
Riemannian Geometry, Fall 2016/17
Instituto Superior Técnico, Pedro Girão

The Exam, given on February 3, 2017, consists of part of Problem 1 and of
Problem 2.

1. To each n× n matrix A = [aij ] we may associate the vector field in R
n

XA = (AX)T
∂

∂x
=

n
∑

i,j=1

xiaji
∂

∂xj
,

where
{

∂
∂x1 , . . . ,

∂
∂xn

}

is the canonical basis of Rn.

a) Knowing that [XA, XB] = XC , express C in terms of A and B.
b) Suppose G is a Lie group, which is a subgroup of GL(n), with Lie

algebra g , and A ∈ g . What is the relation between the exponential of
At and the flow F ( · , t) of XA at time t?

c) Consider A ∈ g . What is the value of left invariant vector field Y A on
G ⊂ GL(n) corresponding to A at the matrix Y ?

d) Consider the case where n = 2, and define A and B to be

A =

[

0 1
0 0

]

, B =

[

1 0
0 0

]

.

The matrices A and B do not commute but [B,A] = A. Determine
XA, XB and [XA, XB]. Check that your answer is according to the one
you gave in a).

e) Determine the real numbers s = s(β) and t = t(β) such that

eβBeαA = esαA+βB, eαAeβB = etαA+βB .

Suggestion: Compute both sides of the previous equalities.
f) There is a very simple relation between t and s. Explain it.
g) Show that

G = {M ∈ GL(2) : M = eαA+βB, with α, β ∈ R}.

is a subgroup of GL(2). (In fact, it is a Lie group.)
h) Show that the Lie algebra of G is spanned by A and B. Suggestion:

you may want to use the definition of the exponential of a matrix.
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i) Let

(g1, g2) ∼=
[

g2 g1
0 1

]

= eαA+βB = g ∈ G.

Show that the volume form

ω =
dx ∧ dy

y2
,

defined on R × R
+, is invariant under the pull-back by Lg. Note: If

g = (g1, g2), then L(g1,g2)(a, b) = (g2a+ g1, g2b) = (x, y).
j) Define η0 = dx

y
. Check that dη0 = ω. Let R > 0. Knowing that you

can apply Stokes’ Theorem to the region

S := {(x, y) ∈ R× R
+ : x ∈ ]− R,R[ and x2 + y2 > R2},

use it to calculate the area of S.
k) Interpret the value you obtained for the area heuristically using the

Gauss-Bonnet Theorem.
l) Characterize the forms η such that dη = ω.

2. Consider the cylinder M = R× S1 with metric

ds2 = dγ2 + cosh2 γ dθ2,

and orthonormal frame

(Eγ , Eθ) =

(

∂

∂γ
,

1

cosh γ

∂

∂θ

)

.

a) Show that M has constant curvature equal to −1.
b) Consider the closed curve c(θ) = (γ0, θ), and the vector field

X(θ) := a(θ)(Eγ)c(θ) + b(θ)(Eθ)c(θ),

defined for θ ∈ [0, 2π[, with a(0) = 1 and b(0) = 0. Knowing that it is
parallel along c, determine X using connection forms.

c) Let Y = limθ→2π X(θ). Compute Y using the result of b). What is the
angle between Y and X(0)? Confirm your answer by calculating the
integral of the geodesic curvature of c. For what values of γ0 ≥ 0 are
X(0) and Y parallel with the same direction?

d) Let (γ0)n and (γ0)n+1 be two consecutive values of γ0 ≥ 0 as in your
answer to c). Use the Gauss-Bonnet Theorem to calculate the area of
the portion of M where (γ0)n ≤ γ ≤ (γ0)n+1.
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e) Let f be a smooth function of M . Recall that the gradient of f is the
vector field X such that, for all Y ∈ X (M),

(∇f, Y ) = df(Y ).

Deduce a formula for the gradient of a vector field in a general system
of coordinates where the metric is gij. Particularize to the case of the
coordinates (γ, θ) above.

f) Let ω be a volume form on a Riemannian manifold. Recall that, by
definition, the divergence of X ∈ X (M) is the function divX such that

LXω = (divX)ω.

Using the formula about the Lie derivative of the tensor product and
the fact that the Lie derivative commutes with the exterior derivative,
show that

divX =
1√
det g

∂i

(

√

det g X i
)

.

Particularize to the case of the coordinates (γ, θ) above.
g) Write down the expression for the Laplacian of f in the coordinates

(γ, θ).

1. Solution.

a)

[XA, XB] =

(

xiaji
∂

∂xj

)(

xkblk
∂

∂xl

)

−
(

xibji
∂

∂xj

)(

xkalk
∂

∂xl

)

= xi(ajiblj − bjialj)
∂

∂xl

Let D = AB and E = BA. Then

dli = aljbji, eli = bljaji.

So,

[XA, XB] = xi(eli − dli)
∂

∂xl
= −xi(d− e)li

∂

∂xl
.

We conclude that C = −[A,B].
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b)
eAt = [F ((1, 0, . . . , 0), t) . . . F ((0, 0, . . . , 1), t)].

Indeed, Y (t) = eAt is the solution of
{

Ẏ = AY,

Y (0) = I.

On the other hand, if Y = [Y ij ] and

Xj :=





Y 1j

. . .

Y nj



 ,

then


















Ẋj = AXj,

Xj(0) =







0
. . .

0
1
0
. . .

0






,

where the one is in position j. Therefore,

Y (t) = [X1(t) . . . Xn(t)].

c) (Y A)Y = Y A.
d)

XA =

[

0 1
0 0

] [

x

y

]

=

[

y

0

]

= y
∂

∂x
,

XB =

[

1 0
0 0

] [

x

y

]

=

[

x

0

]

= x
∂

∂x
.

So,

[XA, XB] =

(

y
∂

∂x

)(

x
∂

∂x

)

−
(

x
∂

∂x

)(

y
∂

∂x

)

=

(

y
∂

∂x

)

= XA.

This is consistent with the result of a) because C = A = −[A,B].
e)

eαA =

[

1 α

0 1

]

, eβB =

[

eβ 0
0 1

]

.

Let

C = sαA+ βB =

[

β sα

0 0

]

.
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Then

C2 =

[

β2 βsα

0 0

]

, C3 =

[

β3 β2sα

0 0

]

, Cn =

[

βn βn−1sα

0 0

]

.

Thus,

eC =
∞
∑

n=0

Cn

n!
=

[

∑∞

n=0
βn

n!
sα

∑∞

n=1
βn−1

n!

0 1

]

=

[

eβ sα eβ−1
β

0 1

]

.

On the other hand,

eβBeαA =

[

eβ αeβ

0 1

]

, eαAeβB =

[

eβ α

0 1

]

.

We conclude that the equality eβBeαA = esαA+βB is true for

s
eβ − 1

β
= eβ ⇔ s =

β

1− e−β
,

whereas eαAeβB = etαA+βB is true for

t
eβ − 1

β
= 1 ⇔ t =

β

eβ − 1
.

f) From the expressions above for t and s, we see that t(−β) = s(β). This
is immediate from

(eβBeαA)−1 = (es(β)αA+βB)−1 ⇔ e−αAe−βB = es(β)(−α)A+(−β)B

g) We remark that

eβBeαA = esαA+βB = e
s
t
αAeβB,

and
s

t
= eβ.

The inverse of eαA+βB is e−(αA+βB). So, to check that G is a group, we
just have to check that the product of two elements of G is in G. This
is a consequence of the following computation:

eαA+βBeγA+δB = eβBe
α

s(β)
A
eδBe

γ
s(δ)

A

= eβBeδBe
e−δα
s(β)

A
e

γ
s(δ)

A

= e(β+δ)Be

(

e−δα
s(β)

+ γ
s(δ)

)

A

= e

[

s(β+δ)
(

e−δα
s(β)

+ γ
s(δ)

)]

A+(β+δ)B
.

This shows that G is a subgroup of GL(n).
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h) For these matrices A and B, the formula for eαA+βB obtained above
shows that this exponential is equal to the identity if and only if α =
β = 0. So, to obtain the tangent space to G at the identity, we just have
to consider curves τ 7→ c(τ) := eα(τ)A+β(τ)B in G, with α(0) = β(0) = 0,
and compute ċ(0). But even if the map (α, β) → eαA+βB were not
injective, the vector field tangent to this flow would still be well defined,
because it is a left invariant vector field, and so these curves would
suffice to calculate g . We note that

c(τ) =

∞
∑

n=0

(α(τ)A+ β(τ)B)n

n!
.

So clearly,
ċ(0) = α̇(0)A+ β̇(0)B.

This shows that g is spanned by A and B. If we wanted to compute
ċ(τ), for τ different from 0, then we should write

c(τ) := e
α(τ)

t(β(τ))
A
eβ(τ)B .

Thus, the derivative of c is

ċ(τ) = e
α(τ)

t(β(τ))
A

(

d

dτ

α(τ)

t(β(τ))

)

Aeβ(τ)B + e
α(τ)

t(β(τ))
A
eβ(τ)B β̇(τ)B,

and
d

dτ

α(τ)

t(β(τ))
=

α̇(τ)t(β(τ))− α(τ)ṫ(β(τ))β̇(τ)

[t(β(τ))]2

i)
dx = g2 da, dy = g2 da.

The computation

dx ∧ dy

y2
= g22

da ∧ db

(g2b)2
=

da ∧ db

b2

shows that this volume form is invariant under the pull-back by Lg.
j) Clearly dη0 = ω. Using Stokes’ Theorem, the area of S is

∫

S

ω =

∫

∂S

η0 =

∫

x2+y2=R2

y>0

dx

y

=

∫ 0

−π

d(R cos θ)

(−R sin θ)
= π.
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k) According to the Gauss-Bonnet Theorem,

∫

S

K +

∫

∂S

kg = 2πχ = 2π,

as the Euler characteristic of a triangle is 1. Now the boundary of S is
formed by geodesics, curves whose geodesic curvature is equal to 0. We
know that the integral

∫

c
kg measures ∆θ, the change in angle of the

vector ċ with respect to a parallel vector field along c. At the ‘vertices’
(−R, 0), (0, R) and (0,∞), ∆θ is equal to π. Taking into account that
K ≡ −1, we obtain −A+ 3π = 2π, or A = π. This argument could be
made rigorous by applying the Gauss-Bonnet Theorem to the region
Sǫ := S ∩

{

(x, y) ∈ R × R
+ : ǫ < y < 1

ǫ

}

, for ǫ > 0, and then letting
ǫ → 0.

l) If dη = ω, then η = η0 + ξ where ξ is a one form on R× R
+ satisfying

dξ = 0. Writing ξ as ξ = f dx + g dy, we have −fy + gx = 0. This
means that the vector field (f, g) is a gradient: (f, g) = ∇φ = (φx, φy).
So ξ = φx dx+ φy dy = dφ.

2. Solution.

a) The dual frame is (ωγ, ωθ), where

ωγ = dγ, ωθ = cosh γ dθ.

From Cartan’s structure equations,

dωθ = −ωθ
γ ∧ ωγ = −ωθ

γ ∧ dγ

= sinh γ dγ ∧ dθ.

This implies
ωθ
γ = sinh γ dθ.

The curvature form is

Ωθ
γ = dωθ

γ = cosh γ dγ ∧ dθ = Rγθγ
θωγ ∧ ωθ

= Rγθγθ cosh γ dγ ∧ dθ.

This shows that Rγθγθ. The manifold M has curvature

K = −Rγθγθ = −1.
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b) Clearly ċ = ∂
∂θ

and so

∇ċX = 0 ⇔ 1

cosh γ
∇ ∂

∂θ
X = 0 ⇔ ∇Eθ

X = 0.

This equation is equivalent to

0 = ∇Eθ
(aEγ + bEθ)

= (Eθ · a)Eγ + a(∇Eθ
Eγ, Eγ)Eγ + a(∇Eθ

Eγ, Eθ)Eθ

+(Eθ · b)Eθ + b(∇Eθ
Eθ, Eγ)Eγ + b(∇Eθ

Eθ, Eθ)Eθ

=
1

cosh γ
ȧEγ + aωγ

γ (Eθ)Eγ + aωθ
γ(Eθ)Eθ

+
1

cosh γ
ḃEθ + bω

γ
θ (Eθ)Eγ + bωθ

θ(Eθ)Eθ

=
1

cosh γ
ȧEγ + 0 + a tanh γEθ

+
1

cosh γ
ḃEθ − b tanh γEγ + 0.

We deduce that
{

ȧ = sinh γ b,

ḃ = − sinh γ a,

or
{

ä = − sinh2 γ a,

b̈ = − sinh2 γ b.

Our initial conditions are a(0) = 1, ȧ(0) = 0, and b(0) = 0, ḃ(0) =
− sinh γ. Therefore,

{

a(θ) = cos(θ sinh γ),
b(θ) = − sin(θ sinh γ).

In conclusion,

X(θ) = cos(θ sinh γ0)Eγ − sin(θ sinh γ0)Eθ.

c)
Y = cos(2π sinh γ0)Eγ − sin(2π sinh γ0)Eθ.

The angle between Y and X(0) is −2π sinh γ0. Since Eθ is tangent
to c and has unit length, and (Eθ,−Eγ) has positive orientation, the
geodesic curvature of c is

kg = −ω
γ
θ (Eθ) = sinh γ0 dθ

(

1

cosh γ0

∂

∂θ

)

= tanh γ0.
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The integral of the geodesic curvature over c is

∫

c

kg ds =

∫ 2π

0

tanh γ0 cosh γ0 dθ = 2π sinh γ0.

This is the angle by which ċ rotates with respect to X when we go
once around the curve c. The angle between Y and X(0) = ċ(0) is
the opposite angle. X(0) and Y parallel with the same direction if
2π sinh γ0 = 2πk, with k ∈ N0 (because γ0 ≥ 0). Now

sinh γ0 = k ⇔ e2γ0 − 2keγ0 − 1 = 0 ⇔ eγ0 = k +
√
k2 + 1

⇔ γ0 = ln(k +
√
k2 + 1).

d) Using the Gauss-Bonnet Theorem,
∫

(γ0)n≤γ≤(γ0)n+1

K +

∫

γ=(γ0)n+1

kg −
∫

γ=(γ0)n+1

kg = 2πχ = 0,

as the Euler characteristic of a ‘slice’ of a cylinder is 0. But K ≡ −1
and, according to the definition of (γ0)n, we have

∫

γ=(γ0)n
kg = 2πn.

Therefore, the value of the area of the portion of M under consideration
is

∫

(γ0)n≤γ≤(γ0)n+1

1 = 2π.

e) From the definition of the gradient,

(∇f, Y ) = df(Y ) ⇔ (∇f)igijY
j = Y j ∂f

∂xj
.

Since this equality is valid for all Y , we must have

(∇f)igij =
∂f

∂xj
.

Multiplying both sides by gjk and summing over j, it follows

(∇f)iδki = gjk
∂f

∂xj
.

Thus

(∇f)k = gkj
∂f

∂xj
.

For the above metric, we have

∇f = ∂γf
∂

∂γ
+

1

cosh2 γ
∂θf

∂

∂θ
.
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f) The volume form on a Riemannian manifold is

ω =
√

det g dx1 ∧ . . . ∧ dxn.

Using the formula about the Lie derivative of the tensor product and
the fact that the Lie derivative commutes with the exterior derivative,

LXω = X ·
√

det g dx1 ∧ . . . ∧ dxn

+
√

det g d(LXx
1) ∧ . . . ∧ dxn + . . .

+
√

det g dx1 ∧ . . . ∧ d(LXx
n)

= X i∂
√
det g

∂xi
dx1 ∧ . . . ∧ dxn

+
√

det g
∂X1

∂x1
dx1 ∧ . . . ∧ dxn + . . .

+
√

det g
∂Xn

∂xn
dx1 ∧ . . . ∧ dxn

= ∂i(
√

det g X i) dx1 ∧ . . . ∧ dxn

=
1√
det g

∂i(
√

det g X i)ω

= divX ω.

We have used the fact that

d(LXx
i) = d(X · xi) = dX i =

∂X i

∂xj

dxj.

Therefore,

divX =
1√
det g

∂i(
√

det g X i).

For X a vector field on M , in the above coordinates,

divX =
1

cosh γ
∂γ(cosh γ X

γ) +
1

cosh γ
∂θ(cosh γ X

θ)

= ∂γX
γ + tanh γXγ + ∂θX

θ.

g)

∆f =
1

cosh γ
∂γ(cosh γ ∂γf) +

1

cosh2 γ
∂θ∂θf.


