
Riemannian Geometry
Exam - February 4, 2021

LMAC and MMA

Solutions

1.

a) If f(A) = detA and A is nonsingular, then

f ′(A)B =
d

dt
det(A + tB)

∣

∣

∣

∣

t=0

= detA
d

dt
det(I + tA−1B)

∣

∣

∣

∣

t=0

= detA tr (A−1B).

This implies that sl (2,R) = TISL(2,R) = ker f ′(I) is the vector space
of 2×2 traceless matrices with the bracket defined [B,C] = BC−CB.
So, sl (2,R) is clearly spanned by

B =

[

0 1
0 0

]

, C =

[

0 0
1 0

]

, D =

[

1 0
0 −1

]

,

as if F ∈ sl (2,R), then

F =

[

x y

z −x

]

.

b) Direct calculation using [F,G] = FG−GF , shows that

[B,C] = D, [D,B] = 2B, [D,C] = −2C.

For

g =

[

p q

r s

]

,

we have

[XB, XC]g = [(Lg)⋆B, (Lg)⋆C]g = (Lg)⋆[B,C]e

= (Lg)⋆De = (XD)g

=

[

p q

r s

] [

1 0
0 −1

]

=

[

p −q
r −s

]

.
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c) To calculate the flow φt(g0) of XB, we solve ġ = (XB)g with initial
condition g(0) = g0, i.e. we solve

[

ṗ q̇

ṙ ṡ

]

=

[

p q

r s

] [

0 1
0 0

]

=

[

0 p

0 r

]

with

g(0) =

[

p0 q0
r0 s0

]

.

We obtain

φt(g0) =

[

p(t) q(t)
r(t) s(t)

]

=

[

p0 q0 + p0t

r0 s0 + r0t

]

d) Let
[

p0 q0
r0 s0

]

= e =

[

1 0
0 1

]

.

We have

exp(tXB) = φt(e) =

[

1 t

0 1

]

.

e) Suppose

g =

[

p0 q0
r0 s0

]

, h =

[

p1 q1
r1 s1

]

.

Then

Lg ◦ φt(h) =

[

p0 q0
r0 s0

] [

p1 q1 + p1t

r1 s1 + r1t

]

=

[

p0p1 + q0r1 p0(q1 + p1t) + q0(s1 + r1t)
r0p1 + s0r1 r0(q1 + p1t) + s0(s1 + r1t)

]

= φt

([

p0p1 + q0r1 p0q1 + q0s1
r0p1 + s0r1 r0q1 + s0s1

])

= φt

([

p0 q0
r0 s0

] [

p1 q1
r1 s1

])

= φt ◦ Lg(h).

f ) Taking into account that

(XC)g =

[

p q

r s

] [

0 0
1 0

]

=

[

q 0
s 0

]
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and

(dφ−t)φt(g0)(X
C)φt(g0) =









1 0 0 0
−t 1 0 0
0 0 1 0
0 0 −t 1

















q0 + p0t

0
s0 + r0t

0









,

according to the definition of Lie derivative, we have

(

LXBXC
)

g0
=

d

dt
(dφ−t)φt(g0)(X

C)φt(g0)

∣

∣

∣

∣

t=0

=









p0
−q0
r0
−s0









∼= (XD)g0.

2. First using Stoke’s Theorem and then using Cartan’s formula, we obtain
∫

M

d(LXω) =

∫

∂M

LXω =

∫

∂M

ι(X) dω +

∫

∂M

d(ι(X)ω).

Again using Stokes’ Theorem, we have
∫

∂M

d(ι(X)ω) =

∫

∂∂M

ι(X)ω = 0.

This is zero because ∂∂M = ∅ (which is a consequence of ∂∂H = ∅, for H
a half-space). On the other hand, if ρ : M → [0, 1] has support in the range
ϕ(U) of a parameterization ϕ of ∂M , ϕ compatible with the orientation of
∂M (induced by the orientation of M), then

∫

∂M

ρ ι(X) dω =

∫

U

ϕ⋆(ρ ι(X) dω).

The form ϕ⋆(ρ ι(X) dω) is identically equal to zero. Indeed, for X1, . . . , Xn ∈
X (U), we have

ϕ⋆(ρ ι(X) dω)(X1, . . . , Xn) = ρ ι(X) dω(ϕ⋆X1, . . . , ϕ⋆Xn)

= ρ dω(X,ϕ⋆X1, . . . , ϕ⋆Xn) = 0

because {X,ϕ⋆X1, . . . , ϕ⋆Xn} are linearly dependent at each point (they are
n + 1 vectors tangent to ∂M). This implies that

∫

∂M

ι(X) dω = 0.

We have proved that
∫

M

d(LXω) = 0.
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This shows that there exists a p ∈ M and n + 1 linearly independent
{(X1)p, . . . , (Xn+1)p} such that

(d(LXω))p((X1)p, . . . , (Xn+1)p) = 0.

But the (n + 1)-alternating tensor (d(LXω))p must be a multiple of the de-
terminant. It therefore has to vanish at p.

3.

a) The vector field is right invariant because

Xg =
d

ds
ψs(g)

∣

∣

∣

∣

s=0

=
d

ds
Lexp(sF )g

∣

∣

∣

∣

s=0

=
d

ds
exp(sF )g

∣

∣

∣

∣

s=0

=
d

ds
Rg exp(sF )

∣

∣

∣

∣

s=0

= (dRg)eXe.

b) Assuming thatXB is Killing, using the Koszul formula, and noting that
(Xα, Xβ) is constant (because both these vector fields and the metric
are left invariant), we arrive at the contradiction

0 = (∇XCXB, XD) + (XC ,∇XDXB)

= −
1

2
([XB, XD], XC)−

1

2
([XC , XD], XB) +

1

2
([XC , XB], XD)

−
1

2
([XB, XC ], XD)−

1

2
([XD, XC ], XB) +

1

2
([XD, XB], XC)

= 0 + 0−
1

2
(D,D)−

1

2
(D,D) + 0 + 0 = −(D,D) = −1.

c) Given that

[Ei, Ej] =

3
∑

k=1

cijkEk,

from the Koszul formula we obtain

(∇Ei
Ej, Ek) = −

1

2
(Ei, [Ej, Ek])−

1

2
(Ej , [Ei, Ek]) +

1

2
(Ek, [Ei, Ej ])

= −
1

2
cjki −

1

2
cikj +

1

2
cijk

=
1

2
(cijk + ckij + ckji).
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This implies that

∇Ei
Ej =

3
∑

k=1

(∇Ei
Ej , Ek)Ek =

1

2

3
∑

k=1

(cijk + ckij + ckji)Ek.

This formula allows us to calculate ∇XBXB:

∇XBXB =
1

2
(cBBB + cBBB + cBBB)X

B

+
1

2
(cBBC + cCBB + cCBB)X

C

+
1

2
(cBBD + cDBB + cDBB)X

D

= 2XD.

d) Given that

∇XCXB = − 1
2
XD, ∇XCXC = −2XD,

∇XDXC = 1
2
XB, ∇XDXD = 0,

it follows that

R
(

XC , XD, XC, XD
)

=
(

∇XC∇XDXC −∇XD∇XCXC −∇[XC ,XD]X
C , XD

)

=

(

1

2
∇XCXB + 2∇XDXD − 2∇XCXC , XD

)

=

(

−
1

4
XD + 0 + 4XD, XD

)

=
15

4
.

The sectional curvature of the plane spanned by XC and XD is − 15
4
.

4.

a) Let c be the geodesic with initial velocity V , c(0) = p and ċ(0) = V .
Suppose c is contained in S. Then f(c(t)) = c(t). Differentiating both
sides of this equality with respect to t and setting t = 0 we obtain
(df)p(V ) = V .
Suppose now that (df)p(V ) = V . Since f is an isometry, γ = f ◦ c
is a geodesic. Its initial velocity is V and at t = 0 it is at p (because
(df)p sends V to itself, which is a vector based at p). As the geodesic
is uniquely determined by a point and its velocity at that point, γ = c.
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b) Let Bǫ(p) be such that expp is a diffeomorphism from Bǫ(0) ⊂ TpM

to Bǫ(p). The set of V ’s in TpM such that (df)pV = V is a subspace
of TpM . The image by expp of the intersection of this subspace with
Bǫ(0) is a submanifold N of M .

c) Without loss of generality, we may assume thatBǫ(p) is a totally normal
neighborhood of p. Suppose, by contradiction, that q ∈ Bǫ(p) \N and
q belongs to S. Then there exists a geodesic γ connecting p to q.
Now, f ◦ γ is also a geodesic connecting p to q (since both p and q are
fixed points of S). If f ◦γ = γ, then γ belongs to N (which contradicts
q 6∈ N). If f ◦γ is different from γ, then we contradict the uniqueness of
geodesics connecting p to q (because the geodesic and its image have the
same length). We conclude that there does not exist any q ∈ Bǫ(p) \N
that belongs to S. In summary, each point in S has a neighborhood U
such that S ∩U is a manifold. We conclude that S is a submanifold of
M (whose components might have different dimensions).

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

For the record:

∇XBXB = 2XD, ∇XBXC = 1
2
XD, ∇XBXD = −2XB − 1

2
XC ,

∇XCXB = − 1
2
XD, ∇XCXC = −2XD, ∇XCXD = 1

2
XB + 2XC,

∇XDXB = − 1
2
XC , ∇XDXC = 1

2
XB, ∇XDXD = 0.

R
(

XB, XC , XB, XC
)

= −
13

4
,

R
(

XB, XD, XB, XD
)

=
15

4
,

R
(

XC , XD, XC , XD
)

=
15

4
.


