
Riemannian Geometry
Exam - January 29, 2020

LMAC and MMA

Solutions

1.

a) As X = 2∂θ, according to Cartan’s formula, we have

LXω = dι(X)ω + ι(X)dω = dι(X)ω = d

(

1

4
sin θdϕ ∧ dψ

)

.

Thus, according to Stokes’ Theorem, we have
∫

]0,π
2
[×]0,2π[×]0,2π[

LXω =

∫

]0,2π[×]0,2π[

1

4
sin

(π

2

)

dϕ ∧ dψ

−

∫

]0,2π[×]0,2π[

1

4
sin 0 dϕ ∧ dψ = π2.

To justify this computation rigorously, one should first integrate on
[

ǫ, π
2

]

× [0, 2π] × [0, 2π] and pass to the limit as ǫ ց 0. Indeed, the
coordinates degenerate at θ = 0.

b) Recall that so(3) = {A ∈M3×3 : A
T = −A}. If

A =





0 −c b

c 0 −a
−b a 0



 and ξ =





x

y

z



 , then Aξ =





−cy + bz

cx− az

−bx + ay



 .

On the other hand

(a, b, c)× (x, y, z) = (−cy + bz, cx − az,−bx + ay).

Therefore, for A as above, Aξ = Ω(A)× ξ for

Ω(A) = (a, b, c).

When A is as above and

B =





0 −c̄ b̄

c̄ 0 −ā
−b̄ ā 0



 ,
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we have

[A,B] =





0 bā− ab̄ cā− ac̄

−bā + ab̄ 0 cb̄− bc̄

−cā + ac̄ −cb̄+ bc̄ 0



 ,

whereas

Ω(A)× Ω(B) = (a, b, c)× (ā, b̄, c̄) = (bc̄− cb̄, cā− ac̄, ab̄− bā).

The first entry of this vector is [A,B]3,2, the second entry of this vector
is [A,B]1,3, and the third entry of this vector is [A,B]2,1. This shows
that Ω([A,B]) = Ω(A)× Ω(B).

c) Using b) and R(v × w) = Rv ×Rw, we obtain

(R−1Ω−1(v)R)w = R−1(Ω−1(v)(Rw)) = R−1(v × (Rw))

= (R−1v)× (R−1(Rw)) = (R−1v)× w

= Ω−1(R−1v)w

for all w ∈ R
3. This means that

R−1Ω−1(v)R = Ω−1(R−1v).

d) We have

R−ϕṘϕ = ϕ̇





cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1









− sinϕ − cosϕ 0
cosϕ − sinϕ 0
0 0 0





= ϕ̇





0 −1 0
1 0 0
0 0 0



 = ϕ̇Ω−1(e3).

Similarly, it follows that R−θṘθ = θ̇Ω−1(e1) and R−ψṘψ = ψ̇Ω−1(e3).
e) For Ṡ ∈ TSSO(3), let A be such that Ṡ = SA. Since S = RϕRθRψ, we

have

A = S−1Ṡ = R−ψR−θR−ϕṘϕRθRψ +R−ψR−θR−ϕRϕṘθRψ

+R−ψR−θR−ϕRϕRθṘψ

= R−ψR−θR−ϕṘϕRθRψ +R−ψR−θṘθRψ +R−ψṘψ

= ϕ̇ R−ψR−θΩ
−1(e3)RθRψ + θ̇ R−ψΩ

−1(e1)Rψ + ψ̇Ω−1(e3)

= ϕ̇Ω−1(R−ψR−θe3) + θ̇Ω−1(R−ψe1) + ψ̇Ω−1(e3).
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Hence, we have

Ω(A) = ϕ̇ R−ψR−θe3 + θ̇ R−ψe1 + ψ̇e3

= ϕ̇(sin θ sinψe1 + sin θ cosψe2 + cos θe3)

+θ̇(cosψe1 − sinψe2) + ψ̇e3

=
(

θ̇ cosψ + ϕ̇ sin θ sinψ
)

e1 +
(

−θ̇ sinψ + ϕ̇ sin θ cosψ
)

e2

+
(

ϕ̇ cos θ + ψ̇
)

e3.

f) Suppose X is a left invariant vector field and S(θ( · ), ϕ( · ), ψ( · )) is an
integral curve of X , i.e. XS = Ṡ. Then A is constant. Indeed, since X
is left invariant, XS = SA with A = XI . This is the same as Ṡ = SA.
Now, in local coordinates X = θ̇∂θ + ϕ̇∂ϕ + ψ̇∂ψ. Notice that

Ω(A) =





cosψ sin θ sinψ 0
− sinψ sin θ cosψ 0

0 cos θ 1









θ̇

ϕ̇

ψ̇



 =M





Xθ

Xϕ

Xψ



 .

Of course, when A = Ω−1(e1), we have Ω(A) = e1, when A = Ω−1(−e2),
we have Ω(A) = −e2, and when A = Ω−1(e3), we have Ω(A) =
e3. Thus, the left invariant vector fields corresponding to Ω−1(e1),
Ω−1(−e2) and Ω−1(e3) are X1 = M−1e1, X2 = −M−1e2 and X3 =
M−1e3, respectively. As

M−1 =





cosψ − sinψ 0
sinψ
sin θ

cosψ
sin θ

0
− sinψ cot θ − cosψ cot θ 1



 ,

it follows that

X1 = cosψ ∂θ +
sinψ

sin θ
∂ϕ − sinψ cot θ ∂ψ,

X2 = sinψ ∂θ −
cosψ

sin θ
∂ϕ + cosψ cot θ ∂ψ,

X3 = ∂ψ.

2.

a) The metric and its inverse are

g =
1

4





1 0 0
0 1 cos θ
0 cos θ 1



 , g−1 = 4





1 0 0
0 csc2 θ − csc θ cot θ
0 − csc θ cot θ csc2 θ



 .
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The inner product of ωi and ωj is

(ωi, ωj) = (ωi)kg
kl(ωj)l.

Let X1 = X , X2 = Y and X3 = Z. Since

g−1ω1 = 2





cosψ
sinψ
sin θ

− sinψ cot θ



 = X1,

g−1ω2 = 2





sinψ

− cosψ
sin θ

cosψ cot θ



 = X2

g−1ω3 = 2





0
0
1



 = X3,

and ωi(Xj) = δij, we have ωig−1ωj = δij . The base (ω1, ω2, ω3) is
orthonormal.

b) One readily calculates

dω1 =
1

2
(sinψ dθ ∧ dψ + cos θ sinψ dθ ∧ dϕ− sin θ cosψ dϕ ∧ dψ)

and

ω2 ∧ ω3 =
1

4
(sinψ dθ ∧ dψ + cos θ sinψ dθ ∧ dϕ− sin θ cosψ dϕ ∧ dψ).

So, the constant a is equal to 2.
c) According to Cartan’s structure equations, we have

2ω2 ∧ ω3 = dω1 = ω2 ∧ ω1
2 + ω3 ∧ ω1

3,

−2ω1 ∧ ω3 = dω2 = ω1 ∧ ω2
1 + ω3 ∧ ω2

3

= −ω1 ∧ ω1
2 + ω3 ∧ ω2

3,

2ω1 ∧ ω2 = dω3 = ω1 ∧ ω3
1 + ω2 ∧ ω3

2

= −ω1 ∧ ω1
3 − ω3 ∧ ω2

3.

By inspection, we see that the connection forms are

ω1
2 = ω3,

ω1
3 = −ω2,

ω2
3 = ω1.
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d) On the one hand, we have

dω1
2 = dω3 = 2ω1 ∧ ω2,

dω1
3 = −dω2 = 2ω1 ∧ ω3,

dω2
3 = dω1 = 2ω2 ∧ ω2.

On the other hand, according to Cartan’s structure equations, we have

dω1
2 = Ω1

2 + ω3
2 ∧ ω

1
3 = Ω1

2 + ω1 ∧ ω2,

dω1
3 = Ω1

3 + ω2
3 ∧ ω

1
2 = Ω1

3 + ω1 ∧ ω3,

dω2
3 = Ω2

3 + ω1
3 ∧ ω

2
1 = Ω2

3 + ω2 ∧ ω3.

Therefore, the curvature forms are given by

Ω1
2 = ω1 ∧ ω2,

Ω1
3 = ω1 ∧ ω3,

Ω2
3 = ω2 ∧ ω3.

The Riemann tensor is given by

R = R 1
kl2 ω

k ⊗ ωl ⊗ ω2 ⊗X1 +R 2
kl1 ω

k ⊗ ωl ⊗ ω1 ⊗X2

+R 1
kl3 ω

k ⊗ ωl ⊗ ω3 ⊗X1 +R 3
kl1 ω

k ⊗ ωl ⊗ ω1 ⊗X3

+R 2
kl3 ω

k ⊗ ωl ⊗ ω3 ⊗X2 +R 3
kl2 ω

k ⊗ ωl ⊗ ω2 ⊗X3.

As the frame is orthonormal, the curvature tensor is given by

R = Rkl21ω
k ⊗ ωl ⊗ ω2 ∧ ω1 +Rkl31ω

k ⊗ ωl ⊗ ω3 ∧ ω1

+Rkl32ω
k ⊗ ωl ⊗ ω3 ∧ ω2

= R 1
kl2 ω

k ⊗ ωl ⊗ ω2 ∧ ω1 +R 1
kl3 ω

k ⊗ ωl ⊗ ω3 ∧ ω1

+R 2
kl3 ω

k ⊗ ωl ⊗ ω3 ∧ ω2

= Ω1
2 ⊗ ω2 ∧ ω1 + Ω1

3 ⊗ ω3 ∧ ω1 + Ω2
3 ⊗ ω3 ∧ ω2

= ω1 ∧ ω2 ⊗ ω2 ∧ ω1 + ω1 ∧ ω3 ⊗ ω3 ∧ ω1 + ω2 ∧ ω3 ⊗ ω3 ∧ ω2.

We see that R1212 = R1313 = R2323 = −1 and that Rijkl = 0 if three of
the indices are different. The sectional curvature of SO(3) is constant,
equal to 1.
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e) The covariant derivatives of X = X1 and Y = X2 are

∇X1
X1 = ω1(∇X1

X1)X1 + ω2(∇X1
X1)X2 + ω3(∇X1

X1)X3

= ω1
1(X1)X1 + ω2

1(X1)X2 + ω3
1(X1)X3

= 0− ω3(X1)X2 + ω2(X1)X3

= 0,

∇X2
X1 = 0− ω3(X2)X2 + ω2(X2)X3

= X3,

∇X3
X1 = 0− ω3(X3)X2 + ω2(X3)X3

= −X2,

∇X1
X2 = ω1

2(X1)X1 + ω2
2(X1)X2 + ω3

2(X1)X3

= ω3(X1)X1 + 0− ω1(X1)X3

= −X3,

∇X2
X2 = ω3(X2)X1 + 0− ω1(X2)X3

= 0,

∇X3
X2 = ω3(X3)X1 + 0− ω1(X3)X3

= X1.

f) The vector fields W and Z are tangent to the torus because they have
no ∂θ component:

W = sinψX − cosψ Y = 2 (csc θ ∂ϕ − cot θ ∂ψ) ,

Z = 2∂ψ.

g) The covariant derivatives of N are

∇WN = ∇sinψX1−cosψX2
(cosψX1 + sinψX2)

= sinψ(X1 · cosψ)X1 + sinψ cosψ∇X1
X1

+ sinψ(X1 · sinψ)X2 + sin2 ψ∇X1
X2

− cosψ(X2 · cosψ)X1 − cos2 ψ∇X2
X1

− cosψ(X2 · sinψ)X2 − cosψ sinψ∇X2
X2

= 2 sin3 ψ cot θX1 + 0− 2 sin2 ψ cosψ cot θX2

− sin2 ψX3 + 2 sinψ cos2 ψ cot θX1

− cos2 ψX3 − 2 cos3 ψ cot θX2

= 2 sinψ cot θX1 − 2 cosψ cot θX2 −X3

= 2 cot θW − Z,
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∇ZN = ∇2∂ψ(cosψX1 + sinψX2)

= −2 sinψX1 + cosψ∇X3
X1 + 2 cosψX2 + sinψ∇X3

X2

= −2 sinψX1 − cosψX2 + 2 cosψX2 + sinψX1

= −(sinψX1 − cosψX2)

= −W.

The second fundamental form of T is
[

−(∇WN,W ) −(∇ZN,W )
−(∇WN,Z) −(∇ZZ,N)

]

=

[

−2 cot θ 1
1 0

]

The mean curvature of T is − cot θ. For θ = π
2
the mean curvature of

T is equal to zero.
h) We have seen that KSO(3)(Π) = 1. Moreover,

(B(W,W ), B(Z,Z)) = ((∇WW,N)N, (∇ZZ,N)N)

= (∇WN,W )(∇ZN,Z) = 0,

‖B(W,Z)‖2 = ‖(∇WZ,N)N)‖2 = (∇WN,Z)
2 = 1.

Hence, according to the formula

KT (Π)−KSO(3)(Π) = (B(W,W ), B(Z,Z))− ‖B(W,Z)‖2,

we have KT (Π) = 0. The metric induced on T is

g =
1

4
sin2 θ dϕ2 +

1

4
(cos θ dϕ+ dψ)2,

with θ fixed. We change to coordinates (σ, χ) = (sin θ ϕ, cos θ ϕ + ψ).
This is equivalent to (ϕ, ψ) = (csc θ σ,− cot θ σ + χ), so that (σ, χ) are
indeed coordinates. Then, the metric becomes the flat metric

g =
1

4
(dσ2 + dχ2).


