Riemannian Geometry

$1^{\text {st }}$ Test - November 14, 2017
LMAC and MMA
Duration: 120 minutes
Show your calculations

1. Let Λ be the 3×3 matrix

$$
\Lambda=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Consider the Lorentz group

$$
\begin{equation*}
O(1,2)=\left\{A \in \mathcal{M}_{3 \times 3}: A \Lambda A^{T}=\Lambda\right\} \tag{1}
\end{equation*}
$$

a) Verify that $O(1,2)$ is indeed a group.
b) Prove that $O(1,2)$ is a submanifold of $\mathcal{M}_{3 \times 3}$. Therefore, $O(1,2)$ is a

Lie group. What is its dimension?
c) Determine a basis for $T_{I} O(1,2)$ and the Lie algebra $o(1,2)$.
d) Identify the tangent space to $O(1,2)$ at $\Lambda, T_{\Lambda} O(1,2)$.
e) Compute the left-invariant vector field corresponding to

$$
B_{1}:=\left[\begin{array}{lll}
0 & 1 & 0 \tag{2}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and $\exp \left(t B_{1}\right)$.
2. Consider the form ω defined on S^{2} by contracting the volume form $d x \wedge$ $d y \wedge d z$ on \mathbb{R}^{3} with the unit normal to S^{2}, i.e.

$$
\omega=\iota\left(x \partial_{x}+y \partial_{y}+z \partial_{z}\right) d x \wedge d y \wedge d z
$$

Let r be the parameterization of S^{2} given by

$$
r(\varphi, \theta)=(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi),
$$

and consider the orientation of S^{2} induced by r.
a) Justify that ω is a volume form on S^{2} and calculate it.
b) Compute $\eta=r^{*} \omega$.
c) Calculate $\int_{S^{2}} \omega$.
d) Let $X=\partial_{\varphi}$. Compute $L_{X} \eta$.
e) Using the definition of Lie derivative, justify that

$$
\begin{equation*}
L_{X} \eta=r^{*}\left(L_{r_{*} X} \omega\right) \tag{2}
\end{equation*}
$$

f) Let Ω be the subset of S^{2} such that $0<\varphi_{0}<\varphi<\varphi_{1}<\pi$. Calculate directly $\int_{\Omega} L_{r_{*} X} \omega$.
g) Calculate directly $\int_{\partial \Omega} \iota\left(r_{*} X\right) \omega$, where $\partial \Omega$ has the orientation induced by the orientation of Ω.
h) Can you relate the answers to the previous two questions?

