Riemannian Geometry 1st Test - November 14, 2017 LMAC and MMA

Duration: 120 minutes Show your calculations

1. Let Λ be the 3×3 matrix

$$\Lambda = \left[\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Consider the Lorentz group

$$O(1,2) = \left\{ A \in \mathcal{M}_{3 \times 3} : A\Lambda A^T = \Lambda \right\}.$$

- a) Verify that O(1,2) is indeed a group.
- b) Prove that O(1,2) is a submanifold of $\mathcal{M}_{3\times 3}$. Therefore, O(1,2) is a (3) Lie group. What is its dimension?

(1)

(2)

- c) Determine a basis for $T_I O(1,2)$ and the Lie algebra o(1,2). (1)
- d) Identify the tangent space to O(1,2) at Λ , $T_{\Lambda}O(1,2)$. (1)
- e) Compute the left-invariant vector field corresponding to

$$B_1 := \left[\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

and $\exp(tB_1)$.

2. Consider the form ω defined on S^2 by contracting the volume form $dx \wedge dy \wedge dz$ on \mathbb{R}^3 with the unit normal to S^2 , i.e.

$$\omega = \iota(x\partial_x + y\partial_y + z\partial_z) \, dx \wedge dy \wedge dz.$$

Let r be the parameterization of S^2 given by

$$r(\varphi, \theta) = (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi),$$

and consider the orientation of S^2 induced by r.

- a) Justify that ω is a volume form on S^2 and calculate it. (1)
- b) Compute $\eta = r^* \omega$. (2)
- c) Calculate $\int_{S^2} \omega$. (1)

d) Let $X = \partial_{\varphi}$. Compute $L_X \eta$. e) Using the definition of Lie derivative, justify that	(2) (2)
$L_X \eta = r^* \left(L_{r_* X} \omega \right).$	
f) Let Ω be the subset of S^2 such that $0 < \varphi_0 < \varphi < \varphi_1 < \pi$. Calculate directly $\int_{\Omega} L_{r_*X} \omega$.	(1)

- **g)** Calculate directly $\int_{\partial\Omega} \iota(r_*X)\omega$, where $\partial\Omega$ has the orientation induced (1) by the orientation of Ω .
- h) Can you relate the answers to the previous two questions? (2)