Riemannian Geometry 2nd Test - January 17, 2018 LMAC and MMA

Duration: 120 minutes Show your calculations

1. Consider \mathbb{R}^3 with the euclidean metric, here written in cylindrical coordinates,

$$ds^2 = dw^2 + dr^2 + r^2 d\varphi^2.$$

Consider also the Flamm paraboloid \mathcal{P} , defined by

$$\left\{(w,r,\varphi)\in[0,+\infty[\times[1,+\infty[\times[0,2\pi[\colon w=2\sqrt{r-1}\:]$$

with the induced metric.

- a) Write the metric induced on \mathcal{P} . (2)
- b) Consider the frame (2)

$$(E_r, E_{\varphi}) = \left(\sqrt{\frac{r-1}{r}}\partial_r, \frac{1}{r}\partial_{\varphi}\right)$$

and the dual coframe $(\omega^r, \omega^{\varphi})$. Calculate the connection form ω_r^{φ} .

- c) Compute the curvature form Ω_r^{φ} , $R_{r\varphi r\varphi}$ and the curvature K of \mathcal{P} . (2)
- d) Consider the curve c parameterized by (2)

$$c(t) = \left(r, \frac{t}{r}\right).$$

Calculate the geodesic curvature of c.

- e) Check the Gauss-Bonnet Theorem for the region $\mathcal{R} = [1, r_1] \times [0, 2\pi[$. (2) f) Let $X = X^r E_r + X^{\varphi} E_{\varphi}$ and ∇ be the Levi-Civita connection for the
- f) Let $X = X^r E_r + X^{\varphi} E_{\varphi}$ and ∇ be the Levi-Civita connection for the metric induced on \mathcal{P} . Write $\nabla_{E_{\varphi}} X$ in terms of $E_{\varphi} \cdot X^r$, $E_{\varphi} \cdot X^{\varphi}$ and $\omega_r^{\varphi}(E_{\varphi})$. Write the first order system satisfied by (X^r, X^{φ}) if X is parallel along the curve c. Solve the system if $X(c(0)) = X_0^r E_r + X_0^{\varphi} E_{\varphi}$. Write $X(c(2\pi r))$.
- **g)** Write E_r and E_{φ} in the frame $(\partial_r, \partial_{\varphi}, \partial_w)$. Write also the unit normal to \mathcal{P} with positive ∂_w component in the frame $(\partial_r, \partial_{\varphi}, \partial_w)$.
- h) Obtain the equations for the geodesics of the euclidean metric in cylindrical coordinates and write the Christoffel symbols. (2)
- i) Let $\tilde{\nabla}$ be the Levi-Civita connection for the euclidean metric on \mathbb{R}^3 . (3) Calculate $\tilde{\nabla}_{E_r} E_r$, $\tilde{\nabla}_{E_{\varphi}} E_r$ and $\tilde{\nabla}_{E_{\varphi}} E_{\varphi}$. Calculate the second fundamental form of \mathcal{P} .