Riemannian Geometry, Spring 2021/22
Instituto Superior Técnico

March 17, 2022 (due April 4)

1. Consider the torus T? equal to the quotient of [0,1]* by the equivalence
relation

(z,y) ~ (v + 1Ly) ~ (2,y +1).

Give a parameterization of a neighborhood of (0, 0).

2. Consider the topological manifold RP? equal to the quotient of [0, 1]* by
the equivalence relation

(wy) ~(z+1,1—y)~(1—z,y+1).
Give a parameterization of a neighborhood of (0, 0).
3. Consider the paraboloid
P={(z,y,2) e R®: 2z = 2° + 9°}.

a) Show that the parameterizations ¢ : R? — P and 1 : (0,00) x (0, 27),
defined by

o(z,y) = (2, y,2° + y?), Y(r,0) = (rcosf,rsinf,r?),

are compatible.

b) Can you find a parameterization ¢ of a neighborhood of the point
(0,0,0) of P such that {p,v} is an atlas for P, with ¢ incompatible
with ¢7

4. Consider RP?, the set of lines through the origin in R3, parameterized by
vy, 2) = [Ly, 2], el 2) = [1,1,2], @s(x,y) = [z,9,1],
and f: RP? — RP?, defined by
f(lz,y, 2]) = [, z,y].
Verify that f is differentiable.

5. Consider the function f : S™\ {N} — S™\ {/V} given in the stereographic
projection from the north pole coordinates by

mvo fomy (y) =yllyl*
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This function can be extended to a continuous function from S™ to S™. For
what values of «v is the extended function once differentiable?

6. Consider the immersion f : R? — R3, defined by

f(,y) = 2y, x +y,2° +y°).

Give coordinates in R? such that the representation of f is the canonical
immersion.

7. Consider the immersion f : ]— 515 [ — R2, defined by
f(6) = (cosf,sinb).

Give coordinates in {(x,y) € R?: |y| < 1} such that the representation of f
is the canonical immersion.

8. Consider f : {(x,y,2) € R®: x> 0} — R?, defined by

flz,y,2) = (y,2° +y* + 2).
Give coordinates on which f is the canonical projection.

March 27, 2022 (due April 11)

9. Let 0 < r < R. Consider the torus T' parameterized by
(0,0) = ((R+ rsinf) cos p, (R+ rsinf)sin @, r cos ),

for (6, ) € (0,27) x (0,27), and the sphere S? parameterized by

(0, %) — (sin 6 cos @, sin f sin B, cos ),

for (,%) € (0,7) x (0,27). Consider the map n : T — S2, which assigns to
each point of T' the exterior unit normal to the T" at that point. Give the
local representation of n in these coordinates.

. yz 2 y .
10. Consider the map (z,y,2) — (— ol JCQ”ny, xgij -+ arctan E)v which

sends p = (1,1,1) to ¢ = (— 1,4, 3F). Check that the map has rank 2 and
find coordinates around p and ¢ such that the map is locally represented by
(€1,6%,€%) — (£, €%,0).

April 3, 2022 (due April 18)
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11. Consider the vector fields defined on R? by
X(z,y) = z0,,
Y(z,y) = (x + 5y)0: + (52 + y)9,.

a) Compute the bracket [X,Y].

b) Compute the flow of X, ¢(xq, 1), and the flow of Y, ¢, (xg, yo)-
C) Compute (d¢—t)¢t($07y0)Y¢t(1'07y0)'

d) Compute the Lie derivative LxY using your answer to c).

12. Consider the vector fields X and Y on the manifold M, with flows ¢; and
Wy, respectively. Let f be smooth function from M to R, p belong to M, and

p(t) =P_4 0 p_ 0y 0 ¢y(p).

C

a) Calculate < f(c,(t)) and its value at t = 0.
b) Calculate %f(cp(t)). Verify that %f(cp(t)) =2[X,Y]- f.
t=0

April 10, 2022 (due May 9)

13. Use 12.b) to show that [A, B] = AB — BA for A,B € gf(n). (In this
way you have calculated the bracket without using coordinates as we did in
class.)

14. Show that SU(n) is a submanifold of U(n).

15. Let J be the (2n) x (2n) matrix

mE

Consider the group
Sp(2n, R) = {A € M(Qn)X(Qn) CAJAT = J} .

a) Prove that Sp(2n,R) is a submanifold of R®»*. What is the dimension
of Sp(2n,R)?

b) Compute the Lie algebra sp(2n, R). Compute directly the dimension of
sp(2n, R).

¢) Check directly that for B € sp(2n,R), we have e? € Sp(2n, R).

d) Compute the tangent space to Sp(2n,R) at J, T;Sp(2n,R).

e) Can you guess a B € sp(2n,R) for which e = J? (Note: J> = —1.)
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16. Consider the manifold M = C3\ {0} and the Lie group G = (C\ {0}, -)
acting on M by A\-(2!, 2% 2%) = (2!, A2, A\z%). Argue that M/G is a manifold
and compute its dimension.

May 8, 2022 (due May 23)

17. Suppose w € Q*(M) and n € Q'(M). Check that

(WANX,Y, Z) = w(X,Y)n(Z) + w(Y, Z)n(X) + w(Z, X)n(Y).

18. Consider the 2-covariant tensor field g € 72(R3) defined by
g=dr®dr+dy ®dy+dz ® dz,

let i be the inclusion ot S? in R3, and 7 be the parameterization of S? given
by
r(p,0) = (cos @ sin g, sin @ sin ¢, cos ).

a) Calculate h = r*i*g.
b) Calculate fT,I(SQ) Vdet hdyp A db.
c¢) Consider the one form w = cos ¢ df and the region R of S? such that

™

0<0< 90 and Yo < p < 5, where 6y and ¢, are fixed. Calculate
directly [,.(r~')*w and [, d((r ")*w), verifying the equality of Stokes’
Theorem.

19. Consider the two torus 7 with cartesian equation

(VE+ @ —R) +22 =0
and the parameterization of a neighborhood of T? given by
p(p,0,p) = ((R+ pcosp)cosh, (R+ pcosp)sinb, psinp).
a) Calculate w := p*(dx A dy N dz).

b) Calculate n : = (83)

c¢) Calculate fp L2y 71
20. As special cases of Stokes’ Theorem proved in class, obtain

a) Stokes’ Theorem as stated in Calculus courses.
b) The Divergence Theorem.
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May 13, 2022 (due May 30)

21. Consider the vector field

and w = dz A dy.
a) Compute Lxw using
Lx(w1 VAN CUQ) == (Lle) A W9 + w1 A (LXwQ)

and

d(wa) = LX (dw)

b) Compute Lyw using Cartan’s formula.

c¢) Calculate X and w in polar coordinates.

d) Compute Lxw using polar coordinates and Lyw = %gbiw’tzo, where ¢,
is the flow of X.

May 20, 2022 (due June 6)

22. Consider the hyperbolic plane H? = {(x,y) € R? : y > 0} with the metric

dx? + dy?
2 _

and Levi-Civita connection.

a) Write the equation for the geodesics using the fact that they are the
Euler-Lagrange equations for the Lagrangian

L(z,v) = %gij(a:)vivj.

b) Write down the nonzero Christoffel symbols using your answer to a).

c) Let yo > 0. Consider the line ¢(z) = (x,y0). Let V be a vector field
defined on ¢ which is parallel along ¢. Write down the differential
equations satisfied by V.

d) Solve the equations in ¢) knowing that V(0,y) = V§'0, + V0.

e) Indicate the covariant derivatives V;dzx and V.dy. Use them to verify
that the covariant derivative of the metric along c is zero.

f) Let f: H> — R. Compute grad f.
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g)

What is the Riemannian volume element, w on H?? Calculate the Lie
derivative

Lgradf w.
What is the divergence of the gradient of f, i.e., the Laplacian of f?

23. Consider a Riemannian manifold M and a smooth function f: M — R
such that ||grad f|| = 1. By differentiating both sides of & = grad f(z) with
respect to t, show that the integral curves of grad f are geodesics.

May 25, 2022 (due June 15)

24. Let GG be a Lie group with Lie algebra g.

a)

Suppose that 8 : g x g — g is a bilinear map. Prove there exists a
unique connection V = V¥ on G which satisfies the following condition:
if v,w € gand X”, X" denote the corresponding left-invariant vector
fields then

Ve XW = XP0w),

Prove that this connection is left-invariant in the sense that
(Lg)*VXY = V(Lg)*X<Lg)*Y, VX, Y € X(G), g € G.

Deduce that the parallel transport determined by this connection is left
invariant in the sense that if Y is parallel along a curve c then (L,),Y
is parallel along L, o c.

Prove that any connection V on GG determines a bilinear on map g via

Blv,w) = (Vxa X™),

Hence, there is a bijective correspondence between bilinear maps from
g % g to g and left invariant connections on G.

June 2, 2022 (due June 20)

25. Consider the hyperbolic plane H? with the metric

da? + dy?

2
ds ,

and Levi-Civita connection.
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a) Using the results of 22.b), calculate R(0,,d,)0, and R(0,,0,)0,. Write
the Riemann tensor and the curvature tensor.
Example: V5,V 0, = Vo, (15,0, +T19,0,) = ...

b) Calculate the curvature of H?.

26. Show that the curvature tensor of a 3-dimensional Riemannian manifold
is entirely determined by its Ricci tensor.

June 10, 2022 (due June 24)

27. Consider the cylinder C' := ]0, oo[x S with metric
ds* = dr* + sinh®r d6”.

a) Compute wf , Qf and R,9,¢. What is the curvature of C'?
b) Verify the equality of the Gauss-Bonnet Theorem,

K—!—//{IZQ?T I,
Jor ka3

when Q = |rg, r[xS.



