
Riemannian Geometry
1st Test - November 15, 2019

LMAC and MMA

Solutions

1.

a) Let f : U(n) → S1 be defined by f(A) = detA. Indeed, for A ∈ U(n),

1 = det I = det(A∗A) = det(A∗) detA = detA detA = | detA|2,

so f has range in S1. We show that 1 is a regular value of f . Note
that the tangent space to S1 at 1 is iR. Let A ∈ U(n) be such that
detA = 1 and B ∈ TAU(n) (i.e. A∗B +B∗A = 0). Then

Df(A)(B) =
d

dt
det(A + tB)

∣

∣

∣

∣

t=0

= detA tr (A−1B) = tr (A∗B).

Given iy ∈ T1S
1, for a y ∈ R, let B = iy

n
A. Note that B ∈ TAU(n).

Since Df(A)(B) = iy, A is a regular point of f . As A is arbitrary,
1 is a regular value of f . Thus SU(n) = f−1(1) is a submanifold of
U(n) of dimension equal to dimension of U(n) minus dimension of S1,
that is n2 − 1. su(n) = {B ∈ u(n) : trB = 0} = {B ∈ Mn×n : B∗ =
−B and trB = 0}. Of course, the dimensions of SU(n) and su(n)
coincide.

b) Calling

B =

[

i 0
0 −i

]

,

the left invariant vector field that is B at the identity is XA = DLAB =
AB. Note that XA ∈ TASU(n) since A∗XA +X∗

AA = B +B∗ = 0 and
tr (X∗

AA) = trB∗ = 0.
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2.

a) The area of D is

∫

D

ω =

∫ 1

−1

∫ 2+
√
1−x2

2−
√
1−x2

1

y2
dy dx

=

∫ 1

−1

(

1

2−
√
1− x2

− 1

2 +
√
1− x2

)

dx

= 2

∫ 1

−1

√
1− x2

3 + x2
dx

= 2

∫ π

2

− π

2

cos2 θ

3 + sin2 θ
dθ

= 2

(

2√
3
arctan

(

2√
3
tan θ

)

− θ

)
∣

∣

∣

∣

π

2

− π

2

= 2π

(

2√
3
− 1

)

.

b) Using Stokes’ Theorem, we have

∫

D

dx ∧ dy

y2
=

∫

D

d

(

dx

y

)

=

∫

∂D

dx

y
=

∫ π

−π

− sin θ

2 + sin θ
dθ.

We have used the parameterization that was suggested.
c) Clearly, (E1, E1) = (E2, E2) = 1 and (E1, E2) = 0. The vectors

(cos θ, 2 + sin θ)′ = (− sin θ, cos θ) = (2− y, x)

are tangent to ∂D, so E1 is tangent to ∂D. The dual frame (ω1, ω2) is

ω1 = 1
ρy
((2− y) dx+ x dy),

ω2 = 1
ρy
(−x dx+ (2− y) dy).

d) As an auxiliary computation,

d

(

1

ρ

)

= − 1

ρ3
(x dx+ (y − 2) dy).
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Hence, we have that

dω1 =

(

− 1

ρ3y
(x2 + (y − 2)2) +

2

ρy2
+

1

ρy

)

dx ∧ dy

=
2

ρy2
dx ∧ dy,

dω2 =

(

− 1

ρ3y
(x(2− y) + x(y − 2))− x

ρy2
+

1

ρy

)

dx ∧ dy

= − x

ρy2
dx ∧ dy.

e) We wish to determine ω2
1 = a dx+ b dy such that

2

ρy2
dx ∧ dy = − 1

ρy
(−x dx+ (2− y) dy) ∧ (a dx+ b dy),

− x

ρy2
dx ∧ dy =

1

ρy
((2− y) dx+ x dy) ∧ (a dx+ b dy).

So,
[

2− y x

−x 2− y

] [

a

b

]

=

[

+ 2
y

− x
y

]

.

The solution of this system is
[

a

b

]

=
1

ρ2y

[

4− 2y + x2

xy

]

.

Therefore,
ω2
1 =

1
ρ2y

((4− 2y + x2) dx+ xy dy).

f) The geodesic curvature of ∂D is

kg = ω2
1(E1) =

1

ρ3
((4− 2y + x2)(2− y) + (xy)x) =

2

ρ
= 2,

because ρ = 1 on ∂D.
g) If we parameterize ∂D as in b), using (x(θ), y(θ)) = (cos θ, 2 + sin θ),

θ ∈ ]− π, π[, then

‖(ẋ(θ), ẏ(θ))‖ =
1

y
=

1

2 + sin θ
.

Using the result of b), we have that
∫

D

Kω +

∫

∂D

kg ds =

∫ π

−π

sin θ

2 + sin θ
dθ +

∫ π

−π

2

2 + sin θ
dθ = 2π.
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3. Let ω be a closed form in Ω1(S2). Choose one point x0 ∈ S2, say the
north pole. Define the function η : S2 → R by

η(x) =

∫

γ

ω

where γ is a piece of a meridian connecting x0 to x. Note that it does not
matter which of the two pieces of meridian you choose, since (if x is not the
south pole) their union forms a great circle, C, and, according to Stokes’
Theorem,

∫

C

ω =

∫

D

dω = 0,

where D is a hemisphere. In fact, because of Stokes’ Theorem and because
ω is closed, the integral in the definition of η does not depend on γ, as long
as it is a smooth curve connecting x0 to x. Moreover, if we were to replace
x0 by x̃0, then η would change by a constant to η̃, since η̃ = η +

∫ x0

x̃0

ω.

We claim that dη = ω. To prove this, we pick X ∈ X (S2) and com-
pute (dη)x(Xx). Taking into account the previous paragraph, without loss of
generality, we may assume that x 6= x0 and Xx is tangent to the meridian
that connects x0 to x. Let c : R → S2 parameterize such a meridian with
c(0) = x and ċ(0) = Xx. Then, by the Fundamental Theorem of Calculus,

(dη)x(Xx) =
d

dσ
(η ◦ c)(σ)

∣

∣

∣

∣

σ=0

=
d

dσ

∫ σ

0

ωc(σ)(ċ(σ)) dσ

= ωc(0)(ċ(0)) = ωx(Xx).

Since x and Xx are arbitrary, dη = ω and ω is exact.


