
Riemannian Geometry
1st Test - November 14, 2017

LMAC and MMA

Solutions

1.

a) O(1, 2) is a subgroup of GL(3). Indeed, suppose A ∈ O(1, 2) and
B ∈ O(1, 2). Then AB ∈ O(1, 2) since

(AB)Λ(AB)T = A(BΛBT )AT = AΛAT = Λ,

and A−1 ∈ O(1, 2) as

AΛAT = Λ ⇒ A−1AΛAT (AT )−1 = A−1Λ(AT )−1 ⇒ Λ = A−1Λ(A−1)T .

b) We denote by S3×3 the space of symmetric 3 × 3 matrices. This is a
6-dimensional space. Let f : M3×3 → S3×3 be defined by

f(A) = AΛAT .

This function is smooth and

Df(A)(B) = AΛBT +BΛAT .

Suppose A ∈ f−1(Λ) and S ∈ TΛS3×3 ≡ S3×3. Choosing B = 1
2
SΛA,

we get

Df(A)

(

1

2
SΛA

)

=
1

2
AΛATΛS +

1

2
SΛAΛAT = S.

This shows that f is a submersion at A. Since A is arbitrary in f−1(Λ),
Λ is a regular value of f . It follows that O(1, 2) = f−1(Λ) is a subma-
nifold of M3×3 of dimension 9− 6 = 3.

c)
TIO(1, 2) = kerDf(I) = {B ∈ M3×3 : BΛ + ΛBT = 0}.

A basis for TIO(1, 2) is {B1, B2, B3}, where

B1 =





0 1 0
1 0 0
0 0 0



 , B2 =





0 0 1
0 0 0
1 0 0



 , B3 =





0 0 0
0 0 −1
0 1 0



 .

One easily checks that [B1, B2] = −B3, [B1, B3] = −B2 and [B2, B3] =
B1.
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d) The tangent space to O(1, 2) at Λ is

TΛO(1, 2) = kerDf(Λ) = {B ∈ M3×3 : B
T = −B}.

e) The left-invariant vector field corresponding to B1 is

XB1

Y := DLY B1 = Y B1.

As

B2
1 =





1 0 0
0 1 0
0 0 0



 ,

we obtain

exp(tB1) =





cosh t sinh t 0
sinh t cosh t 0
0 0 1



 .

2.

a) Let p ∈ S2, and v and w be two linearly independent vectors belonging
to TpS

2. Calling n = x∂x + y∂y + z∂z the unit outer normal to S2, we
have

ω(v, w) = ι(n) dx ∧ dy ∧ dz(v, w) = dx ∧ dy ∧ dz(n, v, w) 6= 0,

because the volume parallelepiped with sides n, v and w is different
from zero. We have

ι(n) dx ∧ dy ∧ dz = (ι(n) dx) ∧ dy ∧ dz

−dx ∧ (ι(n) dy) ∧ dz + dx ∧ dy ∧ (ι(n) dz)

= x dy ∧ dz − y dx ∧ dz + z dy ∧ dz.

b) η = r∗ω = sinϕdϕ ∧ dθ.

c)
∫

S2 ω =
∫ 2π

0

∫ π

0
r∗ω = 4π.

d)

LXη = L∂ϕ(sinϕdϕ ∧ dθ) = (L∂ϕ sinϕ) dϕ ∧ dθ

+ sinϕd(L∂ϕϕ) ∧ dθ

+ sinϕdϕ ∧ d(L∂ϕθ)

= cosϕdϕ ∧ dθ.
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e) Let φt be the flow of X and ψt be the flow of r∗X . Then r ◦φt = ψt ◦ r.
Hence

LXη =
d

dt
φ∗

t η

∣

∣

∣

∣

t=0

=
d

dt
φ∗

t r
∗ω

∣

∣

∣

∣

t=0

=
d

dt
(r ◦ φt)

∗ω

∣

∣

∣

∣

t=0

=
d

dt
(ψt ◦ r)

∗ω

∣

∣

∣

∣

t=0

=
d

dt
r∗ψ∗

tω

∣

∣

∣

∣

t=0

= r∗
d

dt
ψ∗

tω

∣

∣

∣

∣

t=0

= r∗ (Lr∗Xω) .

f)

∫

Ω

Lr∗Xω =

∫

r−1(Ω)

r∗(Lr∗Xω) =

∫

r−1(Ω)

LXη

=

∫ 2π

0

∫ ϕ1

ϕ0

cosϕdϕ ∧ dθ = 2π(sinϕ1 − sinϕ0).

g) Note that r∗(ι(r∗X)ω) = ι(X)η because

[r∗(ι(r∗X)ω)](v, w) = (ι(r∗X)ω)(r∗v, r∗w) = ω(r∗X, r∗v, r∗w)

= r∗ω(X, v, w) = [ι(X)η](v, w).

Moreover,
ι(X)η = ι(∂ϕ) sinϕdϕ ∧ dθ = sinϕdθ.

Therefore,

∫

∂Ω

ι(r∗X)ω =

∫

r−1(∂Ω)

ι(X)η =

∫ 2π

0

sinϕ1 dθ −

∫ 2π

0

sinϕ0 dθ

= 2π(sinϕ1 − sinϕ0).

h) Using Cartan’s formula, we get

Lr∗Xω = ι(r∗X)dω + d(ι(r∗X)ω) = d(ι(r∗X)ω).

According to Stokes’ Theorem, we have

∫

Ω

Lr∗X =

∫

Ω

d(ι(r∗X)ω) =

∫

∂Ω

ι(r∗X)ω.


