Riemannian Geometry January 30, 2018 LMAC and MMA

1st Test -	Questions 1 and 2	_	90 minutes
2nd Test $-$	Question 3	_	90 minutes
Exam –	All questions	_	3 hours

Show your calculations

1. Consider

$$J = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

and let

$$G = \{ U \in \mathcal{M}_{2 \times 2}(\mathbb{C}) : U^* J U = J \}.$$

- a) Prove that G is a group. (1)
 b) Prove that G is a Lie group. (1)
- c) Determine a basis for $T_I G$ and the Lie algebra \mathfrak{g} . (1.5)
- d) Let (1)

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \tilde{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Consider the vector fields X and \tilde{X} in $\mathfrak{X}(G)$, defined by

$$X_A = AB, \qquad \tilde{X}_A = A\tilde{B}.$$

Calculate $[X, \tilde{X}]$ and justify your answer.

2. Consider the helicoid

$$\mathcal{H} := \left\{ (x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } z = \arctan \frac{y}{x} \right\}.$$

a) Determine n, the unit normal to \mathcal{H} with positive third component. (1)

(1)

(1)

- **b)** Compute $\omega := \iota(n)(dx \wedge dy \wedge dz)$.
- c) Consider the parameterization p of \mathcal{H} ,

$$p(r, \theta) = (r \cos \theta, r \sin \theta, \theta),$$

defined in $\Omega := \{(r, \theta) \in \mathbb{R}^2 : r > 0 \text{ and } \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right]$. Compute the area form $\eta := p^* \omega$.

d) Consider the vector field

$$X = \frac{\partial f}{\partial r} \partial_r + \frac{1}{r^2 + 1} \frac{\partial f}{\partial \theta} \partial_\theta,$$

where f is a smooth function defined in Ω . Calculate $L_X \eta$ and the divergence of X.

e) Let

$$S = \left\{ (r, \theta) \in \mathbb{R}^2 : 0 < r_0 < r < r_1 \text{ and } -\frac{\pi}{2} < \theta_0 < \theta < \theta_1 < \frac{\pi}{2} \right\},\$$

with the canonical orientation. Use Stokes' Theorem to write $\int_S L_X \eta$ in terms of an integral on the boundary of S.

3. Consider \mathbb{R}^3 with the euclidean metric. Consider also the helicoid \mathcal{H} , parameterized by

$$p(r,\theta) = (r\cos\theta, r\sin\theta, \theta),$$

with $(r, \theta) \in \mathbb{R}^+ \times \mathbb{R}$.

- **a)** Write the metric induced on \mathcal{H} . (1)
- b) Write the equations for the geodesics and the Christoffel symbols. (1)
- c) Compute $\nabla_{\partial_r} \partial_r$, $\nabla_{\partial_r} \partial_{\theta}$, $\nabla_{\partial_{\theta}} \partial_{\theta}$, $R(\partial_r, \partial_{\theta}) \partial_r$, $R(\partial_r, \partial_{\theta}, \partial_r, \partial_{\theta})$ and the (1.5) curvature of \mathcal{H} .
- **d)** Suppose $V = V^r \partial_r + V^\theta \partial_\theta$ is parallel along $c(r) = (r, \theta_0)$, with $V(r_0, \theta_0) = (1)$ $V_0^r \partial_r + V_0^\theta \partial_\theta$. Determine V.
- e) Reparameterize $c(\theta) = (r_0, \theta)$ by arclength and calculate its geodesic (1) curvature.
- **f)** Let (r, θ, z) be cylindrical coordinates in \mathbb{R}^3 , and $(\partial_r, \partial_\theta, \partial_z)$ be the (1) associated frame. Write $E_r := \partial_r / ||\partial_r||$, $E_\theta := \partial_\theta / ||\partial_\theta||$ and the unit normal n to \mathcal{H} with a positive z component in this frame.
- **g)** Recall that the nonzero Christoffel symbols for the euclidean metric in (1.5) cylindrical coordinates are $\tilde{\Gamma}^r_{\theta\theta} = -r$ and $\tilde{\Gamma}^{\theta}_{r\theta} = \tilde{\Gamma}^{\theta}_{\theta r} = \frac{1}{r}$. Calculate $\tilde{\nabla}_{E_r} n$ and $\tilde{\nabla}_{E_{\theta}} n$.
- **h**) Determine the second fundamental form of \mathcal{H} .
- i) What are the principal directions and the principal curvatures of \mathcal{H} ? (1) What is the mean curvature of \mathcal{H} ?

(1.5)

(1)

(1)