Riemannian Geometry 1st Test - November 20, 2020 LMAC and MMA

Duration: 180 minutes **Show your calculations**

1. Consider the hyperboloid

$$\mathcal{H} = \{(x, y, t) \in \mathbb{R}^3 : x^2 + y^2 - t^2 = -1, \ t > 0\},\$$

parameterized by

$$(x, y, t) = \phi(u, \varphi) = (\sinh u \cos \varphi, \sinh u \sin \varphi, \cosh u).$$

- a) Calculate the local representation $g = \phi^* \tilde{g}$ in the (u, φ) half-space where u > 0 of Riemannian metric induced on the hyperboloid \mathcal{H} by the (Lorentzian) metric $\tilde{g} = dx^2 + dy^2 dt^2$ on \mathbb{R}^3 . Check that the frame $(E_u, E_\varphi) = \left(\partial_u, \frac{1}{\sinh u} \partial_\varphi\right)$ is orthonormal and calculate its dual frame $(\omega^u, \omega^\varphi)$. Calculate the local representation ω of the Riemannian volume element on \mathcal{H} .
- **b)** Determine the one forms $\omega_{\varphi}^{u} = -\omega_{u}^{\varphi}$ that solve the system (3)

$$d\omega^u = \omega^{\varphi} \wedge \omega^u_{\varphi},$$

$$d\omega^{\varphi} = \omega^u \wedge \omega^{\varphi}_{u}.$$

Calculate $\Omega_{\varphi}^{u} = d\omega_{\varphi}^{u}$. Knowing that $\Omega_{\varphi}^{u} = K\omega$, determine the curvature K of the hyperboloid.

c) Consider the domain $D = \{(u, \varphi) \in (0, R) \times (0, 2\pi)\}$. Use Stokes' Theorem to calculate $\int_D K = \int_D K\omega = \int_D \Omega_{\varphi}^u$. (3)

(2)

- d) Calculate curvature of $\{R\} \times (0, 2\pi)$ which is given by $k_g = -\omega_{\varphi}^u(E_{\varphi})$. Parameterizing this curve by $r(\varphi) = (R, \varphi)$, for $\varphi \in (0, 2\pi)$, the line element is $ds = \sqrt{g(r'(\varphi), r'(\varphi))} d\varphi$. Calculate $\int_{\{R\} \times (0, 2\pi)} k_g ds$.
- e) Consider (3)

$$X = \frac{\cos \varphi}{\cosh u} \partial_u - \frac{\sin \varphi}{\sinh u} \partial_{\varphi}.$$

Calculate $L_X\omega$ (using the fact that L_X commutes with the exterior derivative) and $\iota(X)\omega$. Verify Cartan's formula. What is the divergence of X?

2. Let G be a Lie group. Suppose $X \in \mathcal{X}(G)$ is left invariant and $Y \in \mathcal{X}(G)$ is a right invariant. Prove that [X,Y]=0.

- **3.** Let $X \in \mathcal{X}(M)$ with flow ϕ_t .
 - a) Determine $(d\phi_t)X$. Justify. (2)
 - b) Let $Y \in \mathcal{X}(M)$. Determine the vector field (3)

$$\left. \frac{d}{dt} (d\phi_{-t})_{\phi_t(p)} Y_{\phi_t(p)} \right|_{t=t}$$

(note that the derivative is calculated at a general t).