Riemannian Geometry

January 30, 2018
LMAC and MMA

$$
\begin{aligned}
& \text { 1st Test - Questions } 1 \text { and } 2 \text { - } 90 \text { minutes } \\
& \text { 2nd Test - Question } 3-90 \text { minutes } \\
& \text { Exam - All questions - } 3 \text { hours }
\end{aligned}
$$

Show your calculations

1. Consider

$$
J=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

and let

$$
\begin{equation*}
G=\left\{U \in \mathcal{M}_{2 \times 2}(\mathbb{C}): U^{*} J U=J\right\} . \tag{1}
\end{equation*}
$$

a) Prove that G is a group.
b) Prove that G is a Lie group.
c) Determine a basis for $T_{I} G$ and the Lie algebra \mathfrak{g}.
d) Let

$$
B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \tilde{B}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

Consider the vector fields X and \tilde{X} in $\mathfrak{X}(G)$, defined by

$$
X_{A}=A B, \quad \tilde{X}_{A}=A \tilde{B}
$$

Calculate $[X, \tilde{X}]$ and justify your answer.
2. Consider the helicoid

$$
\begin{equation*}
\mathcal{H}:=\left\{(x, y, z) \in \mathbb{R}^{3}: x>0 \text { and } z=\arctan \frac{y}{x}\right\} . \tag{1}
\end{equation*}
$$

a) Determine n, the unit normal to \mathcal{H} with positive third component.
b) Compute $\omega:=\iota(n)(d x \wedge d y \wedge d z)$.
c) Consider the parameterization p of \mathcal{H},

$$
\begin{equation*}
p(r, \theta)=(r \cos \theta, r \sin \theta, \theta), \tag{1}
\end{equation*}
$$

defined in $\Omega:=\left\{(r, \theta) \in \mathbb{R}^{2}: r>0\right.$ and $\left.\theta \in\right]-\frac{\pi}{2}, \frac{\pi}{2}[\}$. Compute the area form $\eta:=p^{*} \omega$.
d) Consider the vector field

$$
\begin{equation*}
X=\frac{\partial f}{\partial r} \partial_{r}+\frac{1}{r^{2}+1} \frac{\partial f}{\partial \theta} \partial_{\theta}, \tag{1.5}
\end{equation*}
$$

where f is a smooth function defined in Ω. Calculate $L_{X} \eta$ and the divergence of X.
e) Let

$$
S=\left\{(r, \theta) \in \mathbb{R}^{2}: 0<r_{0}<r<r_{1} \text { and }-\frac{\pi}{2}<\theta_{0}<\theta<\theta_{1}<\frac{\pi}{2}\right\}
$$

with the canonical orientation. Use Stokes' Theorem to write $\int_{S} L_{X} \eta$ in terms of an integral on the boundary of S.
3. Consider \mathbb{R}^{3} with the euclidean metric. Consider also the helicoid \mathcal{H}, parameterized by

$$
p(r, \theta)=(r \cos \theta, r \sin \theta, \theta)
$$

with $(r, \theta) \in \mathbb{R}^{+} \times \mathbb{R}$.
a) Write the metric induced on \mathcal{H}.
b) Write the equations for the geodesics and the Christoffel symbols.
c) Compute $\nabla_{\partial_{r}} \partial_{r}, \nabla_{\partial_{r}} \partial_{\theta}, \nabla_{\partial_{\theta}} \partial_{\theta}, R\left(\partial_{r}, \partial_{\theta}\right) \partial_{r}, R\left(\partial_{r}, \partial_{\theta}, \partial_{r}, \partial_{\theta}\right)$ and the curvature of \mathcal{H}.
d) Suppose $V=V^{r} \partial_{r}+V^{\theta} \partial_{\theta}$ is parallel along $c(r)=\left(r, \theta_{0}\right)$, with $V\left(r_{0}, \theta_{0}\right)=$ $V_{0}^{r} \partial_{r}+V_{0}^{\theta} \partial_{\theta}$. Determine V.
e) Reparameterize $c(\theta)=\left(r_{0}, \theta\right)$ by arclength and calculate its geodesic curvature.
f) Let (r, θ, z) be cylindrical coordinates in \mathbb{R}^{3}, and $\left(\tilde{\partial}_{r}, \tilde{\partial}_{\theta}, \tilde{\partial}_{z}\right)$ be the associated frame. Write $E_{r}:=\partial_{r} /\left\|\partial_{r}\right\|, E_{\theta}:=\partial_{\theta} /\left\|\partial_{\theta}\right\|$ and the unit normal n to \mathcal{H} with a positive z component in this frame.
g) Recall that the nonzero Christoffel symbols for the euclidean metric in cylindrical coordinates are $\tilde{\Gamma}_{\theta \theta}^{r}=-r$ and $\tilde{\Gamma}_{r \theta}^{\theta}=\tilde{\Gamma}_{\theta r}^{\theta}=\frac{1}{r}$. Calculate $\tilde{\nabla}_{E_{r}} n$ and $\tilde{\nabla}_{E_{\theta}} n$.
h) Determine the second fundamental form of \mathcal{H}.
i) What are the principal directions and the principal curvatures of \mathcal{H} ?

What is the mean curvature of \mathcal{H} ?

