Riemannian Geometry

Exam - January 30, 2018
LMAC and MMA

Solutions

1.

a) G is a subgroup of $\mathcal{M}_{2 \times 2}(\mathbb{C})$. Indeed, suppose $A \in G$ and $B \in G$. Then $A B \in G$ since

$$
(A B)^{*} J(A B)=B^{*}\left(A^{*} J A\right) B=B^{*} J B=J
$$

and $A^{-1} \in G$ as

$$
A^{*} J A=J \Rightarrow\left(A^{*}\right)^{-1} A^{*} J A A^{-1}=\left(A^{-1}\right)^{*} J A^{-1} \Rightarrow J=\left(A^{-1}\right)^{*} J A^{-1} .
$$

b) We denote by $\mathcal{S}_{2 \times 2}(\mathbb{C})$ the space of skew-hermitean 2×2 matrices. This is a 4 -dimensional space. Let $f: \mathcal{M}_{2 \times 2} \rightarrow \mathcal{S}_{2 \times 2}$ be defined by

$$
f(A)=A^{*} J A
$$

This function is smooth and

$$
D f(A)(B)=B^{*} J A+A^{*} J B .
$$

Suppose $A \in f^{-1}(J)$ and $C \in T_{J} \mathcal{S}_{2 \times 2}(\mathbb{C}) \equiv \mathcal{S}_{2 \times 2}(\mathbb{C})$. Choosing $B=$ $-\frac{1}{2} A J C$, we get

$$
\begin{aligned}
D f(A)\left(-\frac{1}{2} A J C\right) & =\frac{1}{2} C^{*} J A^{*} J A-\frac{1}{2} A^{*} J A J C \\
& =-\frac{1}{2} C J^{2}-\frac{1}{2} J^{2} C=C
\end{aligned}
$$

This shows that f is a submersion at A. Since A is arbitrary in $f^{-1}(J)$, J is a regular value of f. It follows that $G=f^{-1}(J)$ is a submanifold of $\mathcal{M}_{2 \times 2}(\mathbb{C})$ of dimension $8-4=4$. Hence, G is a Lie group.
c)

$$
T_{I} G=\operatorname{ker} D f(I)=\left\{B \in \mathcal{M}_{2 \times 2}: B^{*} J+J B=0\right\}
$$

A basis for $T_{I} G$ is $\left\{B_{1}, B_{2}, B, \tilde{B}\right\}$, where

$$
B_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad B_{2}=\left[\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \tilde{B}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

One easily checks that $\left[B_{1}, B\right]=2 B,\left[B_{1}, \tilde{B}\right]=2 \tilde{B}$ and $[B, \tilde{B}]=B_{1}$. Obviously, the bracket of B_{2} with any other matrix is 0 .
d) X and \tilde{X} are the left invariant vector fields that take the values B and \tilde{B} at the identity, respectively. Therefore, $[X, \tilde{X}]$ is the left invariant vector field that takes the value equal to the bracket of B and \tilde{B} at the identity, i.e.

$$
[X, \tilde{X}]_{A}=A[B, \tilde{B}]=A B_{1} .
$$

2.

a) $\partial_{x}=\left(1,0,-\frac{y}{x^{2}+y^{2}}\right)$ and $\partial_{y}=\left(0,1, \frac{x}{x^{2}+y^{2}}\right)$. The unit normal to \mathcal{H} with positive third component is

$$
n=\frac{\partial_{x} \times \partial_{y}}{\left\|\partial_{x} \times \partial_{y}\right\|}=\frac{\left(\frac{y}{\sqrt{x^{2}+y^{2}}},-\frac{x}{\sqrt{x^{2}+y^{2}}}, \sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}+1}}
$$

b)

$$
\begin{aligned}
\iota(n)(d x \wedge d y \wedge d z)= & (\iota(n) d x) \wedge d y \wedge d z-d x \wedge(\iota(n) d y) \wedge d z \\
& +d x \wedge d y \wedge(\iota(n) d z) \\
= & \frac{y}{\sqrt{x^{2}+y^{2}} \sqrt{x^{2}+y^{2}+1}} d y \wedge d z \\
& +\frac{x}{\sqrt{x^{2}+y^{2}} \sqrt{x^{2}+y^{2}+1}} d x \wedge d z \\
& +\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+1}} d x \wedge d y=\omega .
\end{aligned}
$$

c)

$$
\begin{aligned}
\eta=p^{*} \omega= & \frac{1}{\sqrt{r^{2}+1}}\left(\sin \theta\left|\begin{array}{cc}
\sin \theta & r \cos \theta \\
0 & 1
\end{array}\right|+\right. \\
& +\cos \theta\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
0 & 1
\end{array}\right|+ \\
& \left.+r\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|\right) d r \wedge d \theta \\
= & \sqrt{r^{2}+1} d r \wedge d \theta .
\end{aligned}
$$

d)

$$
\begin{aligned}
L_{X} \eta= & L_{\left(\frac{\partial f}{\partial r} \partial_{r}+\frac{1}{r^{2}+1} \frac{\partial f}{\partial \theta} \partial_{\theta}\right)} \sqrt{r^{2}+1} d r \wedge d \theta \\
= & \frac{\partial f}{\partial r} \frac{r}{\sqrt{r^{2}+1}} d r \wedge d \theta \\
& +\sqrt{r^{2}+1} \frac{\partial^{2} f}{\partial r^{2}} d r \wedge d \theta \\
& +\frac{1}{\sqrt{r^{2}+1}} \frac{\partial^{2} f}{\partial \theta^{2}} d r \wedge d \theta \\
= & (\operatorname{div} X) \eta
\end{aligned}
$$

where

$$
\operatorname{div} X=\frac{\partial f}{\partial r} \frac{r}{r^{2}+1}+\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r^{2}+1} \frac{\partial^{2} f}{\partial \theta^{2}}
$$

e) Using Cartan's formula and Stokes' Theorem, we have

$$
\begin{aligned}
\int_{S} L_{X} \eta= & \int_{S}[d(\iota(X) \eta)+\iota(X) d \eta]=\int_{\partial S} \iota(X) \eta \\
= & \int_{\partial S} \iota\left(\frac{\partial f}{\partial r} \partial_{r}+\frac{1}{r^{2}+1} \frac{\partial f}{\partial \theta} \partial_{\theta}\right) \sqrt{r^{2}+1} d r \wedge d \theta \\
= & \int_{\partial S}-\frac{1}{\sqrt{r^{2}+1}} \frac{\partial f}{\partial \theta} d r+\frac{\partial f}{\partial r} \sqrt{r^{2}+1} d \theta \\
= & \int_{\theta_{0}}^{\theta_{1}} \frac{\partial f}{\partial r}\left(r_{1}, \theta\right) \sqrt{r_{1}^{2}+1} d \theta-\int_{\theta_{0}}^{\theta_{1}} \frac{\partial f}{\partial r}\left(r_{0}, \theta\right) \sqrt{r_{0}^{2}+1} d \theta \\
& +\int_{r_{0}}^{r_{1}} \frac{1}{\sqrt{r^{2}+1}} \frac{\partial f}{\partial \theta}\left(r, \theta_{1}\right) d r-\int_{r_{0}}^{r_{1}} \frac{1}{\sqrt{r^{2}+1}} \frac{\partial f}{\partial \theta}\left(r, \theta_{0}\right) d r .
\end{aligned}
$$

3.

a) Since $(x, y, z)=(r \cos \theta, r \sin \theta, \theta)$, clearly

$$
\left\{\begin{aligned}
d x & =\cos \theta d r-r \sin \theta d \theta \\
d y & =\sin \theta d r+r \cos \theta d \theta \\
d z & =d \theta
\end{aligned}\right.
$$

So the metric induced on the helicoid by the euclidean metric,

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}
$$

is

$$
d s^{2}=d r^{2}+\left(r^{2}+1\right) d \theta^{2}
$$

b) The lagrangian is

$$
L(r, \theta, \dot{r}, \dot{\theta})=\frac{1}{2}\left(\dot{r}^{2}+\left(r^{2}+1\right) \dot{\theta}^{2}\right) .
$$

The equations for the geodesics are

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{r}}-\frac{\partial L}{\partial r}=0 \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}=0
\end{aligned}
$$

These equations are equivalent to

$$
\begin{aligned}
\ddot{r}-r \dot{\theta}^{2} & =0 \\
\frac{d}{d t}\left[\left(r^{2}+1\right) \dot{\theta}\right]=0 \Leftrightarrow \ddot{\theta}+\frac{2 r}{r^{2}+1} \dot{r} \dot{\theta} & =0
\end{aligned}
$$

We read that the nonzero Christoffel symbols are

$$
\Gamma_{\theta \theta}^{r}=-r, \quad \Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}=\frac{r}{r^{2}+1} .
$$

c) We know that

$$
\nabla_{\partial_{r}} \partial_{r}=0, \quad \nabla_{\partial_{r}} \partial_{\theta}=\nabla_{\partial_{\theta}} \partial_{r}=\frac{r}{r^{2}+1} \partial_{\theta}, \quad \nabla_{\partial_{\theta}} \partial_{\theta}=-r \partial_{r}
$$

Using these equalities, we get

$$
\begin{aligned}
R\left(\partial_{r}, \partial_{\theta}\right) \partial_{r} & =\nabla_{\partial_{r}} \nabla_{\partial_{\theta}} \partial_{r}-\nabla_{\partial_{\theta}} \nabla_{\partial_{r}} \partial_{r}-\nabla_{\left[\partial_{r}, \partial_{\theta}\right]} \partial_{r} \\
& =\nabla_{\partial_{r}}\left(\frac{r}{r^{2}+1} \partial_{\theta}\right) \\
& =\frac{1-r^{2}}{\left(r^{2}+1\right)^{2}} \partial_{\theta}+\frac{r^{2}}{\left(r^{2}+1\right)^{2}} \partial_{\theta} \\
& =\frac{1}{\left(r^{2}+1\right)^{2}} \partial_{\theta} .
\end{aligned}
$$

Thus

$$
R\left(\partial_{r}, \partial_{\theta}, \partial_{r}, \partial_{\theta}\right)=\left(R\left(\partial_{r}, \partial_{\theta}\right) \partial_{r}, \partial_{\theta}\right)=\frac{1}{r^{2}+1} .
$$

The curvature of \mathcal{H} is

$$
K=-\frac{R\left(\partial_{r}, \partial_{\theta}, \partial_{r}, \partial_{\theta}\right)}{\left(\partial_{r}, \partial_{r}\right)\left(\partial_{\theta}, \partial_{\theta}\right)-\left(\partial_{r}, \partial_{\theta}\right)^{2}}=-\frac{1}{\left(r^{2}+1\right)^{2}}
$$

d) Since V is parallel along c and $\dot{c}=\partial_{r}$,

$$
\nabla_{\partial_{r}}\left(V^{r} \partial_{r}+V^{\theta} \partial_{\theta}\right)=\frac{\partial V^{r}}{\partial r} \partial_{r}+\frac{\partial V^{\theta}}{\partial r} \partial_{\theta}+V^{\theta} \frac{r}{r^{2}+1} \partial_{\theta}=0 .
$$

The components of V satisfy

$$
\left\{\begin{array}{l}
\frac{\partial V^{r}}{\partial r}=0 \\
\frac{\partial V^{\theta}}{\partial r}+\frac{r}{r^{2}+1} V^{\theta}=0
\end{array}\right.
$$

The solution of this system is

$$
\left\{\begin{aligned}
V^{r}\left(r, \theta_{0}\right) & =V^{r}\left(r_{0}, \theta_{0}\right) \\
V^{\theta}\left(r, \theta_{0}\right) & =\frac{\sqrt{r_{0}^{2}+1}}{\sqrt{r^{2}+1}} V^{\theta}\left(r_{0}, \theta_{0}\right)
\end{aligned}\right.
$$

So, we have

$$
V(r, \theta)=V^{r}\left(r_{0}, \theta_{0}\right) \partial_{r}+\frac{\sqrt{r_{0}^{2}+1}}{\sqrt{r^{2}+1}} V^{\theta}\left(r_{0}, \theta_{0}\right) \partial_{\theta} .
$$

Note that the angle between V and \dot{c} is constant (because c is a geodesic) and that the length of V is constant.
e) The reparemeterization of c by arclength is $\tilde{c}(\theta)=\left(r_{0}, \frac{\theta}{\sqrt{r_{0}^{2}+1}}\right)$ since $\|\dot{\tilde{c}}\|=\left\|\frac{\partial_{\theta}}{\sqrt{r_{0}^{2}+1}}\right\|=1$. The acceleration of \tilde{c} is

$$
\nabla_{\dot{\tilde{c}}} \dot{\tilde{c}}=\nabla_{\frac{\partial_{\theta}}{\sqrt{r_{0}^{2}+1}}} \frac{\partial_{\theta}}{\sqrt{r_{0}^{2}+1}}=-\frac{r_{0}}{r_{0}^{2}+1} \partial_{r}
$$

The frame $\left(\dot{\tilde{c}},-\partial_{r}\right)$ is orthonormal and positively oriented. Hence, the geodesic curvature of \tilde{c} is $\frac{r_{0}}{r_{0}^{2}+1}$.
f) We have

$$
\begin{aligned}
\partial_{r}=(\cos \theta, \sin \theta, 0) & =\tilde{\partial}_{r}, \\
\partial_{\theta}=(-r \sin \theta, r \cos \theta, 1) & =\tilde{\partial}_{\theta}+\tilde{\partial}_{z} .
\end{aligned}
$$

Since the metric is

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}+d z^{2}
$$

$\tilde{\partial}_{r}, \frac{1}{r} \tilde{\partial}_{\theta}$ and $\tilde{\partial}_{z}$ are unit vectors. We note that $\tilde{\partial}_{r} \times \frac{1}{r} \tilde{\partial}_{\theta}=\tilde{\partial}_{z}$ and $\tilde{\partial}_{r} \times \tilde{\partial}_{z}=-\frac{1}{r} \tilde{\partial}_{\theta}$. We have

$$
\begin{gathered}
E_{r}=\frac{\partial_{r}}{\left\|\partial_{r}\right\|}=\tilde{\partial}_{r} \\
E_{\theta}=\frac{\partial_{\theta}}{\left\|\partial_{\theta}\right\|}=\frac{\tilde{\partial}_{\theta}+\tilde{\partial}_{z}}{\left\|\tilde{\partial}_{\theta}+\tilde{\partial}_{z}\right\|}=\frac{\tilde{\partial}_{\theta}+\tilde{\partial}_{z}}{\sqrt{r^{2}+1}}
\end{gathered}
$$

The unit normal n to \mathcal{H} with a positive z component is

$$
n=E_{r} \times E_{\theta}=\frac{-\tilde{\partial}_{\theta}+r^{2} \tilde{\partial}_{z}}{r \sqrt{r^{2}+1}}
$$

g)

$$
\begin{aligned}
& \tilde{\nabla}_{E_{r}} n= \tilde{\nabla}_{\tilde{\partial}_{r}}\left(\frac{-\tilde{\partial}_{\theta}+r^{2} \tilde{\partial}_{z}}{r \sqrt{r^{2}+1}}\right) \\
&= \frac{1}{r^{2} \sqrt{r^{2}+1}} \tilde{\partial}_{\theta}+\frac{1}{\sqrt{\left(r^{2}+1\right)^{3}}} \tilde{\partial}_{\theta}-\frac{1}{r^{2} \sqrt{r^{2}+1}} \tilde{\partial}_{\theta} \\
&+\frac{1}{\sqrt{r^{2}+1}} \tilde{\partial}_{z}-\frac{r^{2}}{\sqrt{\left(r^{2}+1\right)^{3}}} \tilde{\partial}_{z} \\
&= \frac{1}{\sqrt{\left(r^{2}+1\right)^{3}}} \tilde{\partial}_{\theta}+\frac{1}{\sqrt{\left(r^{2}+1\right)^{3}}} \tilde{\partial}_{z} \\
& \tilde{\nabla}_{E_{\theta}} n= \tilde{\nabla}_{\frac{\tilde{\partial}_{\theta}+\tilde{\partial}_{z}}{\sqrt{r^{2}+1}}\left(\frac{-\tilde{\partial}_{\theta}+r^{2} \tilde{\partial}_{z}}{r \sqrt{r^{2}+1}}\right)}^{=} \\
& \frac{1}{r^{2}+1} \partial_{r} .
\end{aligned}
$$

h) Using the results obtained above, we get

$$
\begin{aligned}
\left(-\tilde{\nabla}_{E_{r}} n, E_{r}\right) & =0 \\
\left(-\tilde{\nabla}_{E_{r}} n, E_{\theta}\right) & =-\frac{1}{\left(r^{2}+1\right)^{2}}\left(\tilde{\partial}_{\theta}+\tilde{\partial}_{z}, \tilde{\partial}_{\theta}+\tilde{\partial}_{z}\right)=-\frac{1}{r^{2}+1} \\
\left(-\tilde{\nabla}_{E_{\theta}} n, E_{r}\right) & =-\frac{1}{r^{2}+1} \\
\left(-\tilde{\nabla}_{E_{\theta}} n, E_{\theta}\right) & =0
\end{aligned}
$$

The second fundamental form of \mathcal{H} is

$$
\mathrm{II}(r, \theta)=\left[\begin{array}{cc}
0 & -\frac{1}{r^{2}+1} \\
-\frac{1}{r^{2}+1} & 0
\end{array}\right] .
$$

i) The principal directions are the eigenvectors of the second fundamental form and the principal curvatures are the eigenvalues of the second fundamental form. These are $E_{r}+E_{\theta}$ with principal curvature $-\frac{1}{r^{2}+1}$ and $E_{r}-E_{\theta}$ with principal curvature $\frac{1}{r^{2}+1}$ The mean curvature of \mathcal{H} is the average of the principal curvatures, or half the trace of the second fundamental form. In this case the mean curvature is 0 .

