Riemannian Geometry
 Exam - July 18, 2022
 MMAC

Solutions

1.

a) We note that

$$
\begin{aligned}
{[X, Y]=} & {[(\tilde{X}, \hat{X}),(\tilde{Y}, \hat{Y})] } \\
= & (\tilde{X}, 0)(\tilde{Y}, 0)+(0, \hat{X})(\tilde{Y}, 0)+(\tilde{X}, 0)(0, \hat{Y})+(0, \hat{X})(0, \hat{Y}) \\
& -(\tilde{Y}, 0)(\tilde{X}, 0)-(0, \hat{Y})(\tilde{X}, 0)-(\tilde{Y}, 0)(0, \hat{X})-(0, \hat{Y})(0, \hat{X}) \\
= & ([\tilde{X}, \tilde{Y}], 0)+(0,[\hat{X}, \hat{Y}]) \\
= & ([\tilde{X}, \tilde{Y}],[\hat{X}, \hat{Y}]) .
\end{aligned}
$$

because $(0, \hat{X})(\tilde{Y}, 0)-(\tilde{Y}, 0)(0, \hat{X})=0$ and $(\tilde{X}, 0)(0, \hat{Y})-(0, \hat{Y})(\tilde{X}, 0)=$ 0 . (Indeed, for $f: M \rightarrow \mathbb{R}$, we have, for example, that

$$
(0, \hat{X})(\tilde{Y}, 0) f=(\tilde{Y}, 0)(0, \hat{X}) f=\sum_{i, j} \tilde{Y}^{i}(\tilde{x}) \hat{X}^{j}(\hat{x}) \frac{\partial^{2} f}{\partial \tilde{x}^{i} \partial \hat{x}^{j}}
$$

as $\tilde{Y}=\sum_{i} \tilde{Y}^{i}(\tilde{x}) \partial_{\hat{x}^{i}}$ and $\hat{X}=\sum_{j} \hat{X}^{j}(\hat{x}) \partial_{\hat{x}^{j}}$, for \tilde{x} and \hat{x} local coordinates on \tilde{M} and \hat{M}, respectively). This shows that $\widetilde{[X, Y]}=[\tilde{X}, \tilde{Y}]$ and
$\widehat{[X, Y]}=[\hat{X}, \hat{Y}]$. Hence, by the Koszul formula, we have

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X \cdot g(Y, Z)+Y \cdot g(X, Z)-Z \cdot g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) \\
= & (\tilde{X}, \hat{X}) \cdot(\tilde{g}(\tilde{Y}, \tilde{Z})+\hat{g}(\hat{Y}, \hat{Z})) \\
& +(\tilde{Y}, \hat{Y}) \cdot(\tilde{g}(\tilde{X}, \tilde{Z})+\hat{g}(\hat{X}, \hat{Z})) \\
& -(\tilde{Z}, \hat{Z}) \cdot(\tilde{g}(\tilde{X}, \tilde{Y})+\hat{g}(\hat{X}, \hat{Y})) \\
& -\tilde{g}\left(\tilde{X},\left[\begin{array}{|r|}
\end{array}\right]\right)-\hat{g}(\hat{X}, \widehat{[Y, Z]}) \\
& -\tilde{g}(\tilde{Y},[\overline{[X, Z]})-\hat{g}(\hat{Y}, \widehat{[X, Z]}) \\
& +\tilde{g}(\tilde{Z}, \widehat{[X, Y]})+\hat{g}(\hat{Z}, \widehat{[X, Y]}) \\
= & \tilde{X} \cdot \tilde{g}(\tilde{Y}, \tilde{Z})+\hat{X} \cdot \hat{g}(\hat{Y}, \hat{Z}) \\
& +\tilde{Y} \cdot \tilde{g}(\tilde{X}, \tilde{Z})+\hat{Y} \cdot \hat{g}(\hat{X}, \hat{Z}) \\
& -\tilde{Z} \cdot \tilde{g}(\tilde{X}, \tilde{Y})-\hat{Z} \cdot \hat{g}(\hat{X}, \hat{Y}) \\
& -\tilde{g}(\tilde{X},[\tilde{Y}, \tilde{Z}])-\hat{g}(\hat{X},[\hat{Y}, \hat{Z}]) \\
& -\tilde{g}(\tilde{Y},[\tilde{X}, \tilde{Z}])-\hat{g}(\hat{Y},[\hat{X}, \hat{Z}]) \\
& +\tilde{g}(\tilde{Z},[\tilde{X}, \tilde{Y}])+\hat{g}(\hat{Z},[\hat{X}, \hat{Y}]) \\
= & 2 \tilde{g}(\tilde{\nabla} \tilde{X} \tilde{Y}, \tilde{Z})+2 \hat{g}(\hat{\nabla} \hat{X} \hat{Y}, \hat{Z}) .
\end{aligned}
$$

This proves that $\widetilde{\nabla_{X} Y}=\tilde{\nabla}_{\tilde{X}} \tilde{Y}$ and $\widehat{\nabla_{X} Y}=\hat{\nabla}_{\hat{X}} \hat{Y}$.
b) The Riemann curvature tensor R of M is

$$
\begin{aligned}
& R(X, Y, Z, W)=g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right) \\
& =g\left(\nabla_{X}\left(\tilde{\nabla}_{\tilde{Y}} \tilde{Z}, \hat{\nabla}_{\hat{Y}} \hat{Z}\right), W\right) \\
& -g\left(\nabla_{Y}\left(\tilde{\nabla}_{\tilde{X}} \tilde{Z}, \hat{\nabla}_{\hat{X}} \hat{Z}\right), W\right) \\
& -g\left(\tilde{\nabla}_{\overparen{[X, Y]}} \tilde{Z}, \hat{\nabla}_{\widehat{[X, Y]}} \hat{Z}, W\right) \\
& =g\left(\tilde{\nabla}_{\tilde{X}} \tilde{\nabla}_{\tilde{Y}} \tilde{Z}, \hat{\nabla}_{\hat{X}} \hat{\nabla}_{\hat{Y}} \hat{Z}, W\right) \\
& -g\left(\tilde{\nabla}_{\tilde{Y}} \tilde{\nabla}_{\tilde{X}} \tilde{Z}, \hat{\nabla}_{\hat{Y}} \hat{\nabla}_{\hat{X}} \hat{Z}, W\right) \\
& -g\left(\tilde{\nabla}_{[\tilde{X}, \tilde{Y}]} \tilde{Z}, \hat{\nabla}_{[\hat{X}, \hat{Y}]} \hat{Z}, W\right) \\
& =\tilde{g}\left(\tilde{\nabla}_{\tilde{X}} \tilde{\nabla}_{\tilde{Y}} \tilde{Z}, \tilde{W}\right)+\hat{g}\left(\hat{\nabla}_{\hat{X}} \hat{\nabla}_{\hat{Y}} \hat{Z}, \hat{W}\right) \\
& -\tilde{g}\left(\tilde{\nabla}_{\tilde{Y}} \tilde{\nabla}_{\tilde{X}} \tilde{Z}, \tilde{W}\right)-\hat{g}\left(\hat{\nabla}_{\hat{Y}} \hat{\nabla}_{\hat{X}} \hat{Z}, \hat{W}\right) \\
& -\tilde{g}\left(\tilde{\nabla}_{[\tilde{X}, \tilde{Y}]} \tilde{Z}, \tilde{W}\right)-\hat{g}\left(\hat{\nabla}_{[\hat{X}, \hat{Y}]} \hat{Z}, \hat{W}\right) \\
& =\tilde{R}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W})+\hat{R}(\hat{X}, \hat{Y}, \hat{Z}, \hat{W}) .
\end{aligned}
$$

If $X=\tilde{X}$ and $Y=\hat{Y}$, then

$$
R(X, Y, X, Y)=\tilde{R}(\tilde{X}, 0, \tilde{X}, 0)+\hat{R}(0, \hat{Y}, 0, \hat{Y})=0+0=0
$$

and so the curvature of the plane Π spanned by X and Y is zero.
2.
a) Since the sphere S^{3} has constant sectional curvature equal to 1 , we know that

$$
R_{i j i j}=-1\left(g_{i i} g_{j j}-g_{i j} g_{i j}\right)
$$

and

$$
R_{i j k l}=-1\left(g_{i k} g_{j l}-g_{i l} g_{k j}\right)=-1\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{k j}\right) .
$$

In order for us to obtain nonzero components of the curvature tensor:

$$
\begin{array}{rlll}
i \neq k & \Rightarrow(l=i \wedge j=k) & R_{i k k i}=1 \\
j \neq l & \Rightarrow(l=i \wedge j=k) & & R_{l j j l}=1 \\
(i=k \wedge j=l) & \Rightarrow i \neq j & & R_{i j i j}=-1 .
\end{array}
$$

The curvature tensor is

$$
\begin{aligned}
R & =-\sum_{i<j} \omega^{i} \wedge \omega^{j} \oplus \omega^{i} \wedge \omega^{j} \\
& =-\omega^{1} \wedge \omega^{2} \oplus \omega^{1} \wedge \omega^{2}-\omega^{1} \wedge \omega^{3} \oplus \omega^{1} \wedge \omega^{3}-\omega^{2} \wedge \omega^{3} \oplus \omega^{2} \wedge \omega^{3}
\end{aligned}
$$

b) We know that

$$
K^{M}(\Pi)-K^{S^{3}}(\Pi)=\frac{(B(X, X), B(Y, Y))-\|B(X, Y)\|^{2}}{\|X\|^{2}\|Y\|^{2}-(X, Y)^{2}}
$$

for X and Y linearly independent in $T_{p} M$ and spanning $\Pi=\Pi_{p}$. We take (X, Y) equal to an orthonormal frame formed by principle directions of the embedding of M is S^{3}. The value of $K^{M}(\Pi)$ is the Gaussian curvature K of the manifold M. As

$$
B(Z, W)=\left(S_{N}(Z), W\right) N, \quad S_{N}(X)=\lambda_{1} X, \quad S_{N}(Y)=\lambda_{2} Y
$$

(where $N \in S^{3}$ is unit and normal to M), we obtain

$$
K-1=\lambda_{1} \lambda_{2} .
$$

3.

a) Let X^{v} and X^{w} be the left-invariant vector fields corresponding to v and w, respectively, and ϕ_{t} and ψ_{t} be the corresponding flows. We claim that $\phi_{t} \circ \psi_{s}=\psi_{s} \circ \phi_{t}$. This implies that $\left[X^{v}, X^{w}\right]=0$. In particular, we have that $[v, w]=\left[X^{v}, X^{w}\right]_{e}=0$.

Recall that the fact that $\left(L_{g}\right)_{\star} X^{v}=X^{v}$ implies that $L_{g} \circ \phi_{t}=\phi_{t} \circ L_{g}$, and thus

$$
g \phi_{t}(e)=\phi_{t}(g) .
$$

Similarly,

$$
g \psi_{s}(e)=\psi_{s}(g) .
$$

Note also that $\psi_{s}(h g)=h g \psi_{s}(e)=h \psi_{s}(g)$.
To prove the claim, let $h \in G$. We have

$$
\begin{aligned}
\phi_{t} \circ \psi_{s}(h) & =\phi_{t}\left(\psi_{s}(h)\right)=\psi_{s}(h) \phi_{t}(e)=\phi_{t}(e) \psi_{s}(h) \\
& =\psi_{s}\left(\phi_{t}(e) h\right)=\psi_{s}\left(h \phi_{t}(e)\right)=\psi_{s}\left(\phi_{t}(h)\right) \\
& =\psi_{s} \circ \phi_{t}(h),
\end{aligned}
$$

because G is abelian. This means that $\phi_{t} \circ \psi_{s}=\psi_{s} \circ \phi_{t}$, and so the proof is finished.
b) $\left[X^{v}, W^{w}\right]$ is left-invariant because, for any $g \in G,\left(L_{g}\right)_{\star}\left[X^{v}, W^{w}\right]=$ $\left[\left(L_{g}\right)_{\star} X^{v},\left(L_{g}\right)_{\star} W^{w}\right]=\left[X^{v}, W^{w}\right]$ and, if $[v, w]=0$, then $\left[X^{v}, W^{w}\right]_{e}=0$. So, under the hypothesis, $\left[X^{v}, W^{w}\right]$ is the left-invariant vector field whose value at the identity is zero, which means it is the zero vector field.
c) If

$$
\begin{aligned}
& \dot{c}(t)=X_{c(t)}^{v}, \\
& c(0)=e,
\end{aligned}
$$

and

$$
\begin{aligned}
& \dot{\gamma}(t)=X_{\gamma(t)}^{s v}, \\
& \gamma(0)=e
\end{aligned}
$$

then we have the homogeneity property $\gamma(t)=c(s t)$, because $\left(L_{\gamma(t)}\right)_{\star}(s v)$ $=s\left(L_{\gamma(t)}\right)_{\star}(v)$ (and so $\left.X_{\gamma(t)}^{s v}=s X_{\gamma(t)}^{v}\right)$. In particular, since $\gamma(1)=c(s)$, we have that

$$
(d \exp)_{0}(v)=\left.\frac{d}{d s} \exp (s v)\right|_{s=0}=\left.\frac{d}{d s} \gamma(1)\right|_{s=0}=\left.\frac{d}{d s} c(s)\right|_{s=0}=v
$$

As v is arbitrary, we have shown that $(d \exp)_{e}=I$. By the Inverse Function Theorem, \exp is a diffeomorphism from a neighborhood of zero in $T_{e} G$ to a neighborhood of e in G.
d) If g and $h \in U$, then there exist v and $w \in g$ such that $\exp (v)=g$ and $\exp (w)=h$. Since $[v, w]=0$, we know that $\left[X^{v}, X^{w}\right]=0$, and $\phi_{t} \circ \psi_{s}=\psi_{s} \circ \phi_{t}$, for all s and t, where ϕ_{t} and ψ_{t} are the flows of X^{v} and X^{w}, respectively. In particular, taking $t=s=1$ and evaluating at the identity, we get $\phi_{1}(h)=\psi_{1}(g)$. This implies, $h \phi_{1}(e)=g \psi_{1}(e)$, or $h g=g h$.
e) If $g \in W^{C}$, then $g V \subset W^{C}$. Since V is open, $g V$ is a neighborhood of g (because the map $h \mapsto g^{-1} h$ is continuous, as G is a Lie group, and so the inverse image of the open set V by this map (which is $g V$) is open). This guarantees that every point in W^{C} has a neighborhood in W^{C}. So W^{C} is open.
f) By the previous item, W is both open and closed. Since it contains the identity (and hence is nonempty) and G is connected, we have that $W=G$. We conclude that G is abelian.

Extra material: Justification of the assertions between items d) and \mathbf{e}).

- We show that for all $k, l \in U^{-1}, k l=l k$.

If $k, l \in U^{-1}$, then $k^{-1}, l^{-1} \in U$, so $k^{-1} l^{-1}=l^{-1} k^{-1}$. This is equivalent to $l k=k l$.

- Let $V:=U \cap U^{-1}$. As $V \subset U$, for all $g, h \in V$, we have $g h=h g$. We show that $k \in V$ implies that $k^{-1} \in V$.
Suppose $k \in V$. Then $k \in U$ and $k \in U^{-1}$. So $k^{-1} \in U^{-1}$ and $k^{-1} \in U$. Thus $k^{-1} \in U \cap U^{-1}=V$.
- We show that for all $g h \in V^{2}$, we have $g h=h g$. Similarly, for $g, h \in V^{n}$, we have $g h=h g$, and therefore if $g, h \in W:=\cup_{n=1}^{\infty} V^{n}$, we have $g h=h g$. If $g, h \in V^{2}$, there exist g_{1}, g_{2}, h_{1} and $h_{2} \in V$ such that $g=g_{1} g_{2}$ and $h=h_{1} h_{2}$. Therefore, $g h=g_{1} g_{2} h_{1} h_{2}=h_{1} h_{2} g_{1} g_{2}=h g$.
- We justify that W is open and that it is invariant under elements of V.
U^{-1} is open because U is open and, since G is a Lie group, the map that sends an element to its inverse is continuous. V is open because it is the intersection of two open sets. $V^{2}=\cup_{g \in V} g V$ is open because it is the union of open sets. Similarly, V^{n} is open. W is open because it is the union of open sets.
Suppose $g \in W$. Then there exists n such that $g \in V^{n}$. So $g V \in V^{n+1} \subset W$. Thus W is invariant under elements of V.
- We justify that W^{C}, is invariant under V (both under left and right multiplication).
Suppose, by contradiction, that $g \in W^{C}, h \in V$ and $g h \in W$ or $h g \in$ W. Then $g \in W h^{-1}$ or $g \in h^{-1} W$. Since $h^{-1} \in V$, this contradicts that W is invariant under V (recall that we have commutativity of the group multiplication in W). So $g h \in W^{C}$ and $h g \in W^{C}$. This proves that W^{C}, is invariant under V.

