
Riemannian Geometry
Exam - July 18, 2022

MMAC

Solutions

1.

a) We note that

[X, Y ] = [(X̃, X̂), (Ỹ , Ŷ )]

= (X̃, 0)(Ỹ , 0) + (0, X̂)(Ỹ , 0) + (X̃, 0)(0, Ŷ ) + (0, X̂)(0, Ŷ )

−(Ỹ , 0)(X̃, 0)− (0, Ŷ )(X̃, 0)− (Ỹ , 0)(0, X̂)− (0, Ŷ )(0, X̂)

= ([X̃, Ỹ ], 0) + (0, [X̂, Ŷ ])

= ([X̃, Ỹ ], [X̂, Ŷ ]).

because (0, X̂)(Ỹ , 0)−(Ỹ , 0)(0, X̂) = 0 and (X̃, 0)(0, Ŷ )−(0, Ŷ )(X̃, 0) =
0. (Indeed, for f : M → R, we have, for example, that

(0, X̂)(Ỹ , 0)f = (Ỹ , 0)(0, X̂)f =
∑
i,j

Ỹ i(x̃)X̂j(x̂)
∂2f

∂x̃i∂x̂j

as Ỹ =
∑

i Ỹ
i(x̃)∂x̃i and X̂ =

∑
j X̂

j(x̂)∂x̂j , for x̃ and x̂ local coordina-

tes on M̃ and M̂ , respectively). This shows that [̃X, Y ] = [X̃, Ỹ ] and
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[̂X, Y ] = [X̂, Ŷ ]. Hence, by the Koszul formula, we have

2g(∇XY, Z) = X · g(Y, Z) + Y · g(X,Z)− Z · g(X, Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ])

= (X̃, X̂) · (g̃(Ỹ , Z̃) + ĝ(Ŷ , Ẑ))

+(Ỹ , Ŷ ) · (g̃(X̃, Z̃) + ĝ(X̂, Ẑ))

−(Z̃, Ẑ) · (g̃(X̃, Ỹ ) + ĝ(X̂, Ŷ ))

−g̃(X̃, [̃Y, Z])− ĝ(X̂, [̂Y, Z])

−g̃(Ỹ , [̃X,Z])− ĝ(Ŷ , [̂X,Z])

+g̃(Z̃, [̃X, Y ]) + ĝ(Ẑ, [̂X, Y ])

= X̃ · g̃(Ỹ , Z̃) + X̂ · ĝ(Ŷ , Ẑ)

+Ỹ · g̃(X̃, Z̃) + Ŷ · ĝ(X̂, Ẑ)

−Z̃ · g̃(X̃, Ỹ )− Ẑ · ĝ(X̂, Ŷ )

−g̃(X̃, [Ỹ , Z̃])− ĝ(X̂, [Ŷ , Ẑ])

−g̃(Ỹ , [X̃, Z̃])− ĝ(Ŷ , [X̂, Ẑ])

+g̃(Z̃, [X̃, Ỹ ]) + ĝ(Ẑ, [X̂, Ŷ ])

= 2g̃(∇̃X̃ Ỹ , Z̃) + 2ĝ(∇̂X̂ Ŷ , Ẑ).

This proves that ∇̃XY = ∇̃X̃ Ỹ and ∇̂XY = ∇̂X̂ Ŷ .
b) The Riemann curvature tensor R of M is

R(X, Y, Z,W ) = g(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W )

= g(∇X(∇̃Ỹ Z̃, ∇̂Ŷ Ẑ),W )

−g(∇Y (∇̃X̃Z̃, ∇̂X̂Ẑ),W )

−g(∇̃
[̃X,Y ]

Z̃, ∇̂
[̂X,Y ]

Ẑ,W )

= g(∇̃X̃∇̃Ỹ Z̃, ∇̂X̂∇̂Ŷ Ẑ,W )

−g(∇̃Ỹ ∇̃X̃Z̃, ∇̂Ŷ ∇̂X̂Ẑ,W )

−g(∇̃[X̃,Ỹ ]Z̃, ∇̂[X̂,Ŷ ]Ẑ,W )

= g̃(∇̃X̃∇̃Ỹ Z̃, W̃ ) + ĝ(∇̂X̂∇̂Ŷ Ẑ, Ŵ )

−g̃(∇̃Ỹ ∇̃X̃Z̃, W̃ )− ĝ(∇̂Ŷ ∇̂X̂Ẑ, Ŵ )

−g̃(∇̃[X̃,Ỹ ]Z̃, W̃ )− ĝ(∇̂[X̂,Ŷ ]Ẑ, Ŵ )

= R̃(X̃, Ỹ , Z̃, W̃ ) + R̂(X̂, Ŷ , Ẑ, Ŵ ).

If X = X̃ and Y = Ŷ , then

R(X, Y,X, Y ) = R̃(X̃, 0, X̃, 0) + R̂(0, Ŷ , 0, Ŷ ) = 0 + 0 = 0,
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and so the curvature of the plane Π spanned by X and Y is zero.

2.

a) Since the sphere S3 has constant sectional curvature equal to 1, we
know that

Rijij = −1(giigjj − gijgij)

and
Rijkl = −1(gikgjl − gilgkj) = −1(δikδjl − δilδkj).

In order for us to obtain nonzero components of the curvature tensor:

i 6= k ⇒ (l = i ∧ j = k) Rikki = 1,

j 6= l ⇒ (l = i ∧ j = k) Rljjl = 1,

(i = k ∧ j = l) ⇒ i 6= j Rijij = −1.

The curvature tensor is

R = −
∑
i<j

ωi ∧ ωj ⊕ ωi ∧ ωj

= −ω1 ∧ ω2 ⊕ ω1 ∧ ω2 − ω1 ∧ ω3 ⊕ ω1 ∧ ω3 − ω2 ∧ ω3 ⊕ ω2 ∧ ω3.

b) We know that

KM(Π)−KS3

(Π) =
(B(X,X), B(Y, Y ))− ‖B(X, Y )‖2

‖X‖2‖Y ‖2 − (X, Y )2
,

for X and Y linearly independent in TpM and spanning Π = Πp. We
take (X, Y ) equal to an orthonormal frame formed by principle directi-
ons of the embedding of M is S3. The value of KM(Π) is the Gaussian
curvature K of the manifold M . As

B(Z,W ) = (SN(Z),W )N, SN(X) = λ1X, SN(Y ) = λ2Y

(where N ∈ S3 is unit and normal to M), we obtain

K − 1 = λ1λ2.

3.

a) Let Xv and Xw be the left-invariant vector fields corresponding to v
and w, respectively, and φt and ψt be the corresponding flows. We claim
that φt ◦ ψs = ψs ◦ φt. This implies that [Xv, Xw] = 0. In particular,
we have that [v, w] = [Xv, Xw]e = 0.
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Recall that the fact that (Lg)?X
v = Xv implies that Lg ◦ φt = φt ◦ Lg,

and thus
gφt(e) = φt(g).

Similarly,
gψs(e) = ψs(g).

Note also that ψs(hg) = hgψs(e) = hψs(g).
To prove the claim, let h ∈ G. We have

φt ◦ ψs(h) = φt(ψs(h)) = ψs(h)φt(e) = φt(e)ψs(h)

= ψs(φt(e)h) = ψs(hφt(e)) = ψs(φt(h))

= ψs ◦ φt(h),

because G is abelian. This means that φt ◦ ψs = ψs ◦ φt, and so the
proof is finished.

b) [Xv,Ww] is left-invariant because, for any g ∈ G, (Lg)?[X
v,Ww] =

[(Lg)?X
v, (Lg)?W

w] = [Xv,Ww] and, if [v, w] = 0, then [Xv,Ww]e = 0.
So, under the hypothesis, [Xv,Ww] is the left-invariant vector field
whose value at the identity is zero, which means it is the zero vector
field.

c) If
ċ(t) = Xv

c(t),

c(0) = e,

and
γ̇(t) = Xsv

γ(t),

γ(0) = e,

then we have the homogeneity property γ(t) = c(st), because (Lγ(t))?(sv)
= s(Lγ(t))?(v) (and so Xsv

γ(t) = sXv
γ(t)). In particular, since γ(1) = c(s),

we have that

(d exp)0(v) =
d

ds
exp(sv)

∣∣∣∣
s=0

=
d

ds
γ(1)

∣∣∣∣
s=0

=
d

ds
c(s)

∣∣∣∣
s=0

= v.

As v is arbitrary, we have shown that (d exp)e = I. By the Inverse
Function Theorem, exp is a diffeomorphism from a neighborhood of
zero in TeG to a neighborhood of e in G.

d) If g and h ∈ U , then there exist v and w ∈ g such that exp(v) = g
and exp(w) = h. Since [v, w] = 0, we know that [Xv, Xw] = 0, and
φt ◦ ψs = ψs ◦ φt, for all s and t, where φt and ψt are the flows of Xv

and Xw, respectively. In particular, taking t = s = 1 and evaluating at
the identity, we get φ1(h) = ψ1(g). This implies, hφ1(e) = gψ1(e), or
hg = gh.
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e) If g ∈ WC , then gV ⊂ WC . Since V is open, gV is a neighborhood of
g (because the map h 7→ g−1h is continuous, as G is a Lie group, and
so the inverse image of the open set V by this map (which is gV ) is
open). This guarantees that every point in WC has a neighborhood in
WC . So WC is open.

f ) By the previous item, W is both open and closed. Since it contains
the identity (and hence is nonempty) and G is connected, we have that
W = G. We conclude that G is abelian.

Extra material: Justification of the assertions between items d) and e).

• We show that for all k, l ∈ U−1, kl = lk.
If k, l ∈ U−1, then k−1, l−1 ∈ U , so k−1l−1 = l−1k−1. This is equivalent to
lk = kl.

• Let V := U ∩ U−1. As V ⊂ U , for all g, h ∈ V , we have gh = hg. We show
that k ∈ V implies that k−1 ∈ V .
Suppose k ∈ V . Then k ∈ U and k ∈ U−1. So k−1 ∈ U−1 and k−1 ∈ U .
Thus k−1 ∈ U ∩ U−1 = V .

• We show that for all g h ∈ V 2, we have gh = hg. Similarly, for g, h ∈ V n,
we have gh = hg, and therefore if g, h ∈W := ∪∞n=1V

n, we have gh = hg.
If g, h ∈ V 2, there exist g1, g2, h1 and h2 ∈ V such that g = g1g2 and
h = h1h2. Therefore, gh = g1g2h1h2 = h1h2g1g2 = hg.

• We justify that W is open and that it is invariant under elements of V .
U−1 is open because U is open and, since G is a Lie group, the map that
sends an element to its inverse is continuous. V is open because it is the
intersection of two open sets. V 2 = ∪g∈V gV is open because it is the union
of open sets. Similarly, V n is open. W is open because it is the union of
open sets.
Suppose g ∈W . Then there exists n such that g ∈ V n. So gV ∈ V n+1 ⊂W .
Thus W is invariant under elements of V .

• We justify that WC , is invariant under V (both under left and right multi-
plication).
Suppose, by contradiction, that g ∈ WC , h ∈ V and gh ∈ W or hg ∈
W . Then g ∈ Wh−1 or g ∈ h−1W . Since h−1 ∈ V , this contradicts that
W is invariant under V (recall that we have commutativity of the group
multiplication in W ). So gh ∈ WC and hg ∈ WC . This proves that WC , is
invariant under V .


