Riemannian Geometry

January 29, 2020
LMAC and MMA

$$
\begin{aligned}
& \text { 1st Test - Question } 1 \text { - } 90 \text { minutes } \\
& \text { 2nd Test - Question } 2-90 \text { minutes } \\
& \text { Exam - All questions - } 3 \text { hours }
\end{aligned}
$$

Show your calculations

1. Consider the parameterization $S:] 0, \pi[\times] 0,2 \pi[\times] 0,2 \pi[\rightarrow S O(3)$, defined by

$$
\begin{aligned}
& S(\theta, \varphi, \psi)=R_{\varphi} R_{\theta} R_{\psi} \\
& =\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

and consider the volume form

$$
\omega=\frac{1}{8} \sin \theta d \theta \wedge d \varphi \wedge d \psi
$$

The variables θ, φ and ψ are called the Euler angles. Their geometric interpretation is sketched in the figure below: if the rotation carries the canonical basis $\left(e_{x}, e_{y}, e_{z}\right)$ to $\left(e_{1}, e_{2}, e_{3}\right)$, then θ is the angle between e_{3} and e_{z}, φ is the angle between the line of intersection of the planes spanned by $\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{x}, e_{y}\right\}$ (called the nodal line) and the x-axis, and ψ is the angle between e_{1} and the nodal line.

a) Let $X=2 \partial_{\theta}$. Use Cartan's formula and Stokes' Theorem to calculate

$$
\begin{equation*}
\int_{] 0, \frac{\pi}{2}[\times] 0,2 \pi[\times] 0,2 \pi[} L_{X} \omega . \tag{2}
\end{equation*}
$$

Justify your answer.
b) Identify linear isomorphism $\Omega:$ so $(3) \rightarrow \mathbb{R}^{3}$ such that

$$
\begin{equation*}
A \xi=\Omega(A) \times \xi \tag{2}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{3}$ and $A \in \operatorname{so}(3)$. Check that $\Omega([A, B])=\Omega(A) \times \Omega(B)$.
c) Clearly, we have that $R(v \times w)=R v \times R w$. Show that

$$
\begin{equation*}
\left(R^{-1} \Omega^{-1}(v) R\right) w=\Omega^{-1}\left(R^{-1} v\right) w \tag{2}
\end{equation*}
$$

for all $w \in \mathbb{R}^{3}$.
d) Let $(\theta(\cdot), \varphi(\cdot), \psi(\cdot))$ be a curve. Check that $R_{-\varphi} \dot{R}_{\varphi}=\dot{\varphi} \Omega^{-1}\left(e_{3}\right)$.

What are $R_{-\theta} \dot{R}_{\theta}$ and $R_{-\psi} \dot{R}_{\psi}$?
e) For $\dot{S} \in T_{S} S O(3)$, let A be such that $\dot{S}=S A$. Show that

$$
\begin{align*}
\Omega(A)= & (\dot{\theta} \cos \psi+\dot{\varphi} \sin \theta \sin \psi) e_{1}+(-\dot{\theta} \sin \psi+\dot{\varphi} \sin \theta \cos \psi) e_{2} \tag{2}\\
& +(\dot{\varphi} \cos \theta+\dot{\psi}) e_{3} \tag{1}
\end{align*}
$$

f) Determine the left invariant vector fields $X=X^{\theta} \partial_{\theta}+X^{\varphi} \partial_{\varphi}+X^{\psi} \partial_{\psi}$ corresponding to $\Omega^{-1}\left(e_{1}\right), \Omega^{-1}\left(-e_{2}\right)$ and $\Omega^{-1}\left(e_{3}\right)$.
2. Consider the metric on $S O(3)$ given in Euler coordinates by

$$
\begin{equation*}
g=\frac{1}{4}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)+\frac{1}{4}(\cos \theta d \varphi+d \psi)^{2} \tag{1}
\end{equation*}
$$

a) Check that the coframe

$$
\begin{aligned}
\omega^{1} & =\frac{1}{2}(\cos \psi d \theta+\sin \theta \sin \psi d \varphi) \\
\omega^{2} & =\frac{1}{2}(\sin \psi d \theta-\sin \theta \cos \psi d \varphi) \\
\omega^{3} & =\frac{1}{2}(\cos \theta d \varphi+d \psi)
\end{aligned}
$$

is orthonormal. The dual frame is

$$
\begin{aligned}
X & =2\left(\cos \psi \partial_{\theta}+\frac{\sin \psi}{\sin \theta} \partial_{\varphi}-\sin \psi \cot \theta \partial_{\psi}\right) \\
Y & =2\left(\sin \psi \partial_{\theta}-\frac{\cos \psi}{\sin \theta} \partial_{\varphi}+\cos \psi \cot \theta \partial_{\psi}\right), \\
Z & =2 \partial_{\psi} .
\end{aligned}
$$

b) Determine the constant a such that

$$
\begin{align*}
d \omega^{1} & =a \omega^{2} \wedge \omega^{3} \tag{1}\\
d \omega^{2} & =-a \omega^{1} \wedge \omega^{3} \\
d \omega^{3} & =a \omega^{1} \wedge \omega^{2} \tag{1}
\end{align*}
$$

c) Determine the connection forms $\omega_{2}^{1}, \omega_{3}^{1}$ and ω_{3}^{2}.
d) Determine the curvature tensor.
e) Use the connection forms to calculate the covariant derivatives $\nabla_{X} X$, $\nabla_{Y} X, \nabla_{Z} X, \nabla_{X} Y, \nabla_{Y} Y$ and $\nabla_{Z} Y$.
f) Define

$$
\begin{equation*}
W=\sin \psi X-\cos \psi Y \quad \text { and } \quad N=\cos \psi X+\sin \psi Y \tag{1}
\end{equation*}
$$

The frame (W, Z, N) is orthonormal. Check that W and Z are tangent to the torus, T, where θ is a fixed constant.
g) Compute the second fundamental form, B, of T. For what values of θ is the mean curvature of T equal to zero?
h) Let Π be the plane spanned by W and Z. Check the formula

$$
\begin{equation*}
K^{T}(\Pi)-K^{S O(3)}(\Pi)=(B(W, W), B(Z, Z))-\|B(W, Z)\|^{2} \tag{1}
\end{equation*}
$$

in the present situation.

