Riemannian Geometry, Fall 2016/17

Instituto Superior Técnico, Pedro Girão

The Exam, given on February 3, 2017, consists of part of Problem 1 and of Problem 2.

1. To each $n \times n$ matrix $A=\left[a_{i j}\right]$ we may associate the vector field in \mathbb{R}^{n}

$$
X^{A}=(A X)^{T} \frac{\partial}{\partial x}=\sum_{i, j=1}^{n} x^{i} a_{j i} \frac{\partial}{\partial x^{j}},
$$

where $\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right\}$ is the canonical basis of \mathbb{R}^{n}.
a) Knowing that $\left[X^{A}, X^{B}\right]=X^{C}$, express C in terms of A and B.
b) Suppose G is a Lie group, which is a subgroup of $G L(n)$, with Lie algebra \mathcal{g}, and $A \in g$. What is the relation between the exponential of At and the flow $F(\cdot, t)$ of X^{A} at time t ?
c) Consider $A \in g$. What is the value of left invariant vector field Y^{A} on $G \subset G L(n)$ corresponding to A at the matrix Y ?
d) Consider the case where $n=2$, and define A and B to be

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The matrices A and B do not commute but $[B, A]=A$. Determine X^{A}, X^{B} and $\left[X^{A}, X^{B}\right]$. Check that your answer is according to the one you gave in \mathbf{a}).
e) Determine the real numbers $s=s(\beta)$ and $t=t(\beta)$ such that

$$
e^{\beta B} e^{\alpha A}=e^{s \alpha A+\beta B}, \quad e^{\alpha A} e^{\beta B}=e^{t \alpha A+\beta B}
$$

Suggestion: Compute both sides of the previous equalities.
f) There is a very simple relation between t and s. Explain it.
g) Show that

$$
G=\left\{M \in G L(2): M=e^{\alpha A+\beta B}, \text { with } \alpha, \beta \in \mathbb{R}\right\}
$$

is a subgroup of $G L(2)$. (In fact, it is a Lie group.)
h) Show that the Lie algebra of G is spanned by A and B. Suggestion: you may want to use the definition of the exponential of a matrix.
i) Let

$$
\left(g_{1}, g_{2}\right) \cong\left[\begin{array}{cc}
g_{2} & g_{1} \\
0 & 1
\end{array}\right]=e^{\alpha A+\beta B}=g \in G
$$

Show that the volume form

$$
\omega=\frac{d x \wedge d y}{y^{2}}
$$

defined on $\mathbb{R} \times \mathbb{R}^{+}$, is invariant under the pull-back by L_{g}. Note: If $g=\left(g_{1}, g_{2}\right)$, then $L_{\left(g_{1}, g_{2}\right)}(a, b)=\left(g_{2} a+g_{1}, g_{2} b\right)=(x, y)$.
j) Define $\eta_{0}=\frac{d x}{y}$. Check that $d \eta_{0}=\omega$. Let $R>0$. Knowing that you can apply Stokes' Theorem to the region

$$
S:=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}^{+}: x \in\right]-R, R\left[\text { and } x^{2}+y^{2}>R^{2}\right\}
$$

use it to calculate the area of S.
k) Interpret the value you obtained for the area heuristically using the Gauss-Bonnet Theorem.
l) Characterize the forms η such that $d \eta=\omega$.
2. Consider the cylinder $M=\mathbb{R} \times S^{1}$ with metric

$$
d s^{2}=d \gamma^{2}+\cosh ^{2} \gamma d \theta^{2}
$$

and orthonormal frame

$$
\left(E_{\gamma}, E_{\theta}\right)=\left(\frac{\partial}{\partial \gamma}, \frac{1}{\cosh \gamma} \frac{\partial}{\partial \theta}\right)
$$

a) Show that M has constant curvature equal to -1 .
b) Consider the closed curve $c(\theta)=\left(\gamma_{0}, \theta\right)$, and the vector field

$$
X(\theta):=a(\theta)\left(E_{\gamma}\right)_{c(\theta)}+b(\theta)\left(E_{\theta}\right)_{c(\theta)}
$$

defined for $\theta \in[0,2 \pi[$, with $a(0)=1$ and $b(0)=0$. Knowing that it is parallel along c, determine X using connection forms.
c) Let $Y=\lim _{\theta \rightarrow 2 \pi} X(\theta)$. Compute Y using the result of $\left.\mathbf{b}\right)$. What is the angle between Y and $X(0)$? Confirm your answer by calculating the integral of the geodesic curvature of c. For what values of $\gamma_{0} \geq 0$ are $X(0)$ and Y parallel with the same direction?
d) Let $\left(\gamma_{0}\right)_{n}$ and $\left(\gamma_{0}\right)_{n+1}$ be two consecutive values of $\gamma_{0} \geq 0$ as in your answer to \mathbf{c}). Use the Gauss-Bonnet Theorem to calculate the area of the portion of M where $\left(\gamma_{0}\right)_{n} \leq \gamma \leq\left(\gamma_{0}\right)_{n+1}$.
e) Let f be a smooth function of M. Recall that the gradient of f is the vector field X such that, for all $Y \in \mathcal{X}(M)$,

$$
(\nabla f, Y)=d f(Y)
$$

Deduce a formula for the gradient of a vector field in a general system of coordinates where the metric is $g_{i j}$. Particularize to the case of the coordinates (γ, θ) above.
f) Let ω be a volume form on a Riemannian manifold. Recall that, by definition, the divergence of $X \in \mathcal{X}(M)$ is the function div X such that

$$
L_{X} \omega=(\operatorname{div} X) \omega .
$$

Using the formula about the Lie derivative of the tensor product and the fact that the Lie derivative commutes with the exterior derivative, show that

$$
\operatorname{div} X=\frac{1}{\sqrt{\operatorname{det} g}} \partial_{i}\left(\sqrt{\operatorname{det} g} X^{i}\right)
$$

Particularize to the case of the coordinates (γ, θ) above.
g) Write down the expression for the Laplacian of f in the coordinates (γ, θ).

1. Solution.
a)

$$
\begin{aligned}
{\left[X^{A}, X^{B}\right] } & =\left(x^{i} a_{j i} \frac{\partial}{\partial x^{j}}\right)\left(x^{k} b_{l k} \frac{\partial}{\partial x^{l}}\right)-\left(x^{i} b_{j i} \frac{\partial}{\partial x^{j}}\right)\left(x^{k} a_{l k} \frac{\partial}{\partial x^{l}}\right) \\
& =x^{i}\left(a_{j i} b_{l j}-b_{j i} a_{l j}\right) \frac{\partial}{\partial x^{l}}
\end{aligned}
$$

Let $D=A B$ and $E=B A$. Then

$$
d_{l i}=a_{l j} b_{j i}, \quad e_{l i}=b_{l j} a_{j i} .
$$

So,

$$
\left[X^{A}, X^{B}\right]=x^{i}\left(e_{l i}-d_{l i}\right) \frac{\partial}{\partial x^{l}}=-x^{i}(d-e)_{l i} \frac{\partial}{\partial x^{l}}
$$

We conclude that $C=-[A, B]$.
b)

$$
e^{A t}=[F((1,0, \ldots, 0), t) \ldots F((0,0, \ldots, 1), t)] .
$$

Indeed, $Y(t)=e^{A t}$ is the solution of

$$
\left\{\begin{array}{l}
\dot{Y}=A Y \\
Y(0)=I
\end{array}\right.
$$

On the other hand, if $Y=\left[Y^{i j}\right]$ and

$$
X^{j}:=\left[\begin{array}{l}
Y^{1 j} \\
\ldots \\
Y^{n j}
\end{array}\right]
$$

then

$$
\left\{\begin{array}{l}
\dot{X}^{j}=A X^{j}, \\
X^{j}(0)=\left[\begin{array}{c}
0 \\
\dddot{0} \\
1 \\
0 \\
\dddot{0}
\end{array}\right],
\end{array}\right.
$$

where the one is in position j. Therefore,

$$
Y(t)=\left[X^{1}(t) \ldots X^{n}(t)\right]
$$

c) $\left(Y^{A}\right)_{Y}=Y A$.
d)

$$
\begin{aligned}
& X^{A}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
0
\end{array}\right]=y \frac{\partial}{\partial x}, \\
& X^{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]=x \frac{\partial}{\partial x} .
\end{aligned}
$$

So,

$$
\begin{aligned}
{\left[X^{A}, X^{B}\right] } & =\left(y \frac{\partial}{\partial x}\right)\left(x \frac{\partial}{\partial x}\right)-\left(x \frac{\partial}{\partial x}\right)\left(y \frac{\partial}{\partial x}\right) \\
& =\left(y \frac{\partial}{\partial x}\right)=X^{A}
\end{aligned}
$$

This is consistent with the result of a) because $C=A=-[A, B]$.
e)

$$
e^{\alpha A}=\left[\begin{array}{cc}
1 & \alpha \\
0 & 1
\end{array}\right], \quad e^{\beta B}=\left[\begin{array}{cc}
e^{\beta} & 0 \\
0 & 1
\end{array}\right] .
$$

Let

$$
C=s \alpha A+\beta B=\left[\begin{array}{cc}
\beta & s \alpha \\
0 & 0
\end{array}\right]
$$

Then

$$
C^{2}=\left[\begin{array}{cc}
\beta^{2} & \beta s \alpha \\
0 & 0
\end{array}\right], \quad C^{3}=\left[\begin{array}{cc}
\beta^{3} & \beta^{2} s \alpha \\
0 & 0
\end{array}\right], \quad C^{n}=\left[\begin{array}{cc}
\beta^{n} & \beta^{n-1} s \alpha \\
0 & 0
\end{array}\right] .
$$

Thus,

$$
\begin{aligned}
e^{C} & =\sum_{n=0}^{\infty} \frac{C^{n}}{n!}=\left[\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!} & s \alpha \sum_{n=1}^{\infty} \frac{\beta^{n-1}}{n!} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{\beta} & s \alpha \frac{e^{\beta}-1}{\beta} \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

On the other hand,

$$
e^{\beta B} e^{\alpha A}=\left[\begin{array}{cc}
e^{\beta} & \alpha e^{\beta} \\
0 & 1
\end{array}\right], \quad e^{\alpha A} e^{\beta B}=\left[\begin{array}{cc}
e^{\beta} & \alpha \\
0 & 1
\end{array}\right]
$$

We conclude that the equality $e^{\beta B} e^{\alpha A}=e^{s \alpha A+\beta B}$ is true for

$$
s \frac{e^{\beta}-1}{\beta}=e^{\beta} \Leftrightarrow s=\frac{\beta}{1-e^{-\beta}},
$$

whereas $e^{\alpha A} e^{\beta B}=e^{t \alpha A+\beta B}$ is true for

$$
t \frac{e^{\beta}-1}{\beta}=1 \Leftrightarrow t=\frac{\beta}{e^{\beta}-1}
$$

f) From the expressions above for t and s, we see that $t(-\beta)=s(\beta)$. This is immediate from

$$
\left(e^{\beta B} e^{\alpha A}\right)^{-1}=\left(e^{s(\beta) \alpha A+\beta B}\right)^{-1} \Leftrightarrow e^{-\alpha A} e^{-\beta B}=e^{s(\beta)(-\alpha) A+(-\beta) B}
$$

g) We remark that

$$
e^{\beta B} e^{\alpha A}=e^{s \alpha A+\beta B}=e^{\frac{s}{t} \alpha A} e^{\beta B}
$$

and

$$
\frac{s}{t}=e^{\beta} .
$$

The inverse of $e^{\alpha A+\beta B}$ is $e^{-(\alpha A+\beta B)}$. So, to check that G is a group, we just have to check that the product of two elements of G is in G. This is a consequence of the following computation:

$$
\begin{aligned}
e^{\alpha A+\beta B} e^{\gamma A+\delta B} & =e^{\beta B} e^{\frac{\alpha}{s(\beta)} A} e^{\delta B} e^{\frac{\gamma}{s(\delta)} A} \\
& =e^{\beta B} e^{\delta B} e^{\frac{e^{-\delta_{\alpha}}}{s(\beta)} A} e^{\frac{\gamma}{s(\delta)} A} \\
& =e^{(\beta+\delta) B} e^{\left(\frac{e^{-}-\alpha_{\alpha}}{s(\beta)}+\frac{\gamma}{s(\delta)}\right) A} \\
& =e^{\left[s(\beta+\delta)\left(\frac{e^{-\delta_{\alpha}}}{s(\beta)}+\frac{\gamma}{s(\delta)}\right)\right] A+(\beta+\delta) B} .
\end{aligned}
$$

This shows that G is a subgroup of $G L(n)$.
h) For these matrices A and B, the formula for $e^{\alpha A+\beta B}$ obtained above shows that this exponential is equal to the identity if and only if $\alpha=$ $\beta=0$. So, to obtain the tangent space to G at the identity, we just have to consider curves $\tau \mapsto c(\tau):=e^{\alpha(\tau) A+\beta(\tau) B}$ in G, with $\alpha(0)=\beta(0)=0$, and compute $\dot{c}(0)$. But even if the map $(\alpha, \beta) \rightarrow e^{\alpha A+\beta B}$ were not injective, the vector field tangent to this flow would still be well defined, because it is a left invariant vector field, and so these curves would suffice to calculate g. We note that

$$
c(\tau)=\sum_{n=0}^{\infty} \frac{(\alpha(\tau) A+\beta(\tau) B)^{n}}{n!}
$$

So clearly,

$$
\dot{c}(0)=\dot{\alpha}(0) A+\dot{\beta}(0) B
$$

This shows that g is spanned by A and B. If we wanted to compute $\dot{c}(\tau)$, for τ different from 0 , then we should write

$$
c(\tau):=e^{\frac{\alpha(\tau)}{t(\beta(\tau))} A} e^{\beta(\tau) B} .
$$

Thus, the derivative of c is

$$
\dot{c}(\tau)=e^{\frac{\alpha(\tau)}{t(\beta(\tau))} A}\left(\frac{d}{d \tau} \frac{\alpha(\tau)}{t(\beta(\tau))}\right) A e^{\beta(\tau) B}+e^{\frac{\alpha(\tau)}{t(\beta(\tau))} A} e^{\beta(\tau) B} \dot{\beta}(\tau) B
$$

and

$$
\frac{d}{d \tau} \frac{\alpha(\tau)}{t(\beta(\tau))}=\frac{\dot{\alpha}(\tau) t(\beta(\tau))-\alpha(\tau) \dot{t}(\beta(\tau)) \dot{\beta}(\tau)}{[t(\beta(\tau))]^{2}}
$$

i)

$$
d x=g_{2} d a, \quad d y=g_{2} d a
$$

The computation

$$
\frac{d x \wedge d y}{y^{2}}=g_{2}^{2} \frac{d a \wedge d b}{\left(g_{2} b\right)^{2}}=\frac{d a \wedge d b}{b^{2}}
$$

shows that this volume form is invariant under the pull-back by L_{g}.
j) Clearly $d \eta_{0}=\omega$. Using Stokes' Theorem, the area of S is

$$
\begin{aligned}
\int_{S} \omega & =\int_{\partial S} \eta_{0}=\int_{\substack{x^{2}+y^{2}=R^{2} \\
\gg}} \frac{d x}{y} \\
& =\int_{-\pi}^{0} \frac{d(R \cos \theta)}{(-R \sin \theta)} \\
& =\pi .
\end{aligned}
$$

k) According to the Gauss-Bonnet Theorem,

$$
\int_{S} K+\int_{\partial S} k_{g}=2 \pi \chi=2 \pi
$$

as the Euler characteristic of a triangle is 1 . Now the boundary of S is formed by geodesics, curves whose geodesic curvature is equal to 0 . We know that the integral $\int_{c} k_{g}$ measures $\Delta \theta$, the change in angle of the vector \dot{c} with respect to a parallel vector field along c. At the 'vertices' $(-R, 0),(0, R)$ and $(0, \infty), \Delta \theta$ is equal to π. Taking into account that $K \equiv-1$, we obtain $-A+3 \pi=2 \pi$, or $A=\pi$. This argument could be made rigorous by applying the Gauss-Bonnet Theorem to the region $S_{\epsilon}:=S \cap\left\{(x, y) \in \mathbb{R} \times \mathbb{R}^{+}: \epsilon<y<\frac{1}{\epsilon}\right\}$, for $\epsilon>0$, and then letting $\epsilon \rightarrow 0$.
l) If $d \eta=\omega$, then $\eta=\eta_{0}+\xi$ where ξ is a one form on $\mathbb{R} \times \mathbb{R}^{+}$satisfying $d \xi=0$. Writing ξ as $\xi=f d x+g d y$, we have $-f_{y}+g_{x}=0$. This means that the vector field (f, g) is a gradient: $(f, g)=\nabla \phi=\left(\phi_{x}, \phi_{y}\right)$. So $\xi=\phi_{x} d x+\phi_{y} d y=d \phi$.
2. Solution.
a) The dual frame is $\left(\omega^{\gamma}, \omega^{\theta}\right)$, where

$$
\omega^{\gamma}=d \gamma, \quad \omega^{\theta}=\cosh \gamma d \theta
$$

From Cartan's structure equations,

$$
\begin{aligned}
d \omega^{\theta} & =-\omega_{\gamma}^{\theta} \wedge \omega^{\gamma}=-\omega_{\gamma}^{\theta} \wedge d \gamma \\
& =\sinh \gamma d \gamma \wedge d \theta
\end{aligned}
$$

This implies

$$
\omega_{\gamma}^{\theta}=\sinh \gamma d \theta .
$$

The curvature form is

$$
\begin{aligned}
\Omega_{\gamma}^{\theta} & =d \omega_{\gamma}^{\theta}=\cosh \gamma d \gamma \wedge d \theta=R_{\gamma \theta \gamma}{ }^{\theta} \omega^{\gamma} \wedge \omega^{\theta} \\
& =R_{\gamma \theta \gamma \theta} \cosh \gamma d \gamma \wedge d \theta .
\end{aligned}
$$

This shows that $R_{\gamma \theta \gamma \theta}$. The manifold M has curvature

$$
K=-R_{\gamma \theta \gamma \theta}=-1 .
$$

b) Clearly $\dot{c}=\frac{\partial}{\partial \theta}$ and so

$$
\nabla_{\dot{c}} X=0 \Leftrightarrow \frac{1}{\cosh \gamma} \nabla_{\frac{\partial}{\partial \theta}} X=0 \Leftrightarrow \nabla_{E_{\theta}} X=0
$$

This equation is equivalent to

$$
\begin{aligned}
0= & \nabla_{E_{\theta}}\left(a E_{\gamma}+b E_{\theta}\right) \\
= & \left(E_{\theta} \cdot a\right) E_{\gamma}+a\left(\nabla_{E_{\theta}} E_{\gamma}, E_{\gamma}\right) E_{\gamma}+a\left(\nabla_{E_{\theta}} E_{\gamma}, E_{\theta}\right) E_{\theta} \\
& +\left(E_{\theta} \cdot b\right) E_{\theta}+b\left(\nabla_{E_{\theta}} E_{\theta}, E_{\gamma}\right) E_{\gamma}+b\left(\nabla_{E_{\theta}} E_{\theta}, E_{\theta}\right) E_{\theta} \\
= & \frac{1}{\cosh \gamma} \dot{a} E_{\gamma}+a \omega_{\gamma}^{\gamma}\left(E_{\theta}\right) E_{\gamma}+a \omega_{\gamma}^{\theta}\left(E_{\theta}\right) E_{\theta} \\
& +\frac{1}{\cosh \gamma} \dot{b} E_{\theta}+b \omega_{\theta}^{\gamma}\left(E_{\theta}\right) E_{\gamma}+b \omega_{\theta}^{\theta}\left(E_{\theta}\right) E_{\theta} \\
= & \frac{1}{\cosh \gamma} \dot{a} E_{\gamma}+0+a \tanh \gamma E_{\theta} \\
& +\frac{1}{\cosh \gamma} \dot{b} E_{\theta}-b \tanh \gamma E_{\gamma}+0 .
\end{aligned}
$$

We deduce that

$$
\left\{\begin{array}{l}
\dot{a}=\sinh \gamma b, \\
\dot{b}=-\sinh \gamma a,
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\ddot{a}=-\sinh ^{2} \gamma a, \\
\ddot{b}=-\sinh ^{2} \gamma b .
\end{array}\right.
$$

Our initial conditions are $a(0)=1, \dot{a}(0)=0$, and $b(0)=0, \dot{b}(0)=$ $-\sinh \gamma$. Therefore,

$$
\left\{\begin{array}{l}
a(\theta)=\cos (\theta \sinh \gamma) \\
b(\theta)=-\sin (\theta \sinh \gamma)
\end{array}\right.
$$

In conclusion,

$$
X(\theta)=\cos \left(\theta \sinh \gamma_{0}\right) E_{\gamma}-\sin \left(\theta \sinh \gamma_{0}\right) E_{\theta}
$$

c)

$$
Y=\cos \left(2 \pi \sinh \gamma_{0}\right) E_{\gamma}-\sin \left(2 \pi \sinh \gamma_{0}\right) E_{\theta} .
$$

The angle between Y and $X(0)$ is $-2 \pi \sinh \gamma_{0}$. Since E_{θ} is tangent to c and has unit length, and $\left(E_{\theta},-E_{\gamma}\right)$ has positive orientation, the geodesic curvature of c is

$$
k_{g}=-\omega_{\theta}^{\gamma}\left(E_{\theta}\right)=\sinh \gamma_{0} d \theta\left(\frac{1}{\cosh \gamma_{0}} \frac{\partial}{\partial \theta}\right)=\tanh \gamma_{0} .
$$

The integral of the geodesic curvature over c is

$$
\int_{c} k_{g} d s=\int_{0}^{2 \pi} \tanh \gamma_{0} \cosh \gamma_{0} d \theta=2 \pi \sinh \gamma_{0}
$$

This is the angle by which \dot{c} rotates with respect to X when we go once around the curve c. The angle between Y and $X(0)=\dot{c}(0)$ is the opposite angle. $X(0)$ and Y parallel with the same direction if $2 \pi \sinh \gamma_{0}=2 \pi k$, with $k \in \mathbb{N}_{0}$ (because $\gamma_{0} \geq 0$). Now

$$
\begin{aligned}
\sinh \gamma_{0}=k & \Leftrightarrow e^{2 \gamma_{0}}-2 k e^{\gamma_{0}}-1=0 \Leftrightarrow e^{\gamma_{0}}=k+\sqrt{k^{2}+1} \\
& \Leftrightarrow \gamma_{0}=\ln \left(k+\sqrt{k^{2}+1}\right) .
\end{aligned}
$$

d) Using the Gauss-Bonnet Theorem,

$$
\int_{\left(\gamma_{0}\right)_{n} \leq \gamma \leq\left(\gamma_{0}\right)_{n+1}} K+\int_{\gamma=\left(\gamma_{0}\right)_{n+1}} k_{g}-\int_{\gamma=\left(\gamma_{0}\right)_{n+1}} k_{g}=2 \pi \chi=0,
$$

as the Euler characteristic of a 'slice' of a cylinder is 0 . But $K \equiv-1$ and, according to the definition of $\left(\gamma_{0}\right)_{n}$, we have $\int_{\gamma=\left(\gamma_{0}\right)_{n}} k_{g}=2 \pi n$. Therefore, the value of the area of the portion of M under consideration is

$$
\int_{\left(\gamma_{0}\right)_{n} \leq \gamma \leq\left(\gamma_{0}\right)_{n+1}} 1=2 \pi
$$

e) From the definition of the gradient,

$$
(\nabla f, Y)=d f(Y) \Leftrightarrow(\nabla f)^{i} g_{i j} Y^{j}=Y^{j} \frac{\partial f}{\partial x^{j}}
$$

Since this equality is valid for all Y, we must have

$$
(\nabla f)^{i} g_{i j}=\frac{\partial f}{\partial x^{j}}
$$

Multiplying both sides by $g^{j k}$ and summing over j, it follows

$$
(\nabla f)^{i} \delta_{i}^{k}=g^{j k} \frac{\partial f}{\partial x^{j}}
$$

Thus

$$
(\nabla f)^{k}=g^{k j} \frac{\partial f}{\partial x^{j}}
$$

For the above metric, we have

$$
\nabla f=\partial_{\gamma} f \frac{\partial}{\partial \gamma}+\frac{1}{\cosh ^{2} \gamma} \partial_{\theta} f \frac{\partial}{\partial \theta}
$$

f) The volume form on a Riemannian manifold is

$$
\omega=\sqrt{\operatorname{det} g} d x^{1} \wedge \ldots \wedge d x^{n} .
$$

Using the formula about the Lie derivative of the tensor product and the fact that the Lie derivative commutes with the exterior derivative,

$$
\begin{aligned}
L_{X} \omega= & X \cdot \sqrt{\operatorname{det} g} d x^{1} \wedge \ldots \wedge d x^{n} \\
& +\sqrt{\operatorname{det} g} d\left(L_{X} x^{1}\right) \wedge \ldots \wedge d x^{n}+\ldots \\
& +\sqrt{\operatorname{det} g} d x^{1} \wedge \ldots \wedge d\left(L_{X} x^{n}\right) \\
= & X^{i} \frac{\partial \sqrt{\operatorname{det} g}}{\partial x^{i}} d x^{1} \wedge \ldots \wedge d x^{n} \\
& +\sqrt{\operatorname{det} g} \frac{\partial X^{1}}{\partial x^{1}} d x^{1} \wedge \ldots \wedge d x^{n}+\ldots \\
& +\sqrt{\operatorname{det} g} \frac{\partial X^{n}}{\partial x^{n}} d x^{1} \wedge \ldots \wedge d x^{n} \\
= & \partial_{i}\left(\sqrt{\operatorname{det} g} X^{i}\right) d x^{1} \wedge \ldots \wedge d x^{n} \\
= & \frac{1}{\sqrt{\operatorname{det} g} \partial_{i}\left(\sqrt{\operatorname{det} g} X^{i}\right) \omega}= \\
= & \operatorname{div} X \omega .
\end{aligned}
$$

We have used the fact that

$$
d\left(L_{X} x^{i}\right)=d\left(X \cdot x^{i}\right)=d X^{i}=\frac{\partial X^{i}}{\partial x_{j}} d x^{j} .
$$

Therefore,

$$
\operatorname{div} X=\frac{1}{\sqrt{\operatorname{det} g}} \partial_{i}\left(\sqrt{\operatorname{det} g} X^{i}\right)
$$

For X a vector field on M, in the above coordinates,

$$
\begin{aligned}
\operatorname{div} X & =\frac{1}{\cosh \gamma} \partial_{\gamma}\left(\cosh \gamma X^{\gamma}\right)+\frac{1}{\cosh \gamma} \partial_{\theta}\left(\cosh \gamma X^{\theta}\right) \\
& =\partial_{\gamma} X^{\gamma}+\tanh \gamma X^{\gamma}+\partial_{\theta} X^{\theta}
\end{aligned}
$$

g)

$$
\Delta f=\frac{1}{\cosh \gamma} \partial_{\gamma}\left(\cosh \gamma \partial_{\gamma} f\right)+\frac{1}{\cosh ^{2} \gamma} \partial_{\theta} \partial_{\theta} f
$$

