Riemannian Geometry 1st Test - November 16, 2016 LMAC and MMA

Duration: 90 minutes Show your calculations

- **1.** Let M be the Lie group $SL(2) = \{A \in M_{2 \times 2} : \det A = 1\}.$
 - a) Show that M is diffeomorphic to $\mathbb{R}^2 \times S^1$. Suggestion: Write $A \in M$ (3) as

$$A = A(p,q,r,s) = \begin{bmatrix} p+q & r+s \\ r-s & p-q \end{bmatrix},$$

and use the map

$$\varphi(q,r,\theta) = (p,q,r,s) = \left(\sqrt{1+q^2+r^2}\cos\theta, q, r, \sqrt{1+q^2+r^2}\sin\theta\right)$$

defined on $\mathbb{R}^2 \times S^1$.

b) Compute the matrices

$$B := A_* \varphi_* \left(\frac{\partial}{\partial q}\right)_{(0,0,0)} \quad \text{and} \quad C := A_* \varphi_* \left(\frac{\partial}{\partial \theta}\right)_{(0,0,0)}$$

(Note that we have $A_* = A$, because A is linear.)

- c) Compute the Lie algebra sl(2) and T_AM .
- d) Compute X^B and X^C , the left invariant vector fields corresponding to (2) B and C respectively, i.e. such that $(X^B)_I = B$ and $(X^C)_I = C$.

(1)

(2)

e) Compute the integral curves of X^B and X^C through *I*. Suggestion: (2) Calculate C^2 .

$$\mathbf{f}) \quad \text{Compute } [X^B, X^C]_I. \tag{1}$$

g) Is it true that both
$$X^B = A_* \varphi_* \frac{\partial}{\partial q}$$
 and $X^C = A_* \varphi_* \frac{\partial}{\partial \theta}$? Explain. (1)

2. Consider the region

$$\Omega = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 < 1 \ \land \ 0 < z < \sinh 1 \},$$

and consider the piece of hyperboloid

$$S = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 1 \land 0 < z < \sinh 1 \}$$

with the parametrization

$$\varphi(\gamma, \theta) = (\cosh \gamma \cos \theta, -\cosh \gamma \sin \theta, \sinh \gamma)$$

(defined on an appropriate set). Moreover, in \mathbb{R}^3 define ω to be the 2-form

$$\omega = x \, dy \wedge dz - y \, dx \wedge dz.$$

a)	Compute $\varphi^*\omega$.	(2)
b)	Compute $\int_{S} \omega$, where S has the orientation induced by φ .	(1)
c)	Compute $d\tilde{\omega}$.	(1)
d)	Compute $\int_{\Omega} d\omega$, where Ω has the canonical orientation of \mathbb{R}^3 .	(1)
e)	Use Stokes' Theorem to relate the results of b) and d).	(2)
f)	Compute $L_X(dx \wedge dy \wedge dz)$, where the vector field X is given by	(1)

$$X(x, y, z) = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}.$$