Riemannian Geometry

Exam - February 26, 2020
LMAC and MMA

Solutions

1.

a) Using Stokes' Theorem, we have

$$
\int_{\mathcal{C}} \operatorname{sech}^{2} v d \theta \wedge d v=-\int_{\mathcal{C}} d \tanh v d \theta=-\int_{\partial \mathcal{C}} \tanh v d \theta=2 \pi \tanh \alpha .
$$

b) Using the fact that the Lie derivative is a derivation and that it commutes with the exterior derivative, we obtain

$$
\begin{aligned}
L_{X} \cosh ^{2} v d \theta \wedge d v= & X \cdot\left(\cosh ^{2} v\right) d \theta \wedge d v \\
& +\cosh ^{2} v d\left(L_{X} \theta\right) \wedge d v+\cosh ^{2} v d \theta \wedge d\left(L_{X} v\right) \\
= & \operatorname{sech}^{2} v \frac{\partial f}{\partial v} 2 \cosh v \sinh v d \theta \wedge d v \\
& +\cosh ^{2} v d\left(\operatorname{sech}^{2} v \frac{\partial f}{\partial \theta}\right) \wedge d v \\
& +\cosh ^{2} v d \theta \wedge d\left(\operatorname{sech}^{2} v \frac{\partial f}{\partial v}\right) \\
= & \frac{2}{\cosh ^{2}} \sinh v \frac{\partial f}{\partial v} d \theta \wedge d v \\
& +\frac{\partial^{2} f}{\partial \theta^{2}} d \theta \wedge d v+\frac{\partial^{2} f}{\partial v^{2}} d \theta \wedge d v \\
& -2 \cosh ^{2} v \frac{\sinh v}{\cosh ^{3} v} \frac{\partial f}{\partial v} d \theta \wedge d v \\
= & \frac{1}{\cosh ^{2} v}\left(\frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial v^{2}}\right) \epsilon .
\end{aligned}
$$

c) According to Cartan's formula, we have

$$
L_{X} \epsilon=d(\iota(X) \epsilon)+\iota(X)(d \epsilon)=d(\iota(X) \epsilon)
$$

Since,

$$
\begin{aligned}
\iota(X) \epsilon & =\cosh ^{2} v \operatorname{sech}^{2} v \frac{\partial f}{\partial \theta} d v-\cosh ^{2} v \operatorname{sech}^{2} v \frac{\partial f}{\partial v} d \theta \\
& =\frac{\partial f}{\partial \theta} d v-\frac{\partial f}{\partial v} d \theta,
\end{aligned}
$$

it follows that

$$
L_{X} \epsilon=d(\iota(X) \epsilon)=\operatorname{sech}^{2} v\left(\frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial v^{2}}\right) \epsilon
$$

The divergence of X is

$$
\operatorname{div} X=\operatorname{sech}^{2} v\left(\frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial v^{2}}\right) .
$$

d) The left-hand side of

$$
\int_{\mathcal{C}}(\operatorname{div} X) \epsilon=\int_{\mathscr{C}}(X, n) d s
$$

is

$$
\begin{aligned}
\int_{0}^{\alpha} \int_{-\pi}^{\pi}\left(\frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial v^{2}}\right) d \theta d v & =\int_{0}^{\alpha} \int_{-\pi}^{\pi} \frac{\partial^{2} f}{\partial v^{2}} d \theta d v \\
& =\int_{-\pi}^{\pi}\left(\frac{\partial f}{\partial v}(\theta, \alpha)-\frac{\partial f}{\partial v}(\theta, 0)\right) d \theta
\end{aligned}
$$

A parameterization of the top side of $\partial \mathcal{C}$ is $r(\theta)=(\theta, \alpha)$, for which $\left\|r^{\prime}(\theta)\right\|=\cosh \alpha$. Thus, on the top side of $\partial \mathcal{C}$, we have $d s=\cosh \alpha d \theta$. On the bottom of $\partial \mathcal{C}$, we have $d s=d \theta$.
On $[-\pi, \pi] \times\{0\}, n=-\partial_{v},(X, n)=-\frac{\partial f}{\partial v},(X, n) d s=-\frac{\partial f}{\partial v}$.
On $\{\pi\} \times[0, \alpha], n=\operatorname{sech} v \partial_{\theta},(X, n)=\operatorname{sech} v \frac{\partial f}{\partial \theta}$.
On $[-\pi, \pi] \times\{\alpha\}, n=\operatorname{sech} \alpha \partial_{v},(X, n)=\operatorname{sech} \alpha \frac{\partial f}{\partial v},(X, n) d s=\frac{\partial f}{\partial v}$.
On $\{-\pi\} \times[0, \alpha], n=-\operatorname{sech} v \partial_{\theta},(X, n)=-\operatorname{sech} v \frac{\partial f}{\partial \theta}$.
Taking into account that $\frac{\partial f}{\partial \theta}(-\pi, v)=\frac{\partial f}{\partial \theta}(\pi, v)$, the integrals on the left side and on right side of $\partial \mathcal{C}$ cancel. We conclude that

$$
\int_{\partial \mathcal{C}}(X, n) d s=\int_{-\pi}^{\pi}\left(\frac{\partial f}{\partial v}(\theta, \alpha)-\frac{\partial f}{\partial v}(\theta, 0)\right) d \theta
$$

This verifies the Divergence Theorem for the present situation.
2. We denote by m, n and k the dimensions of M, N and S, respectively. Let p_{0} belong to $f^{-1}(S)$. We will define a neighborhood W of p_{0} such that $f^{-1}(S) \cap W$ is a submanifold of W. This implies that $f^{-1}(S)$ is a submanifold of M. Let $q_{0}=f\left(p_{0}\right)$. Note that q_{0} belongs to S. Since S is a submanifold of N, there exists a neighborhood V of q_{0}, and a chart φ^{-1} defined on V, such that $S \cap V=\varphi\left(\left\{\left(x^{1}, \ldots, x^{n}\right) \in \varphi^{-1}(V): x^{k+1}=\ldots=x^{n}=0\right\}\right)$. Let $j: \varphi^{-1}(V) \rightarrow \mathbb{R}^{n-k}$ be defined by $j\left(x^{1}, \ldots, x^{n}\right)=\left(x^{k+1}, \ldots, x^{n}\right)$. We observe
that $S \cap V=\left(j \circ \varphi^{-1}\right)^{-1}(0)=\left(\varphi \circ j^{-1}\right)(0)$. Let $W=f^{-1}(V)$. W is open because f is continuous. Clearly, we have $f^{-1}(S) \cap W=\left(j \circ \varphi^{-1} \circ f\right)^{-1}(0)$. We define $g: W \rightarrow \mathbb{R}^{n-k}$ by $g=j \circ \varphi^{-1} \circ f$. We claim that 0 is a regular value of g. Indeed, let p belong to $g^{-1}(0)$. As

$$
\begin{gathered}
(D g)_{p}=(D j)_{\varphi^{-1}(f(p))}\left(D \varphi^{-1}\right)_{f(p)}(D f)_{p}, \\
\operatorname{Im}(D f)_{p}+T_{f(p)} S=T_{f(p)} N, \\
(D j)_{\varphi^{-1}(f(p))}\left(D \varphi^{-1}\right) T_{f(p)} S=(D j)_{\varphi^{-1}(f(p))}\left(\mathbb{R}^{k} \times\{0\}\right)=\{0\}
\end{gathered}
$$

and

$$
(D j)_{\varphi^{-1}(f(p))}\left(D \varphi^{-1}\right) T_{f(p)} N=(D j)_{\varphi^{-1}(f(p))} \mathbb{R}^{n}=\mathbb{R}^{n-k}
$$

we have that

$$
\operatorname{Im}(D g)_{p}=(D j)_{\varphi^{-1}(f(p))}\left(D \varphi^{-1}\right)\left(\operatorname{Im}(D f)_{p}\right)=\mathbb{R}^{n-k}
$$

Since p is arbitrary in $g^{-1}(0)$, this proves that 0 is a regular value of g. Therefore $g^{-1}(0)$ is a submanifold of W of dimension $m-(n-k)=m-n+k$. As argued above, this implies that $f^{-1}(S)$ is a submanifold of M of dimension $m-n+k$.
3.
a) As

$$
\begin{aligned}
d x & =-\sin u \cosh v d u+\cos u \sinh v d v \\
d y & =-\cos u \cosh v d u+\sin u \sinh v d v \\
d z & =d v
\end{aligned}
$$

the metric induced on \mathcal{C} is

$$
\cosh ^{2} v\left(d u^{2}+d v^{2}\right)
$$

The frame

$$
\left(\omega^{u}, \omega^{v}\right)=\cosh v(d u, d v)
$$

is orthonormal because

$$
g^{-1}=\operatorname{sech}^{2} v\left(\partial_{u}^{2}+\partial_{v}^{2}\right)
$$

b) One easily computes that

$$
\omega_{v}^{u}=\tanh v d u
$$

and

$$
\Omega_{v}^{u}=-\operatorname{sech}^{2} v d u \wedge d v
$$

Since

$$
\Omega_{u}^{v}=R_{u v u}^{v} \omega^{u} \wedge \omega^{v}=R_{u v u}^{v} \cosh ^{2} v d u \wedge d v,
$$

we obtain

$$
R_{u v u}^{v}=\operatorname{sech}^{4} v .
$$

Because we are working in an orthonormal frame, we also have

$$
R_{u v u v}=\operatorname{sech}^{4} v .
$$

The curvature of \mathcal{C} is

$$
K=-R_{u v u v}=-\operatorname{sech}^{4} v
$$

c) We denote by ∇ the Levi-Civita connection of \mathbb{R}^{3} with the Euclidean metric. As

$$
n=\operatorname{sech} v(\cos u, \sin u,-\sinh v),
$$

we readily obtain that

$$
\begin{aligned}
\nabla_{X_{u}} n & =\nabla_{\operatorname{sech} v \partial_{u} n} \\
& =\operatorname{sech}^{2} v(-\sin u, \cos u, 0) \\
\nabla_{X_{v}} n & =\nabla_{\operatorname{sech} v \partial_{v} n} \\
& =\operatorname{sech} v\left[-\operatorname{sech} v \tanh v(\cos u, \sin u, 0)+\left(0,0,-\operatorname{sech}^{2} v\right)\right]
\end{aligned}
$$

Since

$$
\begin{aligned}
X_{u} & =(-\sin u, \cos u, 0) \\
X_{v} & =\operatorname{sech} v(\cos u \sinh v, \sin u \sinh v, 1),
\end{aligned}
$$

the representation of the second fundamental form of \mathcal{C} in the frame $\left(X_{u}, X_{v}\right)$ is

$$
\left[\begin{array}{ll}
\left(\nabla_{X_{u}} n, X_{u}\right) & \left(\nabla_{X_{v}} n, X_{u}\right) \\
\left(\nabla_{X_{u}} n, X_{v}\right) & \left(\nabla_{X_{v}} n, X_{v}\right)
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{sech}^{2} v & 0 \\
0 & -\operatorname{sech}^{2} v
\end{array}\right] .
$$

Once again we obtain that the curvature of \mathcal{C}, the determinant of this matrix, is $-\operatorname{sech}^{4} v$. The principal curvatures of \mathcal{C} are $\pm \operatorname{sech}^{2} v$. The mean curvature of \mathcal{C} is zero, i.e. \mathcal{C} is a minimal surface.
4. This exercise was solved in class. See also page 370 of Godinho and Natário.

