# Riemannian Geometry, Fall 2017/18 <br> <br> Instituto Superior Técnico 

 <br> <br> Instituto Superior Técnico}

September 23, 2017

1. Consider the torus $T^{2}$ equal to the quotient of $[0,1]^{2}$ by the equivalence relation

$$
(x, y) \sim(x+1, y) \sim(x, y+1)
$$

a) For $p=(x, 0)$, with $0<x<1$, give a parameterization of a neighborhood of $p$.
b) Give a parameterization of a neighborhood of $(0,0)$.
2. Consider the topological manifold $\mathbb{R} P^{2}$ equal to the quotient of $[0,1]^{2}$ by the equivalence relation

$$
(x, y) \sim(x+1,1-y) \sim(1-x, y+1)
$$

Give a parameterization of a neighborhood of $(0,0)$.
3. Consider the paraboloid

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3}: z=x^{2}+y^{2}\right\} .
$$

a) Show that the functions $\phi$ and $\psi$, defined by

$$
\phi(x, y)=\left(x, y, x^{2}+y^{2}\right), \quad \psi(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right),
$$

define the same differential structure on $P \backslash\{(0,0,0)\}$.
b) Does there exist a parameterization $\varphi$ of a neighborhood in $P$ of $(0,0,0)$ such that the parameterizations $\varphi$ together with $\psi$ form an atlas for $P$, with $\varphi$ incompatible with $\phi$ ?
4. Let $a>0$. Consider the catenoid $C$ parameterized by

$$
(a \cosh v \cos u, a \cosh v \sin u, a v)
$$

and the helicoid $H$ parameterized by

$$
(w \cos z, w \sin z, a z) .
$$

Consider the function $f: C \rightarrow H$, defined by

$$
f(x, y, z)=\left(a \frac{x}{\sqrt{x^{2}+y^{2}}} \sinh \frac{z}{a}, a \frac{y}{\sqrt{x^{2}+y^{2}}} \sinh \frac{z}{a}, a \arctan \frac{y}{x}\right),
$$

where $\arctan \frac{y}{x}$ denotes the argument of $x+i y$.
a) Check that, indeed, $f$ has range in $H$.
b) Determine the representation of $f$ in local coordinates. Is $f$ differentiable?

## October 1, 2017

5. Consider $\mathbb{R} P^{2}$ parameterized by

$$
\varphi_{1}(y, z)=[1, y, z], \quad \varphi_{2}(x, z)=[x, 1, z], \quad \varphi_{3}(x, y)=[x, y, 1],
$$

and $f: \mathbb{R} P^{2} \rightarrow \mathbb{R} P^{2}$, defined by

$$
f([x, y, z])=[y, x, z] .
$$

Verify that $f$ is differentiable.
6. Consider the immersion $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, defined by

$$
f(x, y)=\left(x, y, x^{2}+y^{2}\right) .
$$

a) Give local coordinates around $p=(0,0)$ and $f(p)=(0,0,0)$ on which $f$ is the canonical immersion.
b) Give local coordinates around $p=(1,2)$ and $f(p)=(1,2,5)$ on which $f$ is the canonical immersion, with $p$ having coordinates $(0,0)$ and $f(p)$ having coordinates $(0,0,0)$.
7. Consider the submersion $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, defined by

$$
f(x, y, z)=x-y z
$$

Give coordinates around $p=(0,0,0)$ and $f(p)=0$ on which $f$ is the canonical projection.
8. Consider the vector fields defined on $\mathbb{R}^{2}$ by

$$
\begin{gathered}
X(x, y)=(x+y) \partial_{y} \\
Y(x, y)=(-2 x+y) \partial_{x}+(x-2 y) \partial_{y} .
\end{gathered}
$$

a) Compute the bracket $[X, Y]$.
b) Compute the flow of $X, \phi_{t}\left(x_{0}, y_{0}\right)$, and the flow of $Y, \psi_{t}\left(x_{0}, y_{0}\right)$.
c) Compute $\left(d \phi_{-t}\right)_{\phi_{t}\left(x_{0}, y_{0}\right)} Y_{\phi_{t}\left(x_{0}, y_{0}\right)}$.
d) Compute the Lie derivative $L_{X} Y$ using your answer to $\mathbf{c}$ ).
9. Consider the vector fields defined on $\mathbb{R}$ by

$$
X(x)=x \partial_{x}, \quad Y(x)=x^{2} \partial_{x}
$$

a) Compute the bracket $[X, Y]$.
b) Compute the flow of $X, \phi_{t}\left(x_{0}\right)$, and the flow of $Y, \psi_{t}\left(x_{0}\right)$.
c) Compute $\eta_{t}\left(x_{0}\right)=\left(\psi_{-t} \circ \phi_{-t} \circ \psi_{t} \circ \phi_{t}\right)\left(x_{0}\right)$.
d) Verify that

$$
\begin{gathered}
\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} \eta_{t}\left(x_{0}\right)\right|_{t=0}=[X, Y]\left(x_{0}\right) \\
\text { October 13, } 2017
\end{gathered}
$$

10. Let $J$ be the $(2 n) \times(2 n)$ matrix

$$
J=\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right] .
$$

Consider the group

$$
S p(2 n, \mathbb{R})=\left\{A \in \mathcal{M}_{(2 n) \times(2 n)}: A J A^{T}=J\right\}
$$

a) Prove that $S p(2 n, \mathbb{R})$ is a submanifold of $\mathbb{R}^{(2 n)^{2}}$. What is the dimension of $S p(2 n, \mathbb{R})$ ?
b) Compute the Lie algebra $s p(2 n, \mathbb{R})$. Compute directly the dimension of $s p(2 n, \mathbb{R})$.
c) Check directly that for $B \in \operatorname{sp}(2 n, \mathbb{R})$, we have $e^{B} \in S p(2 n, \mathbb{R})$.
d) Compute the tangent space to $S p(2 n, \mathbb{R})$ at $J, T_{J} S p(2 n, \mathbb{R})$.
e) Can you guess a $B \in \operatorname{sp}(2 n, \mathbb{R})$ for which $e^{B}=J$ ? (Note: $J^{2}=-I$.)
11. Consider the manifold $M=\mathbb{C}^{3} \backslash\{0\}$ and the Lie group $G=(\mathbb{C} \backslash\{0\}, \cdot)$ acting on $M$ by $\lambda \cdot\left(z^{1}, z^{2}, z^{3}\right)=\left(\lambda z^{1}, \lambda z^{2}, \lambda z^{3}\right)$. Argue that $M / G$ is a manifold and compute its dimension.
12. Construct a two sheeted covering of the Klein bottle [given by the quotient of $[0,1]^{2}$ by the equivalence relation

$$
(x, y) \sim(x+1, y) \sim(1-x, y+1)]
$$

by the Torus $T^{2}$ [given by the quotient of $[0,1]^{2}$ by the equivalence relation

$$
(x, y) \sim(x+1, y) \sim(x, y+1)] .
$$

13. Let $V$ belong to so(3).
a) Compute $X_{A}^{V}$, the left invariant vector field generated by $V$ at $A \in$ $S O(3)$.
b) Characterize the tangent space to $S O(3)$ at $A$, and verify directly that $X_{A}^{V}$ belongs to $T_{A} S O(3)$.
c) Let $\psi_{t}=F(\cdot, t)$ for $F$ the flow of $X^{V}$. What is $\psi_{t}(A)$ ?
14. Suppose $\varphi$ and $\psi: G \rightarrow H$ are two homomorphisms of Lie groups such that $\varphi_{*}=\psi_{*}$, with $G$ connected. Show that $\varphi=\psi$.
15. 

a) Compute $\operatorname{Alt}\left(d x^{1} \otimes d x^{2}\right)$ and $\operatorname{Alt}\left(d x^{1} \otimes d x^{2} \otimes d x^{3}\right)$.
b) Expand $d x^{1} \wedge d x^{2} \wedge d x^{3}$ using tensor products.
c) Let $u, v, w$ belong to $\mathbb{R}^{5}$. Write $d x^{2} \wedge d x^{3} \wedge d x^{5}(u, v, w)$ as a determinant.
d) Let $X$ belong to $\mathbb{R}^{5}$. Simplify $\iota(X) d x^{1} \wedge d x^{3} \wedge d x^{5}$.
16. Consider the 2-covariant tensor field $g \in \mathcal{T}^{2}\left(\mathbb{R}^{3}\right)$ defined by

$$
g=d x \otimes d x+d y \otimes d y+d z \otimes d z
$$

let $i$ be the inclusion ot $S^{2}$ in $\mathbb{R}^{3}$, and $r$ be the parameterization of $S^{2}$ given by

$$
r(\varphi, \theta)=(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)
$$

a) Calculate $h=r^{*} i^{*} g$.
b) Calculate $\int_{r^{-1}\left(S^{2}\right)} \sqrt{\operatorname{det} h} d \varphi \wedge d \theta$.
c) Consider the one form $\omega=\cos \varphi d \theta$ and the region $R$ of $S^{2}$ such that $0<\theta<\theta_{0}$ and $\varphi_{0}<\varphi<\frac{\pi}{2}$, where $\theta_{0}$ and $\varphi_{0}$ are fixed. Calculate directly $\int_{\partial R}\left(r^{-1}\right)^{*} \omega$ and $\int_{R} d\left(\left(r^{-1}\right)^{*} \omega\right)$, verifying the equality of Stokes' Theorem.
17. Consider the two torus $T^{2}$ with cartesian equation

$$
\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}
$$

and the parameterization of a neighborhood of $T^{2}$ given by

$$
p(\rho, \theta, \varphi)=((R+\rho \cos \varphi) \cos \theta,(R+\rho \cos \varphi) \sin \theta, \rho \sin \varphi) .
$$

a) Calculate $\omega:=p^{*}(d x \wedge d y \wedge d z)$.
b) Calculate $\eta:=\iota\left(\frac{\partial}{\partial \rho}\right) \omega$.
c) Calculate $\int_{p^{-1}\left(T^{2}\right)} \eta$.
18. Let $\omega$ be a one form. Check that

$$
d \omega(X, Y)=X \cdot(\omega(Y))-Y \cdot(\omega(X))-\omega([X, Y])
$$

19. Consider the vector field

$$
X=-\frac{y}{x^{2}+y^{2}} \partial_{x}+\frac{x}{x^{2}+y^{2}} \partial_{y} .
$$

and $\omega=d x \wedge d y$.
a) Compute $L_{X} \omega$ using

$$
L_{X}\left(\omega_{1} \wedge \omega_{2}\right)=\left(L_{X} \omega_{1}\right) \wedge \omega_{2}+\omega_{1} \wedge\left(L_{X} \omega_{2}\right)
$$

and

$$
d\left(L_{X} \omega\right)=L_{X}(d \omega) .
$$

b) Compute $L_{X} \omega$ using Cartan's formula.
c) Calculate $X$ and $\omega$ in polar coordinates.
d) Compute $L_{X} \omega$ using polar coordinates and $L_{X} \omega=\left.\frac{d}{d t} \phi_{t}^{*} \omega\right|_{t=0}$, where $\phi_{t}$ is the flow of $X$.
20. Let $\alpha>1$. Verify directly the equality of the Divergence Theorem,

$$
\int_{\Omega} \operatorname{div}\left(p_{*}\left(\rho^{\alpha} \partial_{\rho}\right)\right) d x \wedge d y \wedge d z=\int_{T^{2}}\left(p_{*}\left(\rho^{\alpha} \partial_{\rho}\right)\right) \cdot \nu \bar{\eta},
$$

where $\Omega$ is the interior of the torus $T^{2}$ of exercise $\mathbf{1 7}, p$ and $\rho$ are as in the same exercise, $\nu$ is the unit outer normal to the torus, and $\bar{\eta}=\iota(\nu) d x \wedge d y \wedge d z$ is the area form on $T^{2}$.

November 27, 2017
21. Consider the sphere $S^{2}$ with the metric induced by the euclidean metric on $\mathbb{R}^{3}$, i.e., using the parameterization $r(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, with metric

$$
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \varphi^{2}
$$

and with Levi-Civita connection.
a) Write the equation for the geodesics.
b) What are the nonzero Christoffel symbols?
c) Let $0 \leq \theta_{0}<\frac{\pi}{2}$. Consider the parallel $c(\varphi)=\left(\theta_{0}, \varphi\right)$. Let $V$ be a vector field defined on $c$ which is parallel along $c$. Write down the differential equations satisfied by $V$.
d) Solve the equations in $\mathbf{c}$ ) knowing that $V\left(\theta_{0}, 0\right)=V_{0}^{\theta} \partial_{\theta}+V_{0}^{\varphi} \partial_{\varphi}$. In particular, compute $V\left(\theta_{0}, 2 \pi\right)$.
e) Indicate the covariant derivatives $\nabla_{\dot{c}} d \theta$ and $\nabla_{\dot{c}} d \varphi$. Use them to compute the covariant derivative of the metric along $c$.
22. Consider the hyperbolic plane $H^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ with the metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

and Levi-Civita connection.
a) Write the equation for the geodesics.
b) What are the nonzero Christoffel symbols?
c) Let $y_{0}>0$. Consider the line $c(x)=\left(x, y_{0}\right)$. Let $V$ be a vector field defined on $c$ which is parallel along $c$. Write down the differential equations satisfied by $V$.
d) Solve the equations in $\mathbf{c )}$ knowing that $V\left(0, y_{0}\right)=V_{0}^{x} \partial_{x}+V_{0}^{y} \partial_{y}$.
e) Indicate the covariant derivatives $\nabla_{\dot{c}} d x$ and $\nabla_{\dot{c}} d y$. Use them to compute the covariant derivative of the metric along $c$.
23. Consider the hyperbolic plane $H^{2}$ with the metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

and Levi-Civita connection.
a) Let $f: H^{2} \rightarrow \mathbb{R}$. Compute grad $f$.
b) What is the Riemannian volume element, $\omega$ on $H^{2}$ ? Calculate the Lie derivative

$$
L_{\operatorname{grad}_{f}} \omega .
$$

What is the divergence of the gradient of $f$, i.e., the Laplacian of $f$ ?
December 3, 2017
24. Consider the sphere $S^{2}$ with the metric

$$
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \varphi^{2}
$$

and Levi-Civita connection.
a) Using the results of 21.b), calculate $R\left(\partial_{\theta}, \partial_{\varphi}\right) \partial_{\theta}$ and $R\left(\partial_{\theta}, \partial_{\varphi}\right) \partial_{\varphi}$. Write the Riemann tensor and the curvature tensor.
b) Calculate the curvature of $S^{2}$.
25. Consider the hyperbolic plane $H^{2}$ with the metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

and Levi-Civita connection.
a) Using the results of 22.b), calculate $R\left(\partial_{x}, \partial_{y}\right) \partial_{x}$ and $R\left(\partial_{x}, \partial_{y}\right) \partial_{y}$. Write the Riemann tensor and the curvature tensor.
b) Calculate the curvature of $H^{2}$.
26. Show that the curvature tensor of a 3-dimensional Riemannian manifold is entirely determined by its Ricci tensor.
27. Consider the spherically symmetric Riemannian metric given by

$$
d s^{2}=(B(r))^{2} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}
$$

and the orthonormal frame

$$
\left\{E_{r}, E_{\theta}, E_{\varphi}\right\}=\left\{\frac{1}{B} \partial_{r}, \frac{1}{r} \partial_{\theta}, \frac{1}{r \sin \theta} \partial_{\varphi}\right\}
$$

The function $B$ is positive.
a) Compute the connection forms $\omega_{r}^{\theta}, \omega_{\theta}^{\varphi}$ and $\omega_{r}^{\varphi}$.
b) Compute the curvature forms $\Omega_{r}^{\theta}, \Omega_{\theta}^{\varphi}$ and $\Omega_{r}^{\varphi}$.
c) Compute the sectional curvatures $R_{r \theta r \theta}, R_{\theta \varphi \theta \varphi}$ and $R_{r \varphi r \varphi}$ and the curvature tensor.
d) Compute the Ricci tensor.
e) Compute the scalar curvature.
28. Consider the cylinder $C:=] 0, \infty\left[\times S^{1}\right.$ with metric

$$
d s^{2}=d r^{2}+\sinh ^{2} r d \theta^{2} .
$$

a) Compute $\omega_{r}^{\theta}, \Omega_{r}^{\theta}$ and $R_{r \theta r \theta}$. What is the curvature of $C$ ?
b) Verify the equality of the Gauss-Bonnet Theorem,

$$
\int_{\Omega} K+\int_{\partial \Omega} k_{g}=2 \pi \sum_{i} I_{p_{i}},
$$

when $\Omega=] r_{0}, r_{1}\left[\times S^{1}\right.$.
December 30, 2017
29. Let $S$ be a compact orientable surface with a Riemannian metric with constant negative Gauss curvature. Let $\gamma$ be a geodesic without self-intersections that separates $S$ in two surfaces $S_{1}$ and $S_{2}$ with boundary, i.e.

$$
S=S_{1} \cup S_{2}, \quad \partial S_{1}=\partial S_{2}=\gamma
$$

Show that the quotient of the areas of $S_{1}$ and $S_{2}$ is a rational number.
30. Consider the paraboloid $z=f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right), E_{1}=\frac{f_{x}}{\left\|f_{x}\right\|}, E_{2}=\frac{f_{y}}{\left\|f_{y}\right\|}$ and $n=E_{1} \times E_{2}$. Note that $E_{1}$ and $E_{2}$ are not orthogonal. Check that the matrix representation of the second fundamental form of the surface in the basis $\left(E_{1}, E_{2}\right)$ is

$$
I I(x, y)=\frac{1}{\sqrt{\left(1+x^{2}+y^{2}\right)^{3}}}\left[\begin{array}{cc}
1+y^{2} & -\frac{x y \sqrt{1+y^{2}}}{\sqrt{1+x^{2}}} \\
-\frac{x y \sqrt{1+x^{2}}}{\sqrt{1+y^{2}}} & 1+x^{2}
\end{array}\right]
$$

and that the curvature of the surface is

$$
K=\frac{1}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

31. Consider the surface represented parametrically by

$$
(u, v) \mapsto f(u, v)=\left(f^{1}(u, v), f^{2}(u, v), f^{3}(u, v)\right)
$$

$E_{1}=\frac{f_{u}}{\left\|f_{u}\right\|}, E_{2}=\frac{f_{v}}{\left\|f_{v}\right\|}$ and $N=\frac{E_{1} \times E_{2}}{\left\|E_{1} \times E_{2}\right\|}$.
a) Check that

$$
\begin{aligned}
& p:=\left(-\nabla_{E_{1}} N, E_{1}\right)=\frac{1}{\left\|f_{u}\right\|^{2}}\left(N, f_{u u}\right)=: \frac{l}{\left\|f_{u}\right\|^{2}}, \\
& q:=\left(-\nabla_{E_{1}} N, E_{2}\right)=\frac{1}{\left\|f_{u}\right\|\left\|f_{v}\right\|}\left(N, f_{u v}\right)=\frac{m}{\left\|f_{u}\right\|\left\|f_{v}\right\|}, \\
& r:=\left(-\nabla_{E_{2}} N, E_{2}\right)=\frac{1}{\left\|f_{v}\right\|^{2}}\left(N, f_{v v}\right)=\frac{n}{\left\|f_{v}\right\|^{2}} .
\end{aligned}
$$

b) Let $\Delta=1-\left(E_{1}, E_{2}\right)^{2}$. Check that the second fundamental form of the surface is

$$
I I(u, v)=\frac{1}{\Delta}\left[\begin{array}{ll}
p & q \\
q & r
\end{array}\right]\left[\begin{array}{cc}
1 & -\left(E_{1}, E_{2}\right) \\
-\left(E_{1}, E_{2}\right) & 1
\end{array}\right] .
$$

c) Check that the curvature of the surface is

$$
K=\frac{\ln -m^{2}}{\left\|f_{u}\right\|^{2}\left\|f_{v}\right\|^{2}-\left(f_{u}, f_{v}\right)^{2}} .
$$

