Riemannian Geometry

$1^{\text {st }}$ Test - November 15, 2019
LMAC and MMA

Solutions

1.

a) Let $f: U(n) \rightarrow S^{1}$ be defined by $f(A)=\operatorname{det} A$. Indeed, for $A \in U(n)$,

$$
1=\operatorname{det} I=\operatorname{det}\left(A^{*} A\right)=\operatorname{det}\left(A^{*}\right) \operatorname{det} A=\overline{\operatorname{det} A} \operatorname{det} A=|\operatorname{det} A|^{2}
$$

so f has range in S^{1}. We show that 1 is a regular value of f. Note that the tangent space to S^{1} at 1 is $i \mathbb{R}$. Let $A \in U(n)$ be such that $\operatorname{det} A=1$ and $B \in T_{A} U(n)$ (i.e. $A^{*} B+B^{*} A=0$). Then

$$
D f(A)(B)=\left.\frac{d}{d t} \operatorname{det}(A+t B)\right|_{t=0}=\operatorname{det} A \operatorname{tr}\left(A^{-1} B\right)=\operatorname{tr}\left(A^{*} B\right)
$$

Given $i y \in T_{1} S^{1}$, for a $y \in \mathbb{R}$, let $B=\frac{i y}{n} A$. Note that $B \in T_{A} U(n)$. Since $\operatorname{Df}(A)(B)=i y, A$ is a regular point of f. As A is arbitrary, 1 is a regular value of f. Thus $S U(n)=f^{-1}(1)$ is a submanifold of $U(n)$ of dimension equal to dimension of $U(n)$ minus dimension of S^{1}, that is $n^{2}-1$. $\mathfrak{s u}(n)=\{B \in \mathfrak{u}(n): \operatorname{tr} B=0\}=\left\{B \in M_{n \times n}: B^{*}=\right.$ $-B$ and $\operatorname{tr} B=0\}$. Of course, the dimensions of $S U(n)$ and $\mathfrak{s u}(n)$ coincide.
b) Calling

$$
B=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

the left invariant vector field that is B at the identity is $X_{A}=D L_{A} B=$ $A B$. Note that $X_{A} \in T_{A} S U(n)$ since $A^{*} X_{A}+X_{A}^{*} A=B+B^{*}=0$ and $\operatorname{tr}\left(X_{A}^{*} A\right)=\operatorname{tr} B^{*}=0$.
2.
a) The area of D is

$$
\begin{aligned}
\int_{D} \omega & =\int_{-1}^{1} \int_{2-\sqrt{1-x^{2}}}^{2+\sqrt{1-x^{2}}} \frac{1}{y^{2}} d y d x \\
& =\int_{-1}^{1}\left(\frac{1}{2-\sqrt{1-x^{2}}}-\frac{1}{2+\sqrt{1-x^{2}}}\right) d x \\
& =2 \int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{3+x^{2}} d x \\
& =2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{2} \theta}{3+\sin ^{2} \theta} d \theta \\
& =\left.2\left(\frac{2}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}} \tan \theta\right)-\theta\right)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \\
& =2 \pi\left(\frac{2}{\sqrt{3}}-1\right)
\end{aligned}
$$

b) Using Stokes' Theorem, we have

$$
\int_{D} \frac{d x \wedge d y}{y^{2}}=\int_{D} d\left(\frac{d x}{y}\right)=\int_{\partial D} \frac{d x}{y}=\int_{-\pi}^{\pi} \frac{-\sin \theta}{2+\sin \theta} d \theta
$$

We have used the parameterization that was suggested.
c) Clearly, $\left(E_{1}, E_{1}\right)=\left(E_{2}, E_{2}\right)=1$ and $\left(E_{1}, E_{2}\right)=0$. The vectors

$$
(\cos \theta, 2+\sin \theta)^{\prime}=(-\sin \theta, \cos \theta)=(2-y, x)
$$

are tangent to ∂D, so E_{1} is tangent to ∂D. The dual frame $\left(\omega^{1}, \omega^{2}\right)$ is

$$
\begin{aligned}
\omega^{1} & =\frac{1}{\rho y}((2-y) d x+x d y) \\
\omega^{2} & =\frac{1}{\rho y}(-x d x+(2-y) d y)
\end{aligned}
$$

d) As an auxiliary computation,

$$
d\left(\frac{1}{\rho}\right)=-\frac{1}{\rho^{3}}(x d x+(y-2) d y) .
$$

Hence, we have that

$$
\begin{aligned}
d \omega^{1} & =\left(-\frac{1}{\rho^{3} y}\left(x^{2}+(y-2)^{2}\right)+\frac{2}{\rho y^{2}}+\frac{1}{\rho y}\right) d x \wedge d y \\
& =\frac{2}{\rho y^{2}} d x \wedge d y \\
d \omega^{2} & =\left(-\frac{1}{\rho^{3} y}(x(2-y)+x(y-2))-\frac{x}{\rho y^{2}}+\frac{1}{\rho y}\right) d x \wedge d y \\
& =-\frac{x}{\rho y^{2}} d x \wedge d y
\end{aligned}
$$

e) We wish to determine $\omega_{1}^{2}=a d x+b d y$ such that

$$
\begin{aligned}
\frac{2}{\rho y^{2}} d x \wedge d y & =-\frac{1}{\rho y}(-x d x+(2-y) d y) \wedge(a d x+b d y) \\
-\frac{x}{\rho y^{2}} d x \wedge d y & =\frac{1}{\rho y}((2-y) d x+x d y) \wedge(a d x+b d y)
\end{aligned}
$$

So,

$$
\left[\begin{array}{cc}
2-y & x \\
-x & 2-y
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
+\frac{2}{y} \\
-\frac{x}{y}
\end{array}\right] .
$$

The solution of this system is

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{1}{\rho^{2} y}\left[\begin{array}{c}
4-2 y+x^{2} \\
x y
\end{array}\right] .
$$

Therefore,

$$
\omega_{1}^{2}=\frac{1}{\rho^{2} y}\left(\left(4-2 y+x^{2}\right) d x+x y d y\right) .
$$

f) The geodesic curvature of ∂D is

$$
k_{g}=\omega_{1}^{2}\left(E_{1}\right)=\frac{1}{\rho^{3}}\left(\left(4-2 y+x^{2}\right)(2-y)+(x y) x\right)=\frac{2}{\rho}=2,
$$

because $\rho=1$ on ∂D.
g) If we parameterize ∂D as in b), using $(x(\theta), y(\theta))=(\cos \theta, 2+\sin \theta)$, $\theta \in]-\pi, \pi[$, then

$$
\|(\dot{x}(\theta), \dot{y}(\theta))\|=\frac{1}{y}=\frac{1}{2+\sin \theta}
$$

Using the result of \mathbf{b}), we have that

$$
\int_{D} K \omega+\int_{\partial D} k_{g} d s=\int_{-\pi}^{\pi} \frac{\sin \theta}{2+\sin \theta} d \theta+\int_{-\pi}^{\pi} \frac{2}{2+\sin \theta} d \theta=2 \pi
$$

3. Let ω be a closed form in $\Omega^{1}\left(S^{2}\right)$. Choose one point $x_{0} \in S^{2}$, say the north pole. Define the function $\eta: S^{2} \rightarrow \mathbb{R}$ by

$$
\eta(x)=\int_{\gamma} \omega
$$

where γ is a piece of a meridian connecting x_{0} to x. Note that it does not matter which of the two pieces of meridian you choose, since (if x is not the south pole) their union forms a great circle, C, and, according to Stokes' Theorem,

$$
\int_{C} \omega=\int_{D} d \omega=0
$$

where D is a hemisphere. In fact, because of Stokes' Theorem and because ω is closed, the integral in the definition of η does not depend on γ, as long as it is a smooth curve connecting x_{0} to x. Moreover, if we were to replace x_{0} by $\tilde{x_{0}}$, then η would change by a constant to $\tilde{\eta}$, since $\tilde{\eta}=\eta+\int_{\tilde{x}_{0}}^{x_{0}} \omega$.

We claim that $d \eta=\omega$. To prove this, we pick $X \in \mathcal{X}\left(S^{2}\right)$ and compute $(d \eta)_{x}\left(X_{x}\right)$. Taking into account the previous paragraph, without loss of generality, we may assume that $x \neq x_{0}$ and X_{x} is tangent to the meridian that connects x_{0} to x. Let $c: \mathbb{R} \rightarrow S^{2}$ parameterize such a meridian with $c(0)=x$ and $\dot{c}(0)=X_{x}$. Then, by the Fundamental Theorem of Calculus,

$$
\begin{aligned}
(d \eta)_{x}\left(X_{x}\right) & =\left.\frac{d}{d \sigma}(\eta \circ c)(\sigma)\right|_{\sigma=0}=\frac{d}{d \sigma} \int_{0}^{\sigma} \omega_{c(\sigma)}(\dot{c}(\sigma)) d \sigma \\
& =\omega_{c(0)}(\dot{c}(0))=\omega_{x}\left(X_{x}\right) .
\end{aligned}
$$

Since x and X_{x} are arbitrary, $d \eta=\omega$ and ω is exact.

