Riemannian Geometry

$1^{\text {st }}$ Test - November 14, 2017
LMAC and MMA

Solutions

1.

a) $O(1,2)$ is a subgroup of $G L(3)$. Indeed, suppose $A \in O(1,2)$ and $B \in O(1,2)$. Then $A B \in O(1,2)$ since

$$
(A B) \Lambda(A B)^{T}=A\left(B \Lambda B^{T}\right) A^{T}=A \Lambda A^{T}=\Lambda
$$

and $A^{-1} \in O(1,2)$ as
$A \Lambda A^{T}=\Lambda \Rightarrow A^{-1} A \Lambda A^{T}\left(A^{T}\right)^{-1}=A^{-1} \Lambda\left(A^{T}\right)^{-1} \Rightarrow \Lambda=A^{-1} \Lambda\left(A^{-1}\right)^{T}$.
b) We denote by $\mathcal{S}_{3 \times 3}$ the space of symmetric 3×3 matrices. This is a 6 -dimensional space. Let $f: \mathcal{M}_{3 \times 3} \rightarrow \mathcal{S}_{3 \times 3}$ be defined by

$$
f(A)=A \Lambda A^{T} .
$$

This function is smooth and

$$
D f(A)(B)=A \Lambda B^{T}+B \Lambda A^{T}
$$

Suppose $A \in f^{-1}(\Lambda)$ and $S \in T_{\Lambda} \mathcal{S}_{3 \times 3} \equiv \mathcal{S}_{3 \times 3}$. Choosing $B=\frac{1}{2} S \Lambda A$, we get

$$
D f(A)\left(\frac{1}{2} S \Lambda A\right)=\frac{1}{2} A \Lambda A^{T} \Lambda S+\frac{1}{2} S \Lambda A \Lambda A^{T}=S
$$

This shows that f is a submersion at A. Since A is arbitrary in $f^{-1}(\Lambda)$, Λ is a regular value of f. It follows that $O(1,2)=f^{-1}(\Lambda)$ is a submanifold of $\mathcal{M}_{3 \times 3}$ of dimension $9-6=3$.
c)

$$
T_{I} O(1,2)=\operatorname{ker} D f(I)=\left\{B \in \mathcal{M}_{3 \times 3}: B \Lambda+\Lambda B^{T}=0\right\} .
$$

A basis for $T_{I} O(1,2)$ is $\left\{B_{1}, B_{2}, B_{3}\right\}$, where

$$
B_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad B_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

One easily checks that $\left[B_{1}, B_{2}\right]=-B_{3},\left[B_{1}, B_{3}\right]=-B_{2}$ and $\left[B_{2}, B_{3}\right]=$ B_{1}.
d) The tangent space to $O(1,2)$ at Λ is

$$
T_{\Lambda} O(1,2)=\operatorname{ker} D f(\Lambda)=\left\{B \in \mathcal{M}_{3 \times 3}: B^{T}=-B\right\} .
$$

e) The left-invariant vector field corresponding to B_{1} is

$$
X_{Y}^{B_{1}}:=D L_{Y} B_{1}=Y B_{1} .
$$

As

$$
B_{1}^{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],
$$

we obtain

$$
\exp \left(t B_{1}\right)=\left[\begin{array}{ccc}
\cosh t & \sinh t & 0 \\
\sinh t & \cosh t & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2.

a) Let $p \in S^{2}$, and v and w be two linearly independent vectors belonging to $T_{p} S^{2}$. Calling $n=x \partial_{x}+y \partial_{y}+z \partial_{z}$ the unit outer normal to S^{2}, we have

$$
\omega(v, w)=\iota(n) d x \wedge d y \wedge d z(v, w)=d x \wedge d y \wedge d z(n, v, w) \neq 0
$$

because the volume parallelepiped with sides n, v and w is different from zero. We have

$$
\begin{aligned}
\iota(n) d x \wedge d y \wedge d z= & (\iota(n) d x) \wedge d y \wedge d z \\
& -d x \wedge(\iota(n) d y) \wedge d z+d x \wedge d y \wedge(\iota(n) d z) \\
= & x d y \wedge d z-y d x \wedge d z+z d y \wedge d z
\end{aligned}
$$

b) $\eta=r^{*} \omega=\sin \varphi d \varphi \wedge d \theta$.
c) $\int_{S^{2}} \omega=\int_{0}^{2 \pi} \int_{0}^{\pi} r^{*} \omega=4 \pi$.
d)

$$
\begin{aligned}
L_{X} \eta=L_{\partial_{\varphi}}(\sin \varphi d \varphi \wedge d \theta)= & \left(L_{\partial_{\varphi}} \sin \varphi\right) d \varphi \wedge d \theta \\
& +\sin \varphi d\left(L_{\partial_{\varphi}} \varphi\right) \wedge d \theta \\
& +\sin \varphi d \varphi \wedge d\left(L_{\partial_{\varphi}} \theta\right) \\
= & \cos \varphi d \varphi \wedge d \theta .
\end{aligned}
$$

e) Let ϕ_{t} be the flow of X and ψ_{t} be the flow of $r_{*} X$. Then $r \circ \phi_{t}=\psi_{t} \circ r$. Hence

$$
\begin{aligned}
L_{X} \eta & =\left.\frac{d}{d t} \phi_{t}^{*} \eta\right|_{t=0}=\left.\frac{d}{d t} \phi_{t}^{*} r^{*} \omega\right|_{t=0}=\left.\frac{d}{d t}\left(r \circ \phi_{t}\right)^{*} \omega\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\psi_{t} \circ r\right)^{*} \omega\right|_{t=0}=\left.\frac{d}{d t} r^{*} \psi_{t}^{*} \omega\right|_{t=0}=\left.r^{*} \frac{d}{d t} \psi_{t}^{*} \omega\right|_{t=0} \\
& =r^{*}\left(L_{r_{*} X} \omega\right)
\end{aligned}
$$

f)

$$
\begin{aligned}
\int_{\Omega} L_{r_{*} X} \omega & =\int_{r^{-1}(\Omega)} r^{*}\left(L_{r_{*} X} \omega\right)=\int_{r^{-1}(\Omega)} L_{X} \eta \\
& =\int_{0}^{2 \pi} \int_{\varphi_{0}}^{\varphi_{1}} \cos \varphi d \varphi \wedge d \theta=2 \pi\left(\sin \varphi_{1}-\sin \varphi_{0}\right)
\end{aligned}
$$

g) Note that $r^{*}\left(\iota\left(r_{*} X\right) \omega\right)=\iota(X) \eta$ because

$$
\begin{aligned}
{\left[r^{*}\left(\iota\left(r_{*} X\right) \omega\right)\right](v, w) } & =\left(\iota\left(r_{*} X\right) \omega\right)\left(r_{*} v, r_{*} w\right)=\omega\left(r_{*} X, r_{*} v, r_{*} w\right) \\
& =r^{*} \omega(X, v, w)=[\iota(X) \eta](v, w) .
\end{aligned}
$$

Moreover,

$$
\iota(X) \eta=\iota\left(\partial_{\varphi}\right) \sin \varphi d \varphi \wedge d \theta=\sin \varphi d \theta
$$

Therefore,

$$
\begin{aligned}
\int_{\partial \Omega} \iota\left(r_{*} X\right) \omega & =\int_{r^{-1}(\partial \Omega)} \iota(X) \eta=\int_{0}^{2 \pi} \sin \varphi_{1} d \theta-\int_{0}^{2 \pi} \sin \varphi_{0} d \theta \\
& =2 \pi\left(\sin \varphi_{1}-\sin \varphi_{0}\right)
\end{aligned}
$$

h) Using Cartan's formula, we get

$$
L_{r_{*} X} \omega=\iota\left(r_{*} X\right) d \omega+d\left(\iota\left(r_{*} X\right) \omega\right)=d\left(\iota\left(r_{*} X\right) \omega\right)
$$

According to Stokes' Theorem, we have

$$
\int_{\Omega} L_{r_{*} X}=\int_{\Omega} d\left(\iota\left(r_{*} X\right) \omega\right)=\int_{\partial \Omega} \iota\left(r_{*} X\right) \omega
$$

