Riemannian Geometry February 4, 2021 LMAC and MMA

1st Test $-$	Questions 1. and 2.	_	90 minutes
2nd Test $-$	Questions 3. and 4.	_	90 minutes
Exam –	All questions	_	3 hours

Show your calculations

- **1.** Consider $SL(2, \mathbb{R}) = \{A \in M_{2 \times 2} : \det A = 1\}.$
 - **a)** Calculate $\mathfrak{sl}(2,\mathbb{R})$ and show that it is spanned by

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$
(*)

(3)

(3)

(2)

(3)

b) For $F \in \mathfrak{sl}(2, \mathbb{R})$, let X^F be the left invariant vector field corresponding (2) to F. Check that

$$[B, C] = D, \quad [D, B] = 2B, \quad [D, C] = -2C.$$

Calculate $[X^B, X^C]_g$, for $g = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$. **c)** Calculate the flow $\phi_t(g_0)$ of X^B , where $g_0 = \begin{bmatrix} p_0 & q_0 \\ r_0 & s_0 \end{bmatrix}$.

- d) Calculate $\exp(tX^B)$.
- e) As you know, the fact that X^B is left-invariant is equivalent to $L_g \circ \phi_t = (3) \phi_t \circ L_g$. Check this equality directly.
- **f)** Using the definition of Lie derivative, calculate $L_{X^B}X^C$.

2. Let M be an (n+1)-dimensional compact oriented manifold with nonempty (4) boundary ∂M . Let $X \in \mathcal{X}(M)$ be such that $X|_{\partial M}$ is tangent to ∂M . Let $\omega \in \Omega^n(M)$. Show that the (n+1)-form $d(L_X\omega)$ has a zero in M. **3.** Let B, C and D be as in (*). We put a left invariant metric on $SL(2, \mathbb{R})$ so that $\{B, C, D\}$ is orthonormal. Therefore, given $F \in \mathfrak{sl}(2, \mathbb{R})$, the map $\psi_s(g) = L_{\exp(sF)}(g)$ is an isometry.

- **a)** Show that the (Killing) vector field defined by $X_g = \frac{d}{ds}\psi_s(g)|_{s=0}$ is right (2) invariant.
- **b)** Recall that a vector field X is Killing iff it satisfies the Killing equation (3)

$$(\nabla_Y X, Z) + (Y, \nabla_Z X) = 0, \text{ for all } Y, Z \in \mathcal{X}(M).$$

Show that X^B is not Killing. Suggestion: take $Y = X^C$ and $Z = X^D$ and use the Koszul formula.

c) Given an orthonormal frame $\{E_1, E_2, E_3\}$, show that

$$\nabla_{E_i} E_j = \frac{1}{2} \sum_{k=1}^3 (c_{ijk} + c_{kij} + c_{kji}) E_k, \quad \text{where } [E_i, E_j] = \sum_{k=1}^3 c_{ijk} E_k.$$

Use this formula to calculate $\nabla_{X^B} X^B$.

d) Given that

$$\begin{aligned} \nabla_{X^C} X^B &= -\frac{1}{2} X^D, \quad \nabla_{X^C} X^C &= -2 X^D, \\ \nabla_{X^D} X^C &= -\frac{1}{2} X^B, \quad \nabla_{X^D} X^D &= 0, \end{aligned}$$

calculate the sectional curvature of the plane spanned by X^C and X^D .

4. Let $f: M \to M$ be an isometry and S be the set of fixed points of f. Let $p \in M$ be fixed.

- a) Suppose $V \in T_p M$. Prove that $(df)_p(V) = V$ iff the geodesic with (3) initial velocity V is contained in S.
- b) Show that there exists $B_{\epsilon}(p)$ such that the intersection of $B_{\epsilon}(p)$ with (3) the set of geodesics whose initial velocities V satisfy $(df)_p V = V$ is a submanifold N of M.
- c) Justify that there exists $\epsilon > 0$ such that if $q \in B_{\epsilon}(p) \setminus N$, then $q \notin S$. (3) Conclude that S is a submanifold of M (whose connected components might have different dimensions).

(3)

(3)