Riemannian Geometry

January 29, 2020 LMAC and MMA

1st Test - Question 1 - 90 minutes 2nd Test - Question 2 - 90 minutes Exam - All questions - 3 hours

Show your calculations

1. Consider the parameterization $S:]0, \pi[\times]0, 2\pi[\times]0, 2\pi[\to SO(3),$ defined by

$$S(\theta, \varphi, \psi) = R_{\varphi} R_{\theta} R_{\psi}$$

$$= \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

and consider the volume form

$$\omega = \frac{1}{8}\sin\theta \, d\theta \wedge d\varphi \wedge d\psi.$$

The variables θ , φ and ψ are called the Euler angles. Their geometric interpretation is sketched in the figure below: if the rotation carries the canonical basis (e_x, e_y, e_z) to (e_1, e_2, e_3) , then θ is the angle between e_3 and e_z , φ is the angle between the line of intersection of the planes spanned by $\{e_1, e_2\}$ and $\{e_x, e_y\}$ (called the nodal line) and the x-axis, and ψ is the angle between e_1 and the nodal line.

(2)

(2)

(1)

a) Let $X = 2\partial_{\theta}$. Use Cartan's formula and Stokes' Theorem to calculate (2)

$$\int_{]0,\frac{\pi}{2}[\times]0,2\pi[\times]0,2\pi[} L_X\omega.$$

Justify your answer.

b) Identify linear isomorphism $\Omega: \mathfrak{so}(3) \to \mathbb{R}^3$ such that

$$A\xi = \Omega(A) \times \xi$$

for all $\xi \in \mathbb{R}^3$ and $A \in so(3)$. Check that $\Omega([A, B]) = \Omega(A) \times \Omega(B)$.

c) Clearly, we have that $R(v \times w) = Rv \times Rw$. Show that

$$(R^{-1}\Omega^{-1}(v)R) w = \Omega^{-1}(R^{-1}v) w,$$

for all $w \in \mathbb{R}^3$.

- **d)** Let $(\theta(\cdot), \varphi(\cdot), \psi(\cdot))$ be a curve. Check that $R_{-\varphi}\dot{R}_{\varphi} = \dot{\varphi}\Omega^{-1}(e_3)$. (1) What are $R_{-\theta}\dot{R}_{\theta}$ and $R_{-\psi}\dot{R}_{\psi}$?
- e) For $\dot{S} \in T_SSO(3)$, let A be such that $\dot{S} = SA$. Show that

$$\Omega(A) = (\dot{\theta}\cos\psi + \dot{\varphi}\sin\theta\sin\psi)e_1 + (-\dot{\theta}\sin\psi + \dot{\varphi}\sin\theta\cos\psi)e_2 + (\dot{\varphi}\cos\theta + \dot{\psi})e_3.$$

- f) Determine the left invariant vector fields $X = X^{\theta} \partial_{\theta} + X^{\varphi} \partial_{\varphi} + X^{\psi} \partial_{\psi}$ (1) corresponding to $\Omega^{-1}(e_1)$, $\Omega^{-1}(-e_2)$ and $\Omega^{-1}(e_3)$.
- **2.** Consider the metric on SO(3) given in Euler coordinates by

$$g = \frac{1}{4}(d\theta^2 + \sin^2\theta \, d\varphi^2) + \frac{1}{4}(\cos\theta \, d\varphi + d\psi)^2.$$

a) Check that the coframe

$$\omega^{1} = \frac{1}{2}(\cos\psi \, d\theta + \sin\theta \sin\psi \, d\varphi),$$

$$\omega^{2} = \frac{1}{2}(\sin\psi \, d\theta - \sin\theta \cos\psi \, d\varphi),$$

$$\omega^{3} = \frac{1}{2}(\cos\theta \, d\varphi + d\psi)$$

is orthonormal. The dual frame is

$$X = 2\left(\cos\psi\,\partial_{\theta} + \frac{\sin\psi}{\sin\theta}\,\partial_{\varphi} - \sin\psi\cot\theta\,\partial_{\psi}\right),$$

$$Y = 2\left(\sin\psi\,\partial_{\theta} - \frac{\cos\psi}{\sin\theta}\,\partial_{\varphi} + \cos\psi\cot\theta\,\partial_{\psi}\right),$$

$$Z = 2\,\partial_{\psi}.$$

(1)

(1)

b) Determine the constant a such that

$$d\omega^{1} = a \omega^{2} \wedge \omega^{3},$$

$$d\omega^{2} = -a \omega^{1} \wedge \omega^{3},$$

$$d\omega^{3} = a \omega^{1} \wedge \omega^{2}.$$

- c) Determine the connection forms ω_2^1 , ω_3^1 and ω_3^2 . (1)
- d) Determine the curvature tensor. (2)
- e) Use the connection forms to calculate the covariant derivatives $\nabla_X X$, $\nabla_Y X$, $\nabla_Z X$, $\nabla_X Y$, $\nabla_Y Y$ and $\nabla_Z Y$. (1)
- f) Define (1)

$$W = \sin \psi X - \cos \psi Y$$
 and $N = \cos \psi X + \sin \psi Y$.

The frame (W, Z, N) is orthonormal. Check that W and Z are tangent to the torus, T, where θ is a fixed constant.

- g) Compute the second fundamental form, B, of T. For what values of θ is the mean curvature of T equal to zero?
- h) Let Π be the plane spanned by W and Z. Check the formula

$$K^{T}(\Pi) - K^{SO(3)}(\Pi) = (B(W, W), B(Z, Z)) - ||B(W, Z)||^{2}$$

in the present situation.