Riemannian Geometry
 Exam - February 4, 2021
 LMAC and MMA

Solutions

1.

a) If $f(A)=\operatorname{det} A$ and A is nonsingular, then

$$
\begin{aligned}
f^{\prime}(A) B & =\left.\frac{d}{d t} \operatorname{det}(A+t B)\right|_{t=0}=\left.\operatorname{det} A \frac{d}{d t} \operatorname{det}\left(I+t A^{-1} B\right)\right|_{t=0} \\
& =\operatorname{det} A \operatorname{tr}\left(A^{-1} B\right)
\end{aligned}
$$

This implies that $s l(2, \mathbb{R})=T_{I} S L(2, \mathbb{R})=\operatorname{ker} f^{\prime}(I)$ is the vector space of 2×2 traceless matrices with the bracket defined $[B, C]=B C-C B$. So, $s l(2, \mathbb{R})$ is clearly spanned by

$$
B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad D=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],
$$

as if $F \in s l(2, \mathbb{R})$, then

$$
F=\left[\begin{array}{cc}
x & y \\
z & -x
\end{array}\right] .
$$

b) Direct calculation using $[F, G]=F G-G F$, shows that

$$
[B, C]=D, \quad[D, B]=2 B, \quad[D, C]=-2 C
$$

For

$$
g=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right],
$$

we have

$$
\begin{aligned}
{\left[X^{B}, X^{C}\right]_{g} } & =\left[\left(L_{g}\right)_{\star} B,\left(L_{g}\right)_{\star} C\right]_{g}=\left(L_{g}\right)_{\star}[B, C]_{e} \\
& =\left(L_{g}\right)_{\star} D_{e}=\left(X^{D}\right)_{g} \\
& =\left[\begin{array}{cc}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
p & -q \\
r & -s
\end{array}\right] .
\end{aligned}
$$

c) To calculate the flow $\phi_{t}\left(g_{0}\right)$ of X^{B}, we solve $\dot{g}=\left(X^{B}\right)_{g}$ with initial condition $g(0)=g_{0}$, i.e. we solve

$$
\left[\begin{array}{cc}
\dot{p} & \dot{q} \\
\dot{r} & \dot{s}
\end{array}\right]=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & p \\
0 & r
\end{array}\right]
$$

with

$$
g(0)=\left[\begin{array}{ll}
p_{0} & q_{0} \\
r_{0} & s_{0}
\end{array}\right] .
$$

We obtain

$$
\phi_{t}\left(g_{0}\right)=\left[\begin{array}{ll}
p(t) & q(t) \\
r(t) & s(t)
\end{array}\right]=\left[\begin{array}{ll}
p_{0} & q_{0}+p_{0} t \\
r_{0} & s_{0}+r_{0} t
\end{array}\right]
$$

d) Let

$$
\left[\begin{array}{cc}
p_{0} & q_{0} \\
r_{0} & s_{0}
\end{array}\right]=e=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

We have

$$
\exp \left(t X^{B}\right)=\phi_{t}(e)=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

e) Suppose

$$
g=\left[\begin{array}{cc}
p_{0} & q_{0} \\
r_{0} & s_{0}
\end{array}\right], \quad h=\left[\begin{array}{cc}
p_{1} & q_{1} \\
r_{1} & s_{1}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
L_{g} \circ \phi_{t}(h) & =\left[\begin{array}{ll}
p_{0} & q_{0} \\
r_{0} & s_{0}
\end{array}\right]\left[\begin{array}{ll}
p_{1} & q_{1}+p_{1} t \\
r_{1} & s_{1}+r_{1} t
\end{array}\right] \\
& =\left[\begin{array}{ll}
p_{0} p_{1}+q_{0} r_{1} & p_{0}\left(q_{1}+p_{1} t\right)+q_{0}\left(s_{1}+r_{1} t\right) \\
r_{0} p_{1}+s_{0} r_{1} & r_{0}\left(q_{1}+p_{1} t\right)+s_{0}\left(s_{1}+r_{1} t\right)
\end{array}\right] \\
& =\phi_{t}\left(\left[\begin{array}{ll}
p_{0} p_{1}+q_{0} r_{1} & p_{0} q_{1}+q_{0} s_{1} \\
r_{0} p_{1}+s_{0} r_{1} & r_{0} q_{1}+s_{0} s_{1}
\end{array}\right]\right) \\
& =\phi_{t}\left(\left[\begin{array}{ll}
p_{0} & q_{0} \\
r_{0} & s_{0}
\end{array}\right]\left[\begin{array}{ll}
p_{1} & q_{1} \\
r_{1} & s_{1}
\end{array}\right]\right) \\
& =\phi_{t} \circ L_{g}(h) .
\end{aligned}
$$

f) Taking into account that

$$
\left(X^{C}\right)_{g}=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
q & 0 \\
s & 0
\end{array}\right]
$$

and

$$
\left(d \phi_{-t}\right)_{\phi_{t}\left(g_{0}\right)}\left(X^{C}\right)_{\phi_{t}\left(g_{0}\right)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-t & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -t & 1
\end{array}\right]\left[\begin{array}{c}
q_{0}+p_{0} t \\
0 \\
s_{0}+r_{0} t \\
0
\end{array}\right]
$$

according to the definition of Lie derivative, we have

$$
\left(L_{X^{B}} X^{C}\right)_{g_{0}}=\left.\frac{d}{d t}\left(d \phi_{-t}\right)_{\phi_{t}\left(g_{0}\right)}\left(X^{C}\right)_{\phi_{t}\left(g_{0}\right)}\right|_{t=0}=\left[\begin{array}{c}
p_{0} \\
-q_{0} \\
r_{0} \\
-s_{0}
\end{array}\right] \cong\left(X^{D}\right)_{g_{0}}
$$

2. First using Stoke's Theorem and then using Cartan's formula, we obtain

$$
\int_{M} d\left(L_{X} \omega\right)=\int_{\partial M} L_{X} \omega=\int_{\partial M} \iota(X) d \omega+\int_{\partial M} d(\iota(X) \omega) .
$$

Again using Stokes' Theorem, we have

$$
\int_{\partial M} d(\iota(X) \omega)=\int_{\partial \partial M} \iota(X) \omega=0 .
$$

This is zero because $\partial \partial M=\emptyset$ (which is a consequence of $\partial \partial H=\emptyset$, for H a half-space). On the other hand, if $\rho: M \rightarrow[0,1]$ has support in the range $\varphi(U)$ of a parameterization φ of $\partial M, \varphi$ compatible with the orientation of ∂M (induced by the orientation of M), then

$$
\int_{\partial M} \rho \iota(X) d \omega=\int_{U} \varphi^{\star}(\rho \iota(X) d \omega) .
$$

The form $\varphi^{\star}(\rho \iota(X) d \omega)$ is identically equal to zero. Indeed, for $X_{1}, \ldots, X_{n} \in$ $\mathcal{X}(U)$, we have

$$
\begin{aligned}
\varphi^{\star}(\rho \iota(X) d \omega)\left(X_{1}, \ldots, X_{n}\right) & =\rho \iota(X) d \omega\left(\varphi_{\star} X_{1}, \ldots, \varphi_{\star} X_{n}\right) \\
& =\rho d \omega\left(X, \varphi_{\star} X_{1}, \ldots, \varphi_{\star} X_{n}\right)=0
\end{aligned}
$$

because $\left\{X, \varphi_{\star} X_{1}, \ldots, \varphi_{\star} X_{n}\right\}$ are linearly dependent at each point (they are $n+1$ vectors tangent to $\partial M)$. This implies that

$$
\int_{\partial M} \iota(X) d \omega=0 .
$$

We have proved that

$$
\int_{M} d\left(L_{X} \omega\right)=0
$$

This shows that there exists a $p \in M$ and $n+1$ linearly independent $\left\{\left(X_{1}\right)_{p}, \ldots,\left(X_{n+1}\right)_{p}\right\}$ such that

$$
\left(d\left(L_{X} \omega\right)\right)_{p}\left(\left(X_{1}\right)_{p}, \ldots,\left(X_{n+1}\right)_{p}\right)=0 .
$$

But the $(n+1)$-alternating tensor $\left(d\left(L_{X} \omega\right)\right)_{p}$ must be a multiple of the determinant. It therefore has to vanish at p.
3.
a) The vector field is right invariant because

$$
\begin{aligned}
X_{g}=\left.\frac{d}{d s} \psi_{s}(g)\right|_{s=0} & =\left.\frac{d}{d s} L_{\exp (s F)} g\right|_{s=0} \\
& =\left.\frac{d}{d s} \exp (s F) g\right|_{s=0} \\
& =\left.\frac{d}{d s} R_{g} \exp (s F)\right|_{s=0} \\
& =\left(d R_{g}\right)_{e} X_{e}
\end{aligned}
$$

b) Assuming that X^{B} is Killing, using the Koszul formula, and noting that (X^{α}, X^{β}) is constant (because both these vector fields and the metric are left invariant), we arrive at the contradiction

$$
\begin{aligned}
0= & \left(\nabla_{X^{C}} X^{B}, X^{D}\right)+\left(X^{C}, \nabla_{X^{D}} X^{B}\right) \\
= & -\frac{1}{2}\left(\left[X^{B}, X^{D}\right], X^{C}\right)-\frac{1}{2}\left(\left[X^{C}, X^{D}\right], X^{B}\right)+\frac{1}{2}\left(\left[X^{C}, X^{B}\right], X^{D}\right) \\
& -\frac{1}{2}\left(\left[X^{B}, X^{C}\right], X^{D}\right)-\frac{1}{2}\left(\left[X^{D}, X^{C}\right], X^{B}\right)+\frac{1}{2}\left(\left[X^{D}, X^{B}\right], X^{C}\right) \\
= & 0+0-\frac{1}{2}(D, D)-\frac{1}{2}(D, D)+0+0=-(D, D)=-1 .
\end{aligned}
$$

c) Given that

$$
\left[E_{i}, E_{j}\right]=\sum_{k=1}^{3} c_{i j k} E_{k}
$$

from the Koszul formula we obtain

$$
\begin{aligned}
\left(\nabla_{E_{i}} E_{j}, E_{k}\right) & =-\frac{1}{2}\left(E_{i},\left[E_{j}, E_{k}\right]\right)-\frac{1}{2}\left(E_{j},\left[E_{i}, E_{k}\right]\right)+\frac{1}{2}\left(E_{k},\left[E_{i}, E_{j}\right]\right) \\
& =-\frac{1}{2} c_{j k i}-\frac{1}{2} c_{i k j}+\frac{1}{2} c_{i j k} \\
& =\frac{1}{2}\left(c_{i j k}+c_{k i j}+c_{k j i}\right)
\end{aligned}
$$

This implies that

$$
\nabla_{E_{i}} E_{j}=\sum_{k=1}^{3}\left(\nabla_{E_{i}} E_{j}, E_{k}\right) E_{k}=\frac{1}{2} \sum_{k=1}^{3}\left(c_{i j k}+c_{k i j}+c_{k j i}\right) E_{k} .
$$

This formula allows us to calculate $\nabla_{X^{B}} X^{B}$:

$$
\begin{aligned}
\nabla_{X^{B}} X^{B}= & \frac{1}{2}\left(c_{B B B}+c_{B B B}+c_{B B B}\right) X^{B} \\
& +\frac{1}{2}\left(c_{B B C}+c_{C B B}+c_{C B B}\right) X^{C} \\
& +\frac{1}{2}\left(c_{B B D}+c_{D B B}+c_{D B B}\right) X^{D} \\
= & 2 X^{D} .
\end{aligned}
$$

d) Given that

$$
\begin{aligned}
& \nabla_{X^{C}} X^{B}=-\frac{1}{2} X^{D}, \quad \nabla_{X^{C}} X^{C}=-2 X^{D}, \\
& \nabla_{X^{D}} X^{C}=\frac{1}{2} X^{B}, \quad \nabla_{X^{D}} X^{D}=0,
\end{aligned}
$$

it follows that

$$
\begin{aligned}
R\left(X^{C},\right. & X^{D}, \\
& \left., X^{C}, X^{D}\right) \\
& =\left(\nabla_{X^{C}} \nabla_{X^{D}} X^{C}-\nabla_{X^{D}} \nabla_{X^{C}} X^{C}-\nabla_{\left[X^{C}, X^{D}\right]} X^{C}, X^{D}\right) \\
& =\left(\frac{1}{2} \nabla_{X^{C}} X^{B}+2 \nabla_{X^{D}} X^{D}-2 \nabla_{X^{C}} X^{C}, X^{D}\right) \\
& =\left(-\frac{1}{4} X^{D}+0+4 X^{D}, X^{D}\right) \\
& =\frac{15}{4} .
\end{aligned}
$$

The sectional curvature of the plane spanned by X^{C} and X^{D} is $-\frac{15}{4}$.
4.
a) Let c be the geodesic with initial velocity $V, c(0)=p$ and $\dot{c}(0)=V$. Suppose c is contained in S. Then $f(c(t))=c(t)$. Differentiating both sides of this equality with respect to t and setting $t=0$ we obtain $(d f)_{p}(V)=V$.
Suppose now that $(d f)_{p}(V)=V$. Since f is an isometry, $\gamma=f \circ c$ is a geodesic. Its initial velocity is V and at $t=0$ it is at p (because $(d f)_{p}$ sends V to itself, which is a vector based at p). As the geodesic is uniquely determined by a point and its velocity at that point, $\gamma=c$.
b) Let $B_{\epsilon}(p)$ be such that $\exp _{p}$ is a diffeomorphism from $B_{\epsilon}(0) \subset T_{p} M$ to $B_{\epsilon}(p)$. The set of V 's in $T_{p} M$ such that $(d f)_{p} V=V$ is a subspace of $T_{p} M$. The image by $\exp _{p}$ of the intersection of this subspace with $B_{\epsilon}(0)$ is a submanifold N of M.
c) Without loss of generality, we may assume that $B_{\epsilon}(p)$ is a totally normal neighborhood of p. Suppose, by contradiction, that $q \in B_{\epsilon}(p) \backslash N$ and q belongs to S. Then there exists a geodesic γ connecting p to q. Now, $f \circ \gamma$ is also a geodesic connecting p to q (since both p and q are fixed points of S). If $f \circ \gamma=\gamma$, then γ belongs to N (which contradicts $q \notin N)$. If $f \circ \gamma$ is different from γ, then we contradict the uniqueness of geodesics connecting p to q (because the geodesic and its image have the same length). We conclude that there does not exist any $q \in B_{\epsilon}(p) \backslash N$ that belongs to S. In summary, each point in S has a neighborhood U such that $S \cap U$ is a manifold. We conclude that S is a submanifold of M (whose components might have different dimensions).

For the record:

$$
\begin{gathered}
\nabla_{X^{B}} X^{B}=2 X^{D}, \quad \nabla_{X^{B}} X^{C}=\frac{1}{2} X^{D}, \quad \nabla_{X^{B}} X^{D}=-2 X^{B}-\frac{1}{2} X^{C}, \\
\nabla_{X^{C}} X^{B}=-\frac{1}{2} X^{D}, \nabla_{X^{C}} X^{C}=-2 X^{D}, \nabla_{X^{C}} X^{D}=\frac{1}{2} X^{B}+2 X^{C}, \\
\nabla_{X^{D}} X^{B}=-\frac{1}{2} X^{C}, \quad \nabla_{X^{D}} X^{C}=\frac{1}{2} X^{B}, \quad \nabla_{X^{D}} X^{D}=0 . \\
R\left(X^{B}, X^{C}, X^{B}, X^{C}\right)=-\frac{13}{4} \\
R\left(X^{B}, X^{D}, X^{B}, X^{D}\right)=\frac{15}{4} \\
R\left(X^{C}, X^{D}, X^{C}, X^{D}\right)=\frac{15}{4} .
\end{gathered}
$$

