Riemannian Geometry
 Exam - July 6, 2022
 MMAC

Solutions

1.

a) Using Cartan's structure equations, we have

$$
\begin{aligned}
& d \omega^{x}=d y \wedge d x=\omega^{y} \wedge \omega_{y}^{x}=y d y \wedge \frac{1}{y} d x \\
& d \omega^{x}=0=\omega^{x} \wedge \omega_{x}^{y}=y d x \wedge\left(-\frac{1}{y} d x\right),
\end{aligned}
$$

and so

$$
\omega_{y}^{x}=\frac{1}{y} d x
$$

This implies

$$
\Omega_{y}^{x}=d \omega_{y}^{x}=\frac{1}{y^{2}} d x \wedge d y=\frac{1}{y^{4}} \omega^{x} \wedge \omega^{y} .
$$

Since

$$
\Omega_{y}^{x}=R_{x y y}{ }^{x} \omega^{x} \wedge \omega^{y}
$$

and we are working on an orthonormal frame, we have

$$
R_{x y y x}=R_{x y y}^{x}=\frac{1}{y^{4}} .
$$

The Gaussian curvature of M is equal to

$$
K=R_{x y y x}=\frac{1}{y^{4}} .
$$

b) Since the equations of the geodesics are

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}=0 \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{y}}-\frac{\partial L}{\partial y}=0
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(y^{2} \dot{x}\right) & =0 \\
\frac{d}{d t}\left(y^{2} \dot{y}\right)-y\left(\dot{x}^{2}+\dot{y}^{2}\right) & =0
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
\ddot{x}+\frac{2}{y} \dot{x} \dot{y} & =0, \tag{1}\\
\ddot{y}-\frac{1}{y} \dot{x}^{2}+\frac{1}{y} \dot{y}^{2} & =0 . \tag{2}
\end{align*}
$$

We read out that the the nonzero Christoffel symbols are

$$
\Gamma_{x y}^{x}=\frac{1}{y}, \quad \Gamma_{y x}^{x}=\frac{1}{y}, \quad \Gamma_{x x}^{y}=-\frac{1}{y}, \quad \Gamma_{y y}^{y}=\frac{1}{y} .
$$

c)

$$
\begin{aligned}
R\left(\partial_{x}, \partial_{y}\right) \partial_{x} & =\nabla_{\partial_{x}} \nabla_{\partial_{y}} \partial_{x}-\nabla_{\partial_{y}} \nabla_{\partial_{x}} \partial_{x}-\nabla_{\left[\partial_{x}, \partial_{y}\right.} \partial_{x} \\
& =\nabla_{\partial_{x}}\left(\Gamma_{y x}^{x} \partial_{x}+\Gamma_{y x}^{y} \partial_{y}\right)-\nabla_{\partial_{y}}\left(\Gamma_{x x}^{x} \partial_{x}+\Gamma_{x x}^{y} \partial_{y}\right) \\
& =\nabla_{\partial_{x}}\left(\frac{1}{y} \partial_{x}\right)-\nabla_{\partial_{y}}\left(-\frac{1}{y} \partial_{y}\right) \\
& =-\frac{1}{y} \frac{1}{y} \partial_{y}-\frac{1}{y^{2}} \partial_{y}+\frac{1}{y} \frac{1}{y} \partial_{y} \\
& =-\frac{1}{y^{2}} \partial_{y} .
\end{aligned}
$$

It follows that

$$
\left(R\left(\partial_{x}, \partial_{y}\right) \partial_{x}, \partial_{y}\right)=\left(-\frac{1}{y^{2}} \partial_{y}, \partial_{y}\right)=-1
$$

and

$$
K=-\frac{R\left(\partial_{x}, \partial_{y}, \partial_{x}, \partial_{y}\right)}{\left\|\partial_{x}\right\|^{2}\left\|\partial_{y}\right\|^{2}-\left(\partial_{x}, \partial_{y}\right)^{2}}=\frac{1}{y^{4}} .
$$

d) For $x(\cdot)=c$ equation (1) is satisfied and equation (2) becomes

$$
\ddot{y}+\frac{\dot{y}^{2}}{y}=0 .
$$

This may be rewritten as

$$
\frac{\ddot{y}}{\dot{y}}+\frac{\dot{y}}{y}=0,
$$

and integrated to

$$
\ln |y \dot{y}|=\ln |\dot{y}|+\ln |y|=\tilde{\alpha},
$$

for some constant $\tilde{\alpha}$. So

$$
y \dot{y}=\frac{\alpha}{2},
$$

for some nonzero constant α. In fact, α may be zero (we divided the original equation by \dot{y}). Thus we have

$$
y=\sqrt{\alpha t+\beta}
$$

for some constants α and β.
e) The geodesic curvature of the horizontal lines $y=y_{0}$ (transversed from left to right) is

$$
k_{g}=\omega_{x}^{y}\left(\frac{\partial_{x}}{y}\right)=-\frac{1}{y} d x\left(\frac{\partial_{x}}{y}\right)=-\frac{1}{y^{2}}=-\frac{1}{y_{0}^{2}} .
$$

Thus, the geodesic curvature of the horizontal lines $y=y_{1}$ (transversed from right to left) is

$$
k_{g}=\frac{1}{y_{1}^{2}} .
$$

f) According to the Gauss-Bonnet Theorem

$$
\int_{R} K \omega^{x} \wedge \omega^{y}+\int_{\partial R} k_{g} d s+4 \times \frac{\pi}{2}=2 \pi \times 1
$$

because the tangent to the boundary of R turns $\frac{\pi}{2}$ at each corner (check this) and the Euler characteristic of a rectangle is equal to 1 . Therefore, we must verify that

$$
\int_{0}^{x_{0}} \int_{y_{0}}^{y_{1}} \frac{1}{y^{4}} y^{2} d x \wedge d y+\int_{0}^{x_{0}}\left(-\frac{1}{y_{0}^{2}}\right) y_{0} d x+\int_{0}^{x_{0}} \frac{1}{y_{1}^{2}} y_{1} d x=0 .
$$

This is true.
g) The Riemannian volume form on M is

$$
\omega=\omega^{x} \wedge \omega^{y}=y^{2} d x \wedge d y
$$

Lie derivative $L_{X} \omega$ is

$$
L_{\frac{1}{y} \partial_{y}}\left(y^{2} d x \wedge d y\right)=2 d x \wedge d y+y^{2} d x \wedge d \frac{1}{y}=d x \wedge d y=\frac{1}{y^{2}} \omega .
$$

Hence, the divergence of X is equal to $\frac{1}{y^{2}}$. The unit exterior normals to ∂R are $\pm \frac{\partial_{x}}{y}$ and $\pm \frac{\partial_{y}}{y}$. We obtain $(X, \nu)=0$ or $(X, \nu)= \pm 1$. As $d s=y d y$ and $d s=y d x$, it follows that

$$
\begin{aligned}
& \int_{0}^{x_{0}} \int_{y_{0}}^{y_{1}} d x \wedge d y=\int_{R}(\operatorname{div} X) \omega \\
& =\int_{\partial R}(X, \nu) d s=\int_{0}^{x_{0}} 1 \times y_{1} d x+\int_{0}^{x_{0}}(-1) \times y_{0} d x .
\end{aligned}
$$

Both sides are equal to $x_{0}\left(y_{1}-y_{0}\right)$.
2.
a) Denote by F the map from (a subset of) $\mathbb{R} \times S$ to M such that $F\left(t, x_{1}, \ldots, x_{n}\right)$ is the point on M that one reaches by starting at the point of coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on S and flowing during time t along the geodesic through that point with initial velocity equal to the unit normal to S. Since, by hypothesis, $\left(x^{1}, \ldots, x^{n}\right)$ are coordinates on S, the vectors $\partial_{x_{1}}, \ldots, \partial_{x_{n}}$ are linearly independent. As ∂_{t} is orthogonal to S, the set $\left\{\partial_{t}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}\right\}$ is linearly independent. Therefore the derivative of the map F is invertible at any point of S. Since F is smooth, by the Inverse Function Theorem, given $p_{0} \in S$, there exists a neighborhood V of p_{0}, such that $\left(t, x^{1}, \ldots, x^{n}\right)$ define coordinates on V.
b) On S we have that $\left(\partial_{t}, \partial_{x}\right) \equiv 0$ and

$$
\partial_{t} \cdot\left(\partial_{t}, \partial_{x}\right)=\left(\partial_{t}, \nabla_{\partial_{t}} \partial_{x}\right)=\left(\partial_{t}, \nabla_{\partial_{x}} \partial_{t}\right)=\frac{1}{2} \partial_{x} \cdot\left(\partial_{t}, \partial_{t}\right)=\frac{1}{2} \partial_{x} \cdot 1=0,
$$

since $\nabla_{\partial_{t}} \partial_{t}=0$ and $\left[\partial_{t}, \partial_{x}\right]=0$. We conclude that $\left(\partial_{t}, \partial_{x}\right) \equiv 0$ for all t (where this is defined).

