Riemannian Geometry

February 4, 2021
LMAC and MMA

$$
\begin{array}{lll}
\text { 1st Test }- \text { Questions 1. and 2. } & -90 \text { minutes } \\
\text { 2nd Test }- \text { Questions 3. and } \mathbf{4 .} & -90 \text { minutes } \\
\text { Exam }- \text { All questions } & -3 \text { hours }
\end{array}
$$

Show your calculations

1. Consider $S L(2, \mathbb{R})=\left\{A \in M_{2 \times 2}: \operatorname{det} A=1\right\}$.
a) Calculate $s \mathcal{l}(2, \mathbb{R})$ and show that it is spanned by

$$
B=\left[\begin{array}{ll}
0 & 1 \tag{3}\\
0 & 0
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad D=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

b) For $F \in s l(2, \mathbb{R})$, let X^{F} be the left invariant vector field corresponding to F. Check that

$$
[B, C]=D, \quad[D, B]=2 B, \quad[D, C]=-2 C
$$

Calculate $\left[X^{B}, X^{C}\right]_{g}$, for $g=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$.
c) Calculate the flow $\phi_{t}\left(g_{0}\right)$ of X^{B}, where $g_{0}=\left[\begin{array}{ll}p_{0} & q_{0} \\ r_{0} & s_{0}\end{array}\right]$.
d) Calculate $\exp \left(t X^{B}\right)$.
e) As you know, the fact that X^{B} is left-invariant is equivalent to $L_{g} \circ \phi_{t}=$ $\phi_{t} \circ L_{g}$. Check this equality directly.
f) Using the definition of Lie derivative, calculate $L_{X^{B}} X^{C}$.
2. Let M be an $(n+1)$-dimensional compact oriented manifold with nonempty boundary ∂M. Let $X \in \mathcal{X}(M)$ be such that $\left.X\right|_{\partial M}$ is tangent to ∂M. Let $\omega \in \Omega^{n}(M)$. Show that the $(n+1)$-form $d\left(L_{X} \omega\right)$ has a zero in M.
3. Let B, C and D be as in (*). We put a left invariant metric on $S L(2, \mathbb{R})$ so that $\{B, C, D\}$ is orthonormal. Therefore, given $F \in s l(2, \mathbb{R})$, the map $\psi_{s}(g)=L_{\exp (s F)}(g)$ is an isometry.
a) Show that the (Killing) vector field defined by $X_{g}=\left.\frac{d}{d s} \psi_{s}(g)\right|_{s=0}$ is right invariant.
b) Recall that a vector field X is Killing iff it satifies the Killing equation

$$
\begin{equation*}
\left(\nabla_{Y} X, Z\right)+\left(Y, \nabla_{Z} X\right)=0, \quad \text { for all } Y, Z \in \mathcal{X}(M) \tag{3}
\end{equation*}
$$

Show that X^{B} is not Killing. Suggestion: take $Y=X^{C}$ and $Z=X^{D}$ and use the Koszul formula.
c) Given an orthonormal frame $\left\{E_{1}, E_{2}, E_{3}\right\}$, show that

$$
\begin{equation*}
\nabla_{E_{i}} E_{j}=\frac{1}{2} \sum_{k=1}^{3}\left(c_{i j k}+c_{k i j}+c_{k j i}\right) E_{k}, \quad \text { where }\left[E_{i}, E_{j}\right]=\sum_{k=1}^{3} c_{i j k} E_{k} . \tag{3}
\end{equation*}
$$

Use this formula to calculate $\nabla_{X^{B}} X^{B}$.
d) Given that

$$
\begin{align*}
& \nabla_{X^{C}} X^{B}=-\frac{1}{2} X^{D}, \quad \nabla_{X^{C}} X^{C}=-2 X^{D}, \tag{3}\\
& \nabla_{X^{D}} X^{C}=\frac{1}{2} X^{B}, \quad \nabla_{X^{D} X^{D}}=0,
\end{align*}
$$

calculate the sectional curvature of the plane spanned by X^{C} and X^{D}.
4. Let $f: M \rightarrow M$ be an isometry and S be the set of fixed points of f. Let $p \in M$ be fixed.
a) Suppose $V \in T_{p} M$. Prove that $(d f)_{p}(V)=V$ iff the geodesic with initial velocity V is contained in S.
b) Show that there exists $B_{\epsilon}(p)$ such that the intersection of $B_{\epsilon}(p)$ with
the set of geodesics whose initial velocities V satisfy $(d f)_{p} V=V$ is a submanifold N of M.
c) Justify that there exists $\epsilon>0$ such that if $q \in B_{\epsilon}(p) \backslash N$, then $q \notin S$. Conclude that S is a submanifold of M (whose connected components might have different dimensions).

