Riemannian Geometry

$1^{\text {st }}$ Test - November 16, 2016
LMAC and MMA
Duration: 90 minutes

Show your calculations

1. Let M be the Lie group $S L(2)=\left\{A \in M_{2 \times 2}: \operatorname{det} A=1\right\}$.
a) Show that M is diffeomorphic to $\mathbb{R}^{2} \times S^{1}$. Suggestion: Write $A \in M$
as

$$
A=A(p, q, r, s)=\left[\begin{array}{ll}
p+q & r+s \tag{3}\\
r-s & p-q
\end{array}\right]
$$

and use the map

$$
\varphi(q, r, \theta)=(p, q, r, s)=\left(\sqrt{1+q^{2}+r^{2}} \cos \theta, q, r, \sqrt{1+q^{2}+r^{2}} \sin \theta\right)
$$

defined on $\mathbb{R}^{2} \times S^{1}$.
b) Compute the matrices

$$
\begin{equation*}
B:=A_{*} \varphi_{*}\left(\frac{\partial}{\partial q}\right)_{(0,0,0)} \quad \text { and } \quad C:=A_{*} \varphi_{*}\left(\frac{\partial}{\partial \theta}\right)_{(0,0,0)} . \tag{1}
\end{equation*}
$$

(Note that we have $A_{*}=A$, because A is linear.)
c) Compute the Lie algebra $\operatorname{sl}(2)$ and $T_{A} M$.
d) Compute X^{B} and X^{C}, the left invariant vector fields corresponding to
B and C respectively, i.e. such that $\left(X^{B}\right)_{I}=B$ and $\left(X^{C}\right)_{I}=C$.
e) Compute the integral curves of X^{B} and X^{C} through I. Suggestion:

Calculate C^{2}.
f) Compute $\left[X^{B}, X^{C}\right]_{I}$.
g) Is it true that both $X^{B}=A_{*} \varphi_{*} \frac{\partial}{\partial q}$ and $X^{C}=A_{*} \varphi_{*} \frac{\partial}{\partial \theta}$? Explain.
2. Consider the region

$$
\Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}<1 \wedge 0<z<\sinh 1\right\}
$$

and consider the piece of hyperboloid

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=1 \wedge 0<z<\sinh 1\right\}
$$

with the parametrization

$$
\varphi(\gamma, \theta)=(\cosh \gamma \cos \theta,-\cosh \gamma \sin \theta, \sinh \gamma)
$$

(defined on an appropriate set). Moreover, in \mathbb{R}^{3} define ω to be the 2-form

$$
\omega=x d y \wedge d z-y d x \wedge d z
$$

a) Compute $\varphi^{*} \omega$.
b) Compute $\int_{S} \omega$, where S has the orientation induced by φ.
c) Compute $d \omega$.
d) Compute $\int_{\Omega} d \omega$, where Ω has the canonical orientation of \mathbb{R}^{3}.
e) Use Stokes' Theorem to relate the results of \mathbf{b}) and \mathbf{d}).
f) Compute $L_{X}(d x \wedge d y \wedge d z)$, where the vector field X is given by

$$
\begin{equation*}
X(x, y, z)=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} . \tag{1}
\end{equation*}
$$

