
Riemannian Geometry
Exam - February 26, 2020

LMAC and MMA

Solutions

1.

a) Using Stokes’ Theorem, we have
∫

C

sech2v dθ ∧ dv = −

∫

C

d tanh v dθ = −

∫

∂C

tanh v dθ = 2π tanhα.

b) Using the fact that the Lie derivative is a derivation and that it com-
mutes with the exterior derivative, we obtain

LX cosh2 v dθ ∧ dv = X · (cosh2 v) dθ ∧ dv

+cosh2 v d(LXθ) ∧ dv + cosh2 v dθ ∧ d(LXv)

= sech2v
∂f

∂v
2 cosh v sinh v dθ ∧ dv

+cosh2 v d

(

sech2v
∂f

∂θ

)

∧ dv

+cosh2 v dθ ∧ d

(

sech2v
∂f

∂v

)

=
2

cosh v
sinh v

∂f

∂v
dθ ∧ dv

+
∂2f

∂θ2
dθ ∧ dv +

∂2f

∂v2
dθ ∧ dv

−2 cosh2 v
sinh v

cosh3 v

∂f

∂v
dθ ∧ dv

=
1

cosh2 v

(

∂2f

∂θ2
+

∂2f

∂v2

)

ǫ.

c) According to Cartan’s formula, we have

LXǫ = d(ι(X) ǫ) + ι(X) (dǫ) = d(ι(X) ǫ).

Since,

ι(X) ǫ = cosh2 v sech2v
∂f

∂θ
dv − cosh2 v sech2v

∂f

∂v
dθ

=
∂f

∂θ
dv −

∂f

∂v
dθ,
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it follows that

LXǫ = d(ι(X) ǫ) = sech2v

(

∂2f

∂θ2
+

∂2f

∂v2

)

ǫ.

The divergence of X is

divX = sech2v

(

∂2f

∂θ2
+

∂2f

∂v2

)

.

d) The left-hand side of

∫

C

(divX) ǫ =

∫

∂C

(X, n) ds

is
∫ α

0

∫ π

−π

(

∂2f

∂θ2
+

∂2f

∂v2

)

dθdv =

∫ α

0

∫ π

−π

∂2f

∂v2
dθdv

=

∫ π

−π

(

∂f

∂v
(θ, α)−

∂f

∂v
(θ, 0)

)

dθ.

A parameterization of the top side of ∂C is r(θ) = (θ, α), for which
‖r′(θ)‖ = coshα. Thus, on the top side of ∂C, we have ds = coshα dθ.
On the bottom of ∂C, we have ds = dθ.
On [−π, π]× {0}, n = −∂v, (X, n) = − ∂f

∂v
, (X, n) ds = − ∂f

∂v
.

On {π} × [0, α], n = sech v ∂θ, (X, n) = sech v ∂f

∂θ
.

On [−π, π]× {α}, n = sechα ∂v, (X, n) = sechα ∂f

∂v
, (X, n) ds = ∂f

∂v
.

On {−π} × [0, α], n = −sech v ∂θ, (X, n) = −sech v ∂f

∂θ
.

Taking into account that ∂f

∂θ
(−π, v) = ∂f

∂θ
(π, v), the integrals on the left

side and on right side of ∂C cancel. We conclude that

∫

∂C

(X, n) ds =

∫ π

−π

(

∂f

∂v
(θ, α)−

∂f

∂v
(θ, 0)

)

dθ.

This verifies the Divergence Theorem for the present situation.

2. We denote by m, n and k the dimensions of M , N and S, respectively.
Let p0 belong to f−1(S). We will define a neighborhood W of p0 such that
f−1(S)∩W is a submanifold ofW . This implies that f−1(S) is a submanifold
of M . Let q0 = f(p0). Note that q0 belongs to S. Since S is a submanifold
of N , there exists a neighborhood V of q0, and a chart ϕ−1 defined on V ,
such that S ∩ V = ϕ({(x1, . . . , xn) ∈ ϕ−1(V ) : xk+1 = . . . = xn = 0}). Let
j : ϕ−1(V ) → R

n−k be defined by j(x1, . . . , xn) = (xk+1, . . . , xn). We observe
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that S ∩ V = (j ◦ ϕ−1)−1(0) = (ϕ ◦ j−1)(0). Let W = f−1(V ). W is open
because f is continuous. Clearly, we have f−1(S) ∩W = (j ◦ ϕ−1 ◦ f)−1(0).
We define g : W → R

n−k by g = j ◦ ϕ−1 ◦ f . We claim that 0 is a regular
value of g. Indeed, let p belong to g−1(0). As

(Dg)p = (Dj)ϕ−1(f(p))(Dϕ−1)f(p)(Df)p,

Im (Df)p + Tf(p)S = Tf(p)N,

(Dj)ϕ−1(f(p))(Dϕ−1)Tf(p)S = (Dj)ϕ−1(f(p))(R
k × {0}) = {0}

and
(Dj)ϕ−1(f(p))(Dϕ−1)Tf(p)N = (Dj)ϕ−1(f(p))R

n = R
n−k,

we have that

Im (Dg)p = (Dj)ϕ−1(f(p))(Dϕ−1)(Im (Df)p) = R
n−k.

Since p is arbitrary in g−1(0), this proves that 0 is a regular value of g.
Therefore g−1(0) is a submanifold of W of dimension m−(n−k) = m−n+k.
As argued above, this implies that f−1(S) is a submanifold ofM of dimension
m− n + k.

3.

a) As

dx = − sin u cosh v du+ cosu sinh v dv,

dy = − cos u cosh v du+ sin u sinh v dv,

dz = dv,

the metric induced on C is

cosh2 v (du2 + dv2).

The frame
(ωu, ωv) = cosh v (du, dv)

is orthonormal because

g−1 = sech2v (∂2
u + ∂2

v ).

b) One easily computes that

ωu
v = tanh v du
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and
Ωu

v = −sech2v du ∧ dv.

Since
Ωv

u = R v
uvu ωu ∧ ωv = R v

uvu cosh2 v du ∧ dv,

we obtain
R v

uvu = sech4v.

Because we are working in an orthonormal frame, we also have

Ruvuv = sech4v.

The curvature of C is

K = −Ruvuv = −sech4v.

c) We denote by ∇ the Levi-Civita connection of R3 with the Euclidean
metric. As

n = sech v (cosu, sin u,− sinh v),

we readily obtain that

∇Xu
n = ∇sech v ∂u n

= sech2v (− sin u, cosu, 0),

∇Xv
n = ∇sech v ∂v n

= sech v [−sech v tanh v(cosu, sin u, 0) + (0, 0,−sech2v)].

Since

Xu = (− sin u, cosu, 0),

Xv = sech v (cosu sinh v, sin u sinh v, 1),

the representation of the second fundamental form of C in the frame
(Xu, Xv) is

[

(∇Xu
n,Xu) (∇Xv

n,Xu)
(∇Xu

n,Xv) (∇Xv
n,Xv)

]

=

[

sech2v 0
0 −sech2v

]

.

Once again we obtain that the curvature of C, the determinant of this
matrix, is −sech4v. The principal curvatures of C are ±sech2v. The
mean curvature of C is zero, i.e. C is a minimal surface.

4. This exercise was solved in class. See also page 370 of Godinho and
Natário.


