Riemannian Geometry

$2^{\text {nd }}$ Test - January 21, 2020
LMAC and MMA
Duration: 180 minutes
Show your calculations
Consider \mathbb{R}^{3} with the Euclidean metric, and consider the hyperbolic paraboloid \mathcal{M}, parameterized by $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, defined by

$$
\phi(x, y)=(x, y, x y)
$$

with the induced metric g.
a) Write the metric g in the local coordinates (x, y).
b) Consider the frame

$$
\begin{equation*}
\left(E_{1}, E_{2}\right)=\left(\frac{x \partial_{x}-y \partial_{y}}{r}, \frac{y \partial_{x}+x \partial_{y}}{r \rho}\right) \tag{1}
\end{equation*}
$$

where

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \rho=\sqrt{1+x^{2}+y^{2}}
$$

Check that it is orthonormal and that its dual frame is

$$
\left(\omega^{1}, \omega^{2}\right)=\left(\frac{x d x-y d y}{r}, \frac{\rho(y d x+x d y)}{r}\right)
$$

Calculate the volume form $\omega^{1} \wedge \omega^{2}$.
c) Check that

$$
\begin{equation*}
d\left(\frac{1}{r}\right)=-\frac{x}{r^{3}} d x-\frac{y}{r^{3}} d y \quad \text { and } \quad d \rho=\frac{x}{\rho} d x+\frac{y}{\rho} d y \tag{2}
\end{equation*}
$$

Compute $d \omega^{1}$. Another simple computation shows that

$$
\begin{equation*}
d \omega^{2}=\frac{1}{r^{3} \rho}\left(y^{2}-x^{2}\right) d x \wedge d y \tag{2}
\end{equation*}
$$

d) Writing the connection form ω_{2}^{1} as $\omega_{2}^{1}=a d x+b d y$, arrive at a system
of linear equations for (a, b), and check that its solution is

$$
(a, b)=\frac{1}{r^{2} \rho}(-y, x)
$$

e) Check that the curvature form Ω_{1}^{2} is given by

$$
\begin{equation*}
\Omega_{1}^{2}=\frac{1}{\rho^{3}} d x \wedge d y \tag{2}
\end{equation*}
$$

What is the curvature of \mathcal{M} ?
f) Let $\alpha \in \mathbb{R} \backslash\{0\}$. Show that E_{1} is tangent to the hyperbola $\{(x, y) \in$ $\left.\mathbb{R}^{2}: x y=\alpha\right\}$. Compute its geodesic curvature.
g) Compute $\tilde{E}_{1}=\phi_{*} E_{1}$ and $\tilde{E}_{2}=\phi_{*} E_{2}$. What are the norms of \tilde{E}_{1} and \tilde{E}_{2} ? Why? Calculate $N:=\tilde{E}_{1} \times \tilde{E}_{2}$.
h) Denote by $\tilde{\nabla}$ the Levi-Civita connection of \mathbb{R}^{3} with the Euclidean metric. Calculate $\tilde{\nabla}_{\tilde{E}_{1}} N$ and $\left(\tilde{\nabla}_{\tilde{E}_{1}} N, \tilde{E}_{1}\right)$.
i) What is the matrix representation S of the second fundamental form of \mathcal{M} with respect to the basis $\left(\tilde{E}_{1}, \tilde{E}_{2}\right)$? Explain. You don't have to compute the entries of S in terms of the coordinates x and y.
j) Let $a>0$. Use the Gauss-Bonnet Theorem and the geometric meaning of the geodesic curvature to determine

$$
I(a):=\iint_{[0, a]^{2}} K \omega^{1} \wedge \omega^{2} .
$$

What is $\lim _{a \rightarrow+\infty} I(a)$?
Suggestion: What are $\phi(a, y)$ and $\phi(x, a)$?

