Riemannian Geometry, Fall 2016/17
Instituto Superior Técnico, Pedro Girao

The Exam, given on February 3, 2017, consists of part of Problem 1 and of
Problem 2.

1. To each n x n matrix A = [a;;] we may associate the vector field in R”

where {%, e

a)
b)

c)

d)

f)
g)

h)

0 <~ ,; 0
XA =(AX) T = = g ——
( ) ax i;lx aﬂ ax]j

2]

, (%—n} is the canonical basis of R"”.

Knowing that [X#, XB] = X, express C in terms of A and B.
Suppose G is a Lie group, which is a subgroup of GL(n), with Lie
algebra g, and A € 4. What is the relation between the exponential of
At and the flow F(-,t) of X# at time ¢?

Consider A € g. What is the value of left invariant vector field Y4 on
G C GL(n) corresponding to A at the matrix Y?

Consider the case where n = 2, and define A and B to be

0 1 10
Lol eelon)
The matrices A and B do not commute but [B, A] = A. Determine
XA XPB and [X4, XP]. Check that your answer is according to the one

you gave in a).
Determine the real numbers s = s(5) and t = ¢(() such that

e,BBeozA — 6saA+ﬁB’ 6aAe,BB — etaAJr,BB'
Suggestion: Compute both sides of the previous equalities.

There is a very simple relation between ¢ and s. Explain it.
Show that

G={MecGL(2): M =P8 with o, 8 € R}.
is a subgroup of GL(2). (In fact, it is a Lie group.)

Show that the Lie algebra of G is spanned by A and B. Suggestion:
you may want to use the definition of the exponential of a matrix.
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i) Let

(91, 92) = {902 " } — M —gea.

Show that the volume form

dx N\ dy
W= "

)

defined on R x R*, is invariant under the pull-back by L,. Note: If

g = (91792)7 then L(ghgz)(a? b) - (QQCL + 91792[)) - (I7y)
j) Define ny = d?x. Check that dny = w. Let R > 0. Knowing that you

can apply Stokes’ Theorem to the region
S:={(z,y) ERxR": 2z €] - R,R[ and 2* + y* > R?},

use it to calculate the area of S.

k) Interpret the value you obtained for the area heuristically using the
Gauss-Bonnet Theorem.

1) Characterize the forms 1 such that dn = w.

2. Consider the cylinder M = R x S! with metric
ds® = dy* + cosh? y d#?,

and orthonormal frame

0 1 0
B B =2, —— ),
(Ey, Eb) (87’cosh789)

a) Show that M has constant curvature equal to —1.
b) Consider the closed curve ¢(6) = (7o, 0), and the vector field

X(0) := a(0)(E,)co) + b(0)(Ep)co),

defined for 0 € [0, 27|, with a(0) = 1 and b(0) = 0. Knowing that it is
parallel along ¢, determine X using connection forms.

c) Let Y = limy_,o, X(0). Compute Y using the result of b). What is the
angle between Y and X (0)? Confirm your answer by calculating the
integral of the geodesic curvature of c¢. For what values of 79 > 0 are
X(0) and Y parallel with the same direction?

d) Let (7o), and (70)n+1 be two consecutive values of 7y > 0 as in your
answer to c¢). Use the Gauss-Bonnet Theorem to calculate the area of
the portion of M where (70)n <7 < (70)n+1-
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e)

f)

g)

Let f be a smooth function of M. Recall that the gradient of f is the
vector field X such that, for all Y € X (M),

(Vf,Y) =df(Y).

Deduce a formula for the gradient of a vector field in a general system
of coordinates where the metric is g;;. Particularize to the case of the
coordinates (v, 6) above.

Let w be a volume form on a Riemannian manifold. Recall that, by
definition, the divergence of X € X'(M) is the function div X such that

LXoJ = (leX) W.

Using the formula about the Lie derivative of the tensor product and
the fact that the Lie derivative commutes with the exterior derivative,

show that 1
divX = —9, (x/d 0 Xi) .
iv o etg

Particularize to the case of the coordinates (v, ) above.
Write down the expression for the Laplacian of f in the coordinates

(7, 0).

1. Solution.

a)

.0 0 .0 0
A By __ i k _ 1 k _
(X4 X7 = (x aﬂ—axj) (x blk—ﬁxl) (x bﬂaxj) (x &lkﬁxl)

, 0
= a'(a;iby — bjiay) 7~

or!
Let D = AB and F = BA. Then

dii = aijbji, e = byjaj;.
So,
, 0 - 0
A B 7 7
(X XP] = 2'(ey — dli)—axl = —2'(d— e)li—axl.

We conclude that C' = —[A, B].
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b)
e =[F((1,0,...,0),t) ... F((0,0,...,1),1)].

Indeed, Y (t) = e is the solution of

Y = AY,
Y(0)=1.
On the other hand, if Y = [Y¥] and
Yl
X7 =1 ... ,
Y™
then o .
X7 = AX,
0
| .
X70)=1| 11,
.

where the one is in position j. Therefore,

Y(t) = [X(t) ... X"(1)].

C)(YA)YZYA
d)
A4 |01 | _ly|_ 0
A= 00] y |~ 0}_3/895’
5 |10 v | _ x| _ 90
=[]l
So,

vt - () () () (2)
) v

This is consistent with the result of a) because C' = A = —[A, BJ.

e)
aA 1 (0% BB __ eﬂ 0
‘ _{0 1] S T lo o1

Let
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Then
02 _ BQ BSOZ 03 _ BB 62805 On _ Bn ﬁnilsa
10 0 ’ 10 0 ’ 10 0 '
Thus

f)

g)

o0 n 00 Bn %) anl
6C’ _ O_ _ |: Zn:O nl S Zn:l n! :|
! 1

n!
_ e? sae%l .
0 1

On the other hand,

PB oA _ e’ ae’ A BB _ e’ «
0 1 ’ 0 1 |°
We conclude that the equality e®Pe*d = 324488 i5 true for
g _1 B
e
_ B _
S =’ & s= ,
I5; 1—e?
whereas e®efB = ¢l@A+BB ig trye for
B
e’ —1 15}
t =1 < t= .
1G] el —1

From the expressions above for t and s, we see that t(—3) = s(/3). This
is immediate from

(eﬁBeaA)—l _ (es(ﬁ)aAJ,-ﬂB)—l o e aAg—BB _ 5(8)(—a)A+(-H)B

We remark that
eﬂBeaA — esaA—i—ﬂB — %aA ﬂB
and 5
S _ 8
t

The inverse of e*A18B ig ¢=(@A+8B) Qo to check that G is a group, we

just have to check that the product of two elements of G is in G. This
is a consequence of the following computation:

oOA+BB YA+SB  _ 5365(6)‘4653@5(5)
— PBeB, 9(5)
o(B+0)B ( 8 )
_ s ( )} +(8+6)B

This shows that G is a subgroup of GL(n).
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h)

i)

For these matrices A and B, the formula for e*4*#% obtained above

shows that this exponential is equal to the identity if and only if @ =
£ = 0. So, to obtain the tangent space to GG at the identity, we just have
to consider curves 7 + ¢(7) 1= e*MATME in G with a(0) = 3(0) = 0,
and compute ¢(0). But even if the map (o, 3) — 58 were not
injective, the vector field tangent to this flow would still be well defined,
because it is a left invariant vector field, and so these curves would
suffice to calculate g. We note that

oy = 35 DA+ BBy

So clearly, _
¢(0) = a(0)A + B(0)B.

This shows that g is spanned by A and B. If we wanted to compute
¢(1), for 7 different from 0, then we should write

a(r)
(1) = etEmAPNEB,
Thus, the derivative of c is

) o) 4 (d afT) ) alr) 4 .
o(r) = e [ ———2_ ) APMB 4 e APB3(1) B,
(7) (th(ﬁ(T)) pir)

The computation

de Ndy  ydaANdb  daNdb
i e P

shows that this volume form is invariant under the pull-back by L,.
Clearly dny = w. Using Stokes’ Theorem, the area of S is

o= fow = oy
W = No = —
s 08 Ty

~[" d(Rcos?)
B /;(—Rﬂnﬁ

= Tr.
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k)

)

According to the Gauss-Bonnet Theorem,

/K—l—/ ky = 2mx = 2,
s as

as the Euler characteristic of a triangle is 1. Now the boundary of S is
formed by geodesics, curves whose geodesic curvature is equal to 0. We
know that the integral fc k, measures Af, the change in angle of the
vector ¢ with respect to a parallel vector field along c¢. At the ‘vertices’
(—R,0), (0, R) and (0,00), A is equal to w. Taking into account that
= —1, we obtain —A + 37 = 27, or A = 7. This argument could be
made rigorous by applying the Gauss-Bonnet Theorem to the region
Se:=SN{(z,y) e RxR":e <y <1} fore>0, and then letting
e — 0.
If dn = w, then n = 19 + £ where £ is a one form on R x R* satisfying
d¢ = 0. Writing £ as § = fdx + gdy, we have —f, + g, = 0. This
means that the vector field (f, g) is a gradient: (f,g) = Vo = (¢, ¢y).
S0 § = ¢y dx + ¢y dy = do.

2. Solution.

a)

The dual frame is (w?,w?), where
w? = dy, w? = cosh v d#.
From Cartan’s structure equations,

6 _ Oy 0
dw’” = —wiAw’ = —w  Ady

= sinhydy A df.

This implies
wz = sinh y d#f.

The curvature form is

Qg = dw,ey = coshydyAdf = vaaw”*/\we

= Rypy9coshydy Adb.
This shows that [2,9,9. The manifold M has curvature

K=—Rygy=—1.



Riemannian Geometry, Fall 2016/17, IST, P. Girao 8

b) Clearly ¢ = 2 and so

VX =0 & VoX=0 <« Vg X=0.

cosh~y =~ o9

This equation is equivalent to

0 = Vg, (aE, + bEy)
= (Eg : CL)E,Y + CL(VEQE,Y, E',Y)EW7 + CL(VE@EW77 Eg)Eg
+(Ep - b)Eg + b(VE, Eo, Ey)Ey + b(V g, Ey, Ey) Eg
1

= ,yéLE«, + awl(Ey) B, + awe(Eg)Eg

+

COSh’ybEg + bwe (E@)E + bw(,(Eg)E

1
= ak., + 0+ atanhyFEy
cosh ~y

bEy — btanh vE, + 0.

cosh ~y

We deduce that
a = sinh vy b,
b= —sinh~ya,
or

i = —sinh®vya,
b= —sinh®~b.

Our initial conditions are a(0) = 1, @(0) = 0, and b(0) = 0, b(0) =
—sinh . Therefore,

{ a(f) = cos(fsinh ),
b(0) = —sin(fsinh ).

In conclusion,

X (0) = cos(#sinh ) E, — sin(6 sinh vq) Ep.

Y = cos(27 sinh ) E., — sin(27 sinh o) Ey.

The angle between Y and X (0) is —27sinh~y. Since Ejp is tangent
to ¢ and has unit length, and (Ey, —E,) has positive orientation, the
geodesic curvature of ¢ is

1
ky = —w, (Ep) = sinhy, dd ( 2) = tanh .

cosh vy 00
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d)

The integral of the geodesic curvature over c is

2m
/k;g ds = / tanh vy cosh vy df = 27 sinh .
c 0

This is the angle by which ¢ rotates with respect to X when we go
once around the curve c¢. The angle between Y and X (0) = ¢(0) is
the opposite angle. X (0) and Y parallel with the same direction if
27 sinh vy = 27k, with k € Ny (because vy > 0). Now

sinhyy=k & e —2ke® —1=0 & e =k+Vk2+1
& v =In(k+Vk2+1).

Using the Gauss-Bonnet Theorem,

/ K+/ kg—/ kg =2mx =0,
(70)n <7< (Y0)n+1 Y=(0)n+1 Y=(0)n+1

as the Euler characteristic of a ‘slice’ of a cylinder is 0. But K = —1
and, according to the definition of (vp),, we have fyz(%)n k, = 2mn.
Therefore, the value of the area of the portion of M under consideration

1S
/ 1 =2m.
(70)n <Y< (Y0)n+1

From the definition of the gradient,

i iy O
(VEY)=df(Y) & (Vf)gsY' =Y.
Since this equality is valid for all Y, we must have
i of
(V)9 = 55

Multiplying both sides by ¢’* and summing over j, it follows

, . Of
isk gk ZJ
(V1) = 9" 55
Thus of
k_ ki 9)
(V) =955
For the above metric, we have
0 0
Vf= 3Wfa—7 + 7cosh2ﬂya€f%'
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f) The volume form on a Riemannian manifold is

w=+/det gdz' A ... Adx".

Using the formula about the Lie derivative of the tensor product and
the fact that the Lie derivative commutes with the exterior derivative,

Lxw = X -y/detgdz'A...Adx"
+y/det gd(Lxz" ) A ... Ada"™ + ...

++/det gdz' A ... Ad(Lxa™)
Xi@y/detgd 1

= o AL Adx"
ox!t
++/det g de' Ao ANda™ + .
ox!
XTL
+ detga—dxl/\.../\dx”
ox™
= 0;i(y/detg X")da' A... Ada"
1 .
= ———0;(y/det g X"
AT (Vdetg X*)w
= div X w.

We have used the fact that

ox?
al'j

d(Lxx") =d(X -2") = dX"' = da?.

Therefore,

1 )
divX = ——0;(1/det g X*).
iv T (v/det g X*)

For X a vector field on M, in the above coordinates,

1

, 1
divX = COshvél,(costh”*) + coshvag(COSthg)
= 0,X7 + tanhy X" + 9y X°.
g) )
Af = 0] h~o OpOy .
/ cosh h(coshy 9, f) + cosh? y 00 f



