Riemannian Geometry, Fall 2019/20 Instituto Superior Técnico

September 26, 2019

1. Consider the torus T^2 equal to the quotient of $[0,1]^2$ by the equivalence relation

$$(x, y) \sim (x+1, y) \sim (x, y+1).$$

- a) For p = (x, 0), with 0 < x < 1, give a parameterization of a neighborhood of p.
- **b)** Give a parameterization of a neighborhood of (0, 0).

2. Consider the topological manifold $\mathbb{R}P^2$ equal to the quotient of $[0,1]^2$ by the equivalence relation

$$(x,y) \sim (x+1,1-y) \sim (1-x,y+1).$$

Give a parameterization of a neighborhood of (0, 0).

3. Consider the paraboloid

$$P = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}.$$

a) Show that the functions ϕ and ψ , defined by

$$\phi(x,y) = (x, y, x^2 + y^2), \qquad \psi(r,\theta) = (r\cos\theta, r\sin\theta, r^2),$$

define the same differential structure on $P \setminus \{(0, 0, 0)\}$.

- **b)** Does there exist a parameterization φ of a neighborhood in P of (0, 0, 0) such that the parameterizations φ together with ψ form an atlas for P, with φ incompatible with ϕ ?
- 4. Let a > 0. Consider the catenoid C parameterized by

 $(a\cosh v\,\cos u, a\cosh v\,\sin u, av)$

and the helicoid H parameterized by

/

$$(w\cos z, w\sin z, az)$$

Consider the function $f: C \to H$, defined by

$$f(x, y, z) = \left(a\frac{x}{\sqrt{x^2 + y^2}}\sinh\frac{z}{a}, a\frac{y}{\sqrt{x^2 + y^2}}\sinh\frac{z}{a}, a\arctan\frac{y}{x}\right),$$

where $\arctan \frac{y}{x}$ denotes the argument of x + iy.

- a) Check that, indeed, f has range in H.
- **b)** Determine the representation of f in local coordinates. Is f differentiable?
- **5.** Consider $\mathbb{R}P^2$ parameterized by

$$\varphi_1(y,z) = [1, y, z], \quad \varphi_2(x,z) = [x, 1, z], \quad \varphi_3(x,y) = [x, y, 1],$$

and $f : \mathbb{R}P^2 \to \mathbb{R}P^2$, defined by

$$f([x, y, z]) = [y, x, z].$$

Verify that f is differentiable.

6. Consider the immersion $f : \mathbb{R}^2 \to \mathbb{R}^3$, defined by

$$f(x,y) = (x, y, x^2 + y^2).$$

- **a)** Give local coordinates around p = (0,0) and f(p) = (0,0,0) on which f is the canonical immersion.
- b) Give local coordinates around p = (1, 2) and f(p) = (1, 2, 5) on which f is the canonical immersion, with p having coordinates (0, 0) and f(p) having coordinates (0, 0, 0).
- 7. Consider the submersion $f : \mathbb{R}^3 \to \mathbb{R}$, defined by

$$f(x, y, z) = x - yz.$$

Give coordinates around p = (0, 0, 0) and f(p) = 0 on which f is the canonical projection.

8. Consider the vector fields defined on \mathbb{R}^2 by

$$X(x,y) = (x+y)\partial_y,$$
$$Y(x,y) = (-2x+y)\partial_x + (x-2y)\partial_y.$$

- a) Compute the bracket [X, Y].
- **b**) Compute the flow of X, $\phi_t(x_0, y_0)$, and the flow of Y, $\psi_t(x_0, y_0)$.
- c) Compute $(d\phi_{-t})_{\phi_t(x_0,y_0)} Y_{\phi_t(x_0,y_0)}$.
- d) Compute the Lie derivative $L_X Y$ using your answer to c).

9. Consider the vector fields defined on \mathbb{R} by

$$X(x) = x\partial_x, \qquad Y(x) = x^2\partial_x.$$

- a) Compute the bracket [X, Y].
- **b)** Compute the flow of X, $\phi_t(x_0)$, and the flow of Y, $\psi_t(x_0)$.
- c) Compute $\eta_t(x_0) = (\psi_{-t} \circ \phi_{-t} \circ \psi_t \circ \phi_t)(x_0).$
- d) Verify that

$$\frac{1}{2}\frac{d^2}{dt^2}\eta_t(x_0)\bigg|_{t=0} = [X,Y](x_0).$$

10. Let J be the $(2n) \times (2n)$ matrix

$$J = \left[\begin{array}{cc} 0 & I \\ -I & 0 \end{array} \right].$$

Consider the group

$$Sp(2n, \mathbb{R}) = \left\{ A \in \mathcal{M}_{(2n) \times (2n)} : AJA^T = J \right\}.$$

- a) Prove that $Sp(2n, \mathbb{R})$ is a submanifold of $\mathbb{R}^{(2n)^2}$. What is the dimension of $Sp(2n, \mathbb{R})$?
- **b)** Compute the Lie algebra $sp(2n, \mathbb{R})$. Compute directly the dimension of $sp(2n, \mathbb{R})$.
- c) Check directly that for $B \in sp(2n, \mathbb{R})$, we have $e^B \in Sp(2n, \mathbb{R})$.
- **d)** Compute the tangent space to $Sp(2n, \mathbb{R})$ at $J, T_J Sp(2n, \mathbb{R})$.
- e) Can you guess a $B \in sp(2n, \mathbb{R})$ for which $e^B = J$? (Note: $J^2 = -I$.)

October 23, 2019

11. Consider the manifold $M = \mathbb{C}^3 \setminus \{0\}$ and the Lie group $G = (\mathbb{C} \setminus \{0\}, \cdot)$ acting on M by $\lambda \cdot (z^1, z^2, z^3) = (\lambda z^1, \lambda z^2, \lambda z^3)$. Argue that M/G is a manifold and compute its dimension.

12. Construct a two sheeted covering of the Klein bottle [given by the quotient of $[0, 1]^2$ by the equivalence relation

$$(x,y) \sim (x+1,y) \sim (1-x,y+1)$$

by the Torus T^2 [given by the quotient of $[0,1]^2$ by the equivalence relation

$$(x, y) \sim (x+1, y) \sim (x, y+1)].$$

13. Let V belong to so(3).

- a) Compute X_A^V , the left invariant vector field generated by V at $A \in$ SO(3).
- **b)** Characterize the tangent space to SO(3) at A, and verify directly that X_A^V belongs to $T_A SO(3)$. c) Let $\psi_t = F(\cdot, t)$ for F the flow of X^V . What is $\psi_t(A)$?

14. Suppose φ and $\psi: G \to H$ are two homomorphisms of Lie groups such that $\varphi_* = \psi_*$, with G connected. Show that $\varphi = \psi$.

15.

- **a)** Compute Alt $(dx^1 \otimes dx^2)$ and Alt $(dx^1 \otimes dx^2 \otimes dx^3)$.
- **b)** Expand $dx^1 \wedge dx^2 \wedge dx^3$ using tensor products.
- c) Let u, v, w belong to \mathbb{R}^5 . Write $dx^2 \wedge dx^3 \wedge dx^5 (u, v, w)$ as a determinant.
- d) Let X belong to \mathbb{R}^5 . Simplify $\iota(X) dx^1 \wedge dx^3 \wedge dx^5$.

November 8, 2019

16. Consider the 2-covariant tensor field $g \in \mathcal{T}^2(\mathbb{R}^3)$ defined by

$$q = dx \otimes dx + dy \otimes dy + dz \otimes dz,$$

let i be the inclusion of S^2 in \mathbb{R}^3 , and r be the parameterization of S^2 given by

 $r(\varphi, \theta) = (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi).$

- a) Calculate $h = r^* i^* q$.
- **b)** Calculate $\int_{r^{-1}(S^2)} \sqrt{\det h} \, d\varphi \wedge d\theta$.
- c) Consider the one form $\omega = \cos \varphi \, d\theta$ and the region R of S^2 such that $0 < \theta < \theta_0$ and $\varphi_0 < \varphi < \frac{\pi}{2}$, where θ_0 and φ_0 are fixed. Calculate directly $\int_{\partial B} (r^{-1})^* \omega$ and $\int_B d((r^{-1})^* \omega)$, verifying the equality of Stokes' Theorem.
- 17. Consider the two torus T^2 with cartesian equation

$$\left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = r^2$$

and the parameterization of a neighborhood of T^2 given by

$$p(\rho, \theta, \varphi) = ((R + \rho \cos \varphi) \cos \theta, (R + \rho \cos \varphi) \sin \theta, \rho \sin \varphi).$$

- a) Calculate $\omega := p^*(dx \wedge dy \wedge dz)$.
- **b)** Calculate $\eta := \iota\left(\frac{\partial}{\partial \rho}\right) \omega$.

c) Calculate $\int_{p^{-1}(T^2)} \eta$.

18. Consider the vector field

$$X = -\frac{y}{x^2 + y^2}\partial_x + \frac{x}{x^2 + y^2}\partial_y.$$

and $\omega = dx \wedge dy$.

a) Compute $L_X \omega$ using

$$L_X(\omega_1 \wedge \omega_2) = (L_X \omega_1) \wedge \omega_2 + \omega_1 \wedge (L_X \omega_2)$$

and

$$d(L_X\omega) = L_X(d\omega).$$

- **b)** Compute $L_X \omega$ using Cartan's formula.
- c) Calculate X and ω in polar coordinates.
- **d**) Compute $L_X \omega$ using polar coordinates and $L_X \omega = \frac{d}{dt} \phi_t^* \omega \big|_{t=0}$, where ϕ_t is the flow of X.

19. Let $\alpha > 1$. Verify directly the equality of the Divergence Theorem,

$$\int_{\Omega} \operatorname{div} \left(p_*(\rho^{\alpha} \partial_{\rho}) \right) dx \wedge dy \wedge dz = \int_{T^2} \left(p_*(\rho^{\alpha} \partial_{\rho}) \right) \cdot \nu \,\overline{\eta},$$

where Ω is the interior of the torus T^2 of exercise **17**, p and ρ are as in the same exercise, ν is the unit outer normal to the torus, and $\overline{\eta} = \iota(\nu) dx \wedge dy \wedge dz$ is the area form on T^2 .

20. Consider the sphere S^2 with the metric induced by the euclidean metric on \mathbb{R}^3 , i.e., using the parameterization $r(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, with metric

$$ds^2 = d\theta^2 + \sin^2\theta \, d\varphi^2,$$

and with Levi-Civita connection.

- a) Write the equation for the geodesics.
- **b)** What are the nonzero Christoffel symbols?
- c) Let $0 \le \theta_0 < \frac{\pi}{2}$. Consider the parallel $c(\varphi) = (\theta_0, \varphi)$. Let V be a vector field defined on c which is parallel along c. Write down the differential equations satisfied by V.

- **d)** Solve the equations in **c)** knowing that $V(\theta_0, 0) = V_0^{\theta} \partial_{\theta} + V_0^{\varphi} \partial_{\varphi}$. In particular, compute $V(\theta_0, 2\pi)$.
- e) Indicate the covariant derivatives $\nabla_{\dot{c}} d\theta$ and $\nabla_{\dot{c}} d\varphi$. Use them to compute the covariant derivative of the metric along c.
- **21.** Consider the hyperbolic plane $H^2 = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ with the metric

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

and Levi-Civita connection.

- a) Write the equation for the geodesics.
- **b)** What are the nonzero Christoffel symbols?
- c) Let $y_0 > 0$. Consider the line $c(x) = (x, y_0)$. Let V be a vector field defined on c which is parallel along c. Write down the differential equations satisfied by V.
- **d)** Solve the equations in **c)** knowing that $V(0, y_0) = V_0^x \partial_x + V_0^y \partial_y$.
- e) Indicate the covariant derivatives $\nabla_{\dot{c}} dx$ and $\nabla_{\dot{c}} dy$. Use them to compute the covariant derivative of the metric along c.
- **22.** Consider the hyperbolic plane H^2 with the metric

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

and Levi-Civita connection.

- **a)** Let $f: H^2 \to \mathbb{R}$. Compute grad f.
- b) What is the Riemannian volume element, ω on H^2 ? Calculate the Lie derivative

$$L_{\operatorname{grad} f} \omega$$
.

What is the divergence of the gradient of f, i.e., the Laplacian of f?

23. Consider the sphere S^2 with the metric

$$ds^2 = d\theta^2 + \sin^2\theta \, d\varphi^2$$

and Levi-Civita connection.

a) Using the results of 20.b), calculate $R(\partial_{\theta}, \partial_{\varphi})\partial_{\theta}$ and $R(\partial_{\theta}, \partial_{\varphi})\partial_{\varphi}$. Write the Riemann tensor and the curvature tensor.

- **b)** Calculate the curvature of S^2 .
- **24.** Consider the hyperbolic plane H^2 with the metric

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

and Levi-Civita connection.

- a) Using the results of **21.b**), calculate $R(\partial_x, \partial_y)\partial_x$ and $R(\partial_x, \partial_y)\partial_y$. Write the Riemann tensor and the curvature tensor.
- **b)** Calculate the curvature of H^2 .

25. Show that the curvature tensor of a 3-dimensional Riemannian manifold is entirely determined by its Ricci tensor.

26. Consider the cylinder $C := [0, \infty] \times S^1$ with metric

$$ds^2 = dr^2 + \sinh^2 r \, d\theta^2.$$

- **a)** Compute ω_r^{θ} , Ω_r^{θ} and $R_{r\theta r\theta}$. What is the curvature of C?
- b) Verify the equality of the Gauss-Bonnet Theorem,

$$\int_{\Omega} K + \int_{\partial \Omega} k_g = 2\pi \sum_i I_{p_i},$$

when $\Omega =]r_0, r_1] \times S^1$.

27. Let S be a compact orientable surface with a Riemannian metric with constant negative Gauss curvature. Let γ be a geodesic without self-intersections that separates S in two surfaces S_1 and S_2 with boundary, i.e.

$$S = S_1 \cup S_2, \quad \partial S_1 = \partial S_2 = \gamma.$$

Show that the quotient of the areas of S_1 and S_2 is a rational number.

28. Consider the surface in \mathbb{R}^3 represented parametrically by

$$(u,v) \mapsto f(u,v) = (f^1(u,v), f^2(u,v), f^3(u,v))$$

with the metric induced by the Euclidean metric, $E_1 = \frac{f_u}{\|f_u\|}$, $E_2 = \frac{f_v}{\|f_v\|}$ and $N = \frac{E_1 \times E_2}{\|E_1 \times E_2\|}$.

a) Check that

$$p := (-\nabla_{E_1} N, E_1) = \frac{1}{\|f_u\|^2} (N, f_{uu}) =: \frac{l}{\|f_u\|^2},$$

$$q := (-\nabla_{E_1} N, E_2) = \frac{1}{\|f_u\|\|f_v\|} (N, f_{uv}) = \frac{m}{\|f_u\|\|f_v\|},$$

$$r := (-\nabla_{E_2} N, E_2) = \frac{1}{\|f_v\|^2} (N, f_{vv}) = \frac{n}{\|f_v\|^2}.$$

b) Let $\Delta = 1 - (E_1, E_2)^2$. Check that the second fundamental form of the surface is

$$II(u,v) = \frac{1}{\Delta} \begin{bmatrix} p & q \\ q & r \end{bmatrix} \begin{bmatrix} 1 & -(E_1, E_2) \\ -(E_1, E_2) & 1 \end{bmatrix}.$$

c) Check that the curvature of the surface is

$$K = \frac{ln - m^2}{\|f_u\|^2 \|f_v\|^2 - (f_u, f_v)^2}.$$