm{d} \varphi, \quad \omega^{\theta}=\cosh \psi \mathrm{d} \theta
$$

are dual and orthonormal.
a) Check that the connection forms are given by

$$
\begin{equation*}
\omega_{\varphi}^{\psi}=-\cosh \psi \mathrm{d} \varphi, \quad \omega_{\theta}^{\psi}=-\sinh \psi \mathrm{d} \theta, \quad \omega_{\theta}^{\varphi}=0 \tag{2}
\end{equation*}
$$

b) Show that the curvature forms are given by

$$
\begin{equation*}
\Omega_{\varphi}^{\psi}=-\omega^{\psi} \wedge \omega^{\varphi}, \quad \Omega_{\theta}^{\psi}=-\omega^{\psi} \wedge \omega^{\theta}, \quad \Omega_{\theta}^{\varphi}=-\omega^{\varphi} \wedge \omega^{\theta} . \tag{2}
\end{equation*}
$$

c) Show that the sectional curvatures of the planes spanned by any two of $\left\{X_{\psi}, X_{\varphi}, X_{\theta}\right\}$ are all equal. This, of course, implies that the manifold has constant sectional curvature. Write the curvature tensor.
d) Consider the two dimensional manifold M described by $\theta=\tanh \psi$, for $\psi>0$. The frame

$$
\left(X_{\varphi}, Y, N\right):=\left(X_{\varphi}, \frac{\cosh \psi X_{\psi}+X_{\theta}}{\sqrt{1+\cosh ^{2} \psi}}, \frac{-X_{\psi}+\cosh \psi X_{\theta}}{\sqrt{1+\cosh ^{2} \psi}}\right)
$$

is orthonormal. Show that X_{φ} and Y are tangent to M.
e) Using the connection forms of the metric g, calculate $\nabla_{X_{\varphi}} X_{\varphi}$, where ∇ denotes the Levi-Civita connection of g.
f) Calculate $\bar{\nabla}_{X_{\varphi}} X_{\varphi}$, where $\bar{\nabla}$ is the Levi-Civita connection on M. What are the normal curvature and the geodesic curvature of the integral curves of X_{φ} ?
g) Knowing that

$$
\nabla_{X_{\varphi}} N=-\frac{\operatorname{coth} \psi}{\sqrt{1+\cosh ^{2} \psi}} X_{\varphi}, \quad \nabla_{Y} N=-\frac{\tanh \psi}{\sqrt{\left(1+\cosh ^{2} \psi\right)^{3}}} Y
$$

calculate the matrix that represents the second fundamental form of M in the basis $\left(X_{\varphi}, Y\right)$. Use it to calculate the curvature of M.
h) Recall that a Killing vector field K is a vector field satisfying

$$
\left(\nabla_{X} K, Y\right)+\left(\nabla_{Y} K, X\right)=0, \quad \text { for all vector fields } X \text { and } Y
$$

Suppose that S is a hypersurface orthogonal to a nonvanishing Killing vector field K (as $\varphi=$ constant is orthogonal to ∂_{φ}, or as $\theta=$ constant is orthogonal to ∂_{θ}, for example). Show that S is totally geodesic.

