Riemannian Geometry, Fall 2016/17 Instituto Superior Técnico, Pedro Girão

The Exam, given on February 3, 2017, consists of part of Problem 1 and of Problem 2.

1. To each $n \times n$ matrix $A = [a_{ij}]$ we may associate the vector field in \mathbb{R}^n

$$X^{A} = (AX)^{T} \frac{\partial}{\partial x} = \sum_{i,j=1}^{n} x^{i} a_{ji} \frac{\partial}{\partial x^{j}},$$

where $\left\{\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}\right\}$ is the canonical basis of \mathbb{R}^n .

- a) Knowing that $[X^A, X^B] = X^C$, express C in terms of A and B.
- **b)** Suppose G is a Lie group, which is a subgroup of GL(n), with Lie algebra g, and $A \in g$. What is the relation between the exponential of At and the flow $F(\cdot,t)$ of X^A at time t?
- c) Consider $A \in g$. What is the value of left invariant vector field Y^A on $G \subset GL(n)$ corresponding to A at the matrix Y?
- d) Consider the case where n=2, and define A and B to be

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \qquad B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right].$$

The matrices A and B do not commute but [B, A] = A. Determine X^A, X^B and $[X^A, X^B]$. Check that your answer is according to the one you gave in a).

e) Determine the real numbers $s = s(\beta)$ and $t = t(\beta)$ such that

$$e^{\beta B}e^{\alpha A} = e^{s\alpha A + \beta B}, \qquad e^{\alpha A}e^{\beta B} = e^{t\alpha A + \beta B}.$$

Suggestion: Compute both sides of the previous equalities.

- f) There is a very simple relation between t and s. Explain it.
- g) Show that

$$G = \{ M \in GL(2) : M = e^{\alpha A + \beta B}, \text{ with } \alpha, \beta \in \mathbb{R} \}.$$

is a subgroup of GL(2). (In fact, it is a Lie group.)

h) Show that the Lie algebra of G is spanned by A and B. Suggestion: you may want to use the definition of the exponential of a matrix.

i) Let

$$(g_1, g_2) \cong \begin{bmatrix} g_2 & g_1 \\ 0 & 1 \end{bmatrix} = e^{\alpha A + \beta B} = g \in G.$$

Show that the volume form

$$\omega = \frac{dx \wedge dy}{y^2},$$

defined on $\mathbb{R} \times \mathbb{R}^+$, is invariant under the pull-back by L_g . Note: If $g = (g_1, g_2)$, then $L_{(g_1, g_2)}(a, b) = (g_2a + g_1, g_2b) = (x, y)$.

j) Define $\eta_0 = \frac{dx}{y}$. Check that $d\eta_0 = \omega$. Let R > 0. Knowing that you can apply Stokes' Theorem to the region

$$S := \{(x, y) \in \mathbb{R} \times \mathbb{R}^+ : x \in] - R, R[\text{ and } x^2 + y^2 > R^2 \},$$

use it to calculate the area of S.

- **k)** Interpret the value you obtained for the area heuristically using the Gauss-Bonnet Theorem.
- 1) Characterize the forms η such that $d\eta = \omega$.
- **2.** Consider the cylinder $M = \mathbb{R} \times S^1$ with metric

$$ds^2 = d\gamma^2 + \cosh^2 \gamma \, d\theta^2,$$

and orthonormal frame

$$(E_{\gamma}, E_{\theta}) = \left(\frac{\partial}{\partial \gamma}, \frac{1}{\cosh \gamma} \frac{\partial}{\partial \theta}\right).$$

- a) Show that M has constant curvature equal to -1.
- **b)** Consider the closed curve $c(\theta) = (\gamma_0, \theta)$, and the vector field

$$X(\theta) := a(\theta)(E_{\gamma})_{c(\theta)} + b(\theta)(E_{\theta})_{c(\theta)},$$

defined for $\theta \in [0, 2\pi[$, with a(0) = 1 and b(0) = 0. Knowing that it is parallel along c, determine X using connection forms.

- c) Let $Y = \lim_{\theta \to 2\pi} X(\theta)$. Compute Y using the result of b). What is the angle between Y and X(0)? Confirm your answer by calculating the integral of the geodesic curvature of c. For what values of $\gamma_0 \ge 0$ are X(0) and Y parallel with the same direction?
- d) Let $(\gamma_0)_n$ and $(\gamma_0)_{n+1}$ be two consecutive values of $\gamma_0 \geq 0$ as in your answer to c). Use the Gauss-Bonnet Theorem to calculate the area of the portion of M where $(\gamma_0)_n \leq \gamma \leq (\gamma_0)_{n+1}$.

e) Let f be a smooth function of M. Recall that the gradient of f is the vector field X such that, for all $Y \in \mathcal{X}(M)$,

$$(\nabla f, Y) = df(Y).$$

Deduce a formula for the gradient of a vector field in a general system of coordinates where the metric is g_{ij} . Particularize to the case of the coordinates (γ, θ) above.

f) Let ω be a volume form on a Riemannian manifold. Recall that, by definition, the divergence of $X \in \mathcal{X}(M)$ is the function div X such that

$$L_X\omega = (\operatorname{div} X)\omega.$$

Using the formula about the Lie derivative of the tensor product and the fact that the Lie derivative commutes with the exterior derivative, show that

$$\operatorname{div} X = \frac{1}{\sqrt{\det g}} \partial_i \left(\sqrt{\det g} \, X^i \right).$$

Particularize to the case of the coordinates (γ, θ) above.

- **g)** Write down the expression for the Laplacian of f in the coordinates (γ, θ) .
- 1. Solution.

a)

$$[X^{A}, X^{B}] = \left(x^{i} a_{ji} \frac{\partial}{\partial x^{j}}\right) \left(x^{k} b_{lk} \frac{\partial}{\partial x^{l}}\right) - \left(x^{i} b_{ji} \frac{\partial}{\partial x^{j}}\right) \left(x^{k} a_{lk} \frac{\partial}{\partial x^{l}}\right)$$
$$= x^{i} (a_{ji} b_{lj} - b_{ji} a_{lj}) \frac{\partial}{\partial x^{l}}$$

Let D = AB and E = BA. Then

$$d_{li} = a_{lj}b_{ji}, \qquad e_{li} = b_{lj}a_{ji}.$$

So,

$$[X^A, X^B] = x^i (e_{li} - d_{li}) \frac{\partial}{\partial x^l} = -x^i (d - e)_{li} \frac{\partial}{\partial x^l}.$$

We conclude that C = -[A, B].

b)
$$e^{At} = [F((1, 0, \dots, 0), t) \dots F((0, 0, \dots, 1), t)].$$

Indeed, $Y(t) = e^{At}$ is the solution of

$$\begin{cases} \dot{Y} = AY, \\ Y(0) = I. \end{cases}$$

On the other hand, if $Y = [Y^{ij}]$ and

$$X^j := \left[\begin{array}{c} Y^{1j} \\ \dots \\ Y^{nj} \end{array} \right],$$

then

$$\begin{cases} \dot{X}^j = AX^j, \\ X^j(0) = \begin{bmatrix} 0 & \dots & 0 \\ 0 & 1 & \dots \\ 0 & 1 & \dots \\ 0 & \dots & 0 \end{bmatrix}, \end{cases}$$

where the one is in position j. Therefore,

$$Y(t) = [X^{1}(t) \dots X^{n}(t)].$$

c)
$$(Y^A)_Y = YA$$
.

$$X^{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix} = y \frac{\partial}{\partial x},$$
$$X^{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} = x \frac{\partial}{\partial x}.$$

So,

$$[X^{A}, X^{B}] = \left(y\frac{\partial}{\partial x}\right) \left(x\frac{\partial}{\partial x}\right) - \left(x\frac{\partial}{\partial x}\right) \left(y\frac{\partial}{\partial x}\right)$$
$$= \left(y\frac{\partial}{\partial x}\right) = X^{A}.$$

This is consistent with the result of a) because C = A = -[A, B].

e)

$$e^{\alpha A} = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}, \qquad e^{\beta B} = \begin{bmatrix} e^{\beta} & 0 \\ 0 & 1 \end{bmatrix}.$$

Let

$$C = s\alpha A + \beta B = \begin{bmatrix} \beta & s\alpha \\ 0 & 0 \end{bmatrix}.$$

Then

$$C^2 = \left[\begin{array}{cc} \beta^2 & \beta s \alpha \\ 0 & 0 \end{array} \right], \quad C^3 = \left[\begin{array}{cc} \beta^3 & \beta^2 s \alpha \\ 0 & 0 \end{array} \right], \quad C^n = \left[\begin{array}{cc} \beta^n & \beta^{n-1} s \alpha \\ 0 & 0 \end{array} \right].$$

Thus,

$$e^{C} = \sum_{n=0}^{\infty} \frac{C^{n}}{n!} = \begin{bmatrix} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!} & s\alpha \sum_{n=1}^{\infty} \frac{\beta^{n-1}}{n!} \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} e^{\beta} & s\alpha \frac{e^{\beta}-1}{\beta} \\ 0 & 1 \end{bmatrix}.$$

On the other hand,

$$e^{\beta B}e^{\alpha A}=\left[egin{array}{cc} e^{eta} & \alpha e^{eta} \ 0 & 1 \end{array}
ight], \qquad e^{lpha A}e^{eta B}=\left[egin{array}{cc} e^{eta} & lpha \ 0 & 1 \end{array}
ight].$$

We conclude that the equality $e^{\beta B}e^{\alpha A}=e^{s\alpha A+\beta B}$ is true for

$$s\frac{e^{\beta}-1}{\beta} = e^{\beta} \iff s = \frac{\beta}{1 - e^{-\beta}},$$

whereas $e^{\alpha A}e^{\beta B}=e^{t\alpha A+\beta B}$ is true for

$$t\frac{e^{\beta}-1}{\beta}=1 \iff t=\frac{\beta}{e^{\beta}-1}.$$

f) From the expressions above for t and s, we see that $t(-\beta) = s(\beta)$. This is immediate from

$$(e^{\beta B}e^{\alpha A})^{-1} = (e^{s(\beta)\alpha A + \beta B})^{-1} \Leftrightarrow e^{-\alpha A}e^{-\beta B} = e^{s(\beta)(-\alpha)A + (-\beta)B}$$

g) We remark that

$$e^{\beta B}e^{\alpha A} = e^{s\alpha A + \beta B} = e^{\frac{s}{t}\alpha A}e^{\beta B},$$

and

$$\frac{s}{t} = e^{\beta}$$
.

The inverse of $e^{\alpha A + \beta B}$ is $e^{-(\alpha A + \beta B)}$. So, to check that G is a group, we just have to check that the product of two elements of G is in G. This is a consequence of the following computation:

$$\begin{array}{lll} e^{\alpha A+\beta B}e^{\gamma A+\delta B} & = & e^{\beta B}e^{\frac{\alpha}{s(\beta)}A}e^{\delta B}e^{\frac{\gamma}{s(\delta)}A} \\ & = & e^{\beta B}e^{\delta B}e^{\frac{e^{-\delta}\alpha}{s(\beta)}A}e^{\frac{\gamma}{s(\delta)}A} \\ & = & e^{(\beta+\delta)B}e^{\left(\frac{e^{-\delta}\alpha}{s(\beta)}+\frac{\gamma}{s(\delta)}\right)A} \\ & = & e^{\left[s(\beta+\delta)\left(\frac{e^{-\delta}\alpha}{s(\beta)}+\frac{\gamma}{s(\delta)}\right)\right]A+(\beta+\delta)B} \end{array}$$

This shows that G is a subgroup of GL(n).

h) For these matrices A and B, the formula for $e^{\alpha A+\beta B}$ obtained above shows that this exponential is equal to the identity if and only if $\alpha=\beta=0$. So, to obtain the tangent space to G at the identity, we just have to consider curves $\tau\mapsto c(\tau):=e^{\alpha(\tau)A+\beta(\tau)B}$ in G, with $\alpha(0)=\beta(0)=0$, and compute $\dot{c}(0)$. But even if the map $(\alpha,\beta)\to e^{\alpha A+\beta B}$ were not injective, the vector field tangent to this flow would still be well defined, because it is a left invariant vector field, and so these curves would suffice to calculate g. We note that

$$c(\tau) = \sum_{n=0}^{\infty} \frac{(\alpha(\tau)A + \beta(\tau)B)^n}{n!}.$$

So clearly,

$$\dot{c}(0) = \dot{\alpha}(0)A + \dot{\beta}(0)B.$$

This shows that g is spanned by A and B. If we wanted to compute $\dot{c}(\tau)$, for τ different from 0, then we should write

$$c(\tau) := e^{\frac{\alpha(\tau)}{t(\beta(\tau))}A} e^{\beta(\tau)B}$$

Thus, the derivative of c is

$$\dot{c}(\tau) = e^{\frac{\alpha(\tau)}{t(\beta(\tau))}A} \left(\frac{d}{d\tau} \frac{\alpha(\tau)}{t(\beta(\tau))} \right) A e^{\beta(\tau)B} + e^{\frac{\alpha(\tau)}{t(\beta(\tau))}A} e^{\beta(\tau)B} \dot{\beta}(\tau) B,$$

and

$$\frac{d}{d\tau} \frac{\alpha(\tau)}{t(\beta(\tau))} = \frac{\dot{\alpha}(\tau)t(\beta(\tau)) - \alpha(\tau)\dot{t}(\beta(\tau))\dot{\beta}(\tau)}{[t(\beta(\tau))]^2}$$

i)

$$dx = g_2 da, \qquad dy = g_2 da.$$

The computation

$$\frac{dx \wedge dy}{y^2} = g_2^2 \frac{da \wedge db}{(g_2b)^2} = \frac{da \wedge db}{b^2}$$

shows that this volume form is invariant under the pull-back by L_g .

j) Clearly $d\eta_0 = \omega$. Using Stokes' Theorem, the area of S is

$$\int_{S} \omega = \int_{\partial S} \eta_{0} = \int_{x^{2} + y^{2} = R^{2}} \frac{dx}{y}$$

$$= \int_{-\pi}^{0} \frac{d(R \cos \theta)}{(-R \sin \theta)}$$

$$= \pi$$

k) According to the Gauss-Bonnet Theorem,

$$\int_{S} K + \int_{\partial S} k_g = 2\pi \chi = 2\pi,$$

as the Euler characteristic of a triangle is 1. Now the boundary of S is formed by geodesics, curves whose geodesic curvature is equal to 0. We know that the integral $\int_c k_g$ measures $\Delta\theta$, the change in angle of the vector \dot{c} with respect to a parallel vector field along c. At the 'vertices' $(-R,0),\ (0,R)$ and $(0,\infty),\ \Delta\theta$ is equal to π . Taking into account that $K\equiv -1$, we obtain $-A+3\pi=2\pi$, or $A=\pi$. This argument could be made rigorous by applying the Gauss-Bonnet Theorem to the region $S_\epsilon:=S\cap \left\{(x,y)\in\mathbb{R}\times\mathbb{R}^+:\epsilon< y<\frac{1}{\epsilon}\right\}$, for $\epsilon>0$, and then letting $\epsilon\to 0$.

1) If $d\eta = \omega$, then $\eta = \eta_0 + \xi$ where ξ is a one form on $\mathbb{R} \times \mathbb{R}^+$ satisfying $d\xi = 0$. Writing ξ as $\xi = f dx + g dy$, we have $-f_y + g_x = 0$. This means that the vector field (f,g) is a gradient: $(f,g) = \nabla \phi = (\phi_x, \phi_y)$. So $\xi = \phi_x dx + \phi_y dy = d\phi$.

2. Solution.

a) The dual frame is $(\omega^{\gamma}, \omega^{\theta})$, where

$$\omega^{\gamma} = d\gamma, \qquad \omega^{\theta} = \cosh \gamma \, d\theta.$$

From Cartan's structure equations,

$$d\omega^{\theta} = -\omega^{\theta}_{\gamma} \wedge \omega^{\gamma} = -\omega^{\theta}_{\gamma} \wedge d\gamma$$
$$= \sinh \gamma \, d\gamma \wedge d\theta.$$

This implies

$$\omega_{\gamma}^{\theta} = \sinh \gamma \, d\theta.$$

The curvature form is

$$\Omega_{\gamma}^{\theta} = d\omega_{\gamma}^{\theta} = \cosh \gamma \, d\gamma \wedge d\theta = R_{\gamma\theta\gamma}{}^{\theta}\omega^{\gamma} \wedge \omega^{\theta}$$
$$= R_{\gamma\theta\gamma\theta} \cosh \gamma \, d\gamma \wedge d\theta.$$

This shows that $R_{\gamma\theta\gamma\theta}$. The manifold M has curvature

$$K = -R_{\gamma\theta\gamma\theta} = -1.$$

b) Clearly $\dot{c} = \frac{\partial}{\partial \theta}$ and so

$$\nabla_{\dot{c}}X = 0 \iff \frac{1}{\cosh\gamma}\nabla_{\frac{\partial}{\partial\theta}}X = 0 \iff \nabla_{E_{\theta}}X = 0.$$

This equation is equivalent to

$$0 = \nabla_{E_{\theta}}(aE_{\gamma} + bE_{\theta})$$

$$= (E_{\theta} \cdot a)E_{\gamma} + a(\nabla_{E_{\theta}}E_{\gamma}, E_{\gamma})E_{\gamma} + a(\nabla_{E_{\theta}}E_{\gamma}, E_{\theta})E_{\theta}$$

$$+ (E_{\theta} \cdot b)E_{\theta} + b(\nabla_{E_{\theta}}E_{\theta}, E_{\gamma})E_{\gamma} + b(\nabla_{E_{\theta}}E_{\theta}, E_{\theta})E_{\theta}$$

$$= \frac{1}{\cosh \gamma}\dot{a}E_{\gamma} + a\omega_{\gamma}^{\gamma}(E_{\theta})E_{\gamma} + a\omega_{\gamma}^{\theta}(E_{\theta})E_{\theta}$$

$$+ \frac{1}{\cosh \gamma}\dot{b}E_{\theta} + b\omega_{\theta}^{\gamma}(E_{\theta})E_{\gamma} + b\omega_{\theta}^{\theta}(E_{\theta})E_{\theta}$$

$$= \frac{1}{\cosh \gamma}\dot{a}E_{\gamma} + 0 + a\tanh \gamma E_{\theta}$$

$$+ \frac{1}{\cosh \gamma}\dot{b}E_{\theta} - b\tanh \gamma E_{\gamma} + 0.$$

We deduce that

$$\left\{ \begin{array}{l} \dot{a}=\sinh\gamma\,b,\\ \dot{b}=-\sinh\gamma\,a, \end{array} \right.$$

or

$$\begin{cases} \ddot{a} = -\sinh^2 \gamma \, a, \\ \ddot{b} = -\sinh^2 \gamma \, b. \end{cases}$$

Our initial conditions are a(0) = 1, $\dot{a}(0) = 0$, and b(0) = 0, $\dot{b}(0) = -\sinh \gamma$. Therefore,

$$\begin{cases} a(\theta) = \cos(\theta \sinh \gamma), \\ b(\theta) = -\sin(\theta \sinh \gamma). \end{cases}$$

In conclusion,

$$X(\theta) = \cos(\theta \sinh \gamma_0) E_{\gamma} - \sin(\theta \sinh \gamma_0) E_{\theta}.$$

c)
$$Y = \cos(2\pi \sinh \gamma_0) E_{\gamma} - \sin(2\pi \sinh \gamma_0) E_{\theta}.$$

The angle between Y and X(0) is $-2\pi \sinh \gamma_0$. Since E_{θ} is tangent to c and has unit length, and $(E_{\theta}, -E_{\gamma})$ has positive orientation, the geodesic curvature of c is

$$k_g = -\omega_\theta^{\gamma}(E_\theta) = \sinh \gamma_0 \, d\theta \left(\frac{1}{\cosh \gamma_0} \frac{\partial}{\partial \theta} \right) = \tanh \gamma_0.$$

The integral of the geodesic curvature over c is

$$\int_{c} k_g \, ds = \int_{0}^{2\pi} \tanh \gamma_0 \, \cosh \gamma_0 \, d\theta = 2\pi \sinh \gamma_0.$$

This is the angle by which \dot{c} rotates with respect to X when we go once around the curve c. The angle between Y and $X(0) = \dot{c}(0)$ is the opposite angle. X(0) and Y parallel with the same direction if $2\pi \sinh \gamma_0 = 2\pi k$, with $k \in \mathbb{N}_0$ (because $\gamma_0 \geq 0$). Now

$$\sinh \gamma_0 = k \iff e^{2\gamma_0} - 2ke^{\gamma_0} - 1 = 0 \iff e^{\gamma_0} = k + \sqrt{k^2 + 1}$$
$$\iff \gamma_0 = \ln(k + \sqrt{k^2 + 1}).$$

d) Using the Gauss-Bonnet Theorem,

$$\int_{(\gamma_0)_n \le \gamma \le (\gamma_0)_{n+1}} K + \int_{\gamma = (\gamma_0)_{n+1}} k_g - \int_{\gamma = (\gamma_0)_{n+1}} k_g = 2\pi \chi = 0,$$

as the Euler characteristic of a 'slice' of a cylinder is 0. But $K \equiv -1$ and, according to the definition of $(\gamma_0)_n$, we have $\int_{\gamma=(\gamma_0)_n} k_g = 2\pi n$. Therefore, the value of the area of the portion of M under consideration is

$$\int_{(\gamma_0)_n \le \gamma \le (\gamma_0)_{n+1}} 1 = 2\pi.$$

e) From the definition of the gradient.

$$(\nabla f, Y) = df(Y) \Leftrightarrow (\nabla f)^i g_{ij} Y^j = Y^j \frac{\partial f}{\partial x^j}.$$

Since this equality is valid for all Y, we must have

$$(\nabla f)^i g_{ij} = \frac{\partial f}{\partial r^j}.$$

Multiplying both sides by g^{jk} and summing over j, it follows

$$(\nabla f)^i \delta_i^k = g^{jk} \frac{\partial f}{\partial x^j}.$$

Thus

$$(\nabla f)^k = g^{kj} \frac{\partial f}{\partial x^j}.$$

For the above metric, we have

$$\nabla f = \partial_{\gamma} f \frac{\partial}{\partial \gamma} + \frac{1}{\cosh^2 \gamma} \partial_{\theta} f \frac{\partial}{\partial \theta}.$$

f) The volume form on a Riemannian manifold is

$$\omega = \sqrt{\det g} \, dx^1 \wedge \ldots \wedge dx^n.$$

Using the formula about the Lie derivative of the tensor product and the fact that the Lie derivative commutes with the exterior derivative,

$$L_X \omega = X \cdot \sqrt{\det g} \, dx^1 \wedge \dots \wedge dx^n + \sqrt{\det g} \, d(L_X x^1) \wedge \dots \wedge dx^n + \dots + \sqrt{\det g} \, dx^1 \wedge \dots \wedge d(L_X x^n)$$

$$= X^i \frac{\partial \sqrt{\det g}}{\partial x^i} \, dx^1 \wedge \dots \wedge dx^n + \sqrt{\det g} \frac{\partial X^1}{\partial x^1} \, dx^1 \wedge \dots \wedge dx^n + \dots + \sqrt{\det g} \frac{\partial X^n}{\partial x^n} \, dx^1 \wedge \dots \wedge dx^n$$

$$= \partial_i (\sqrt{\det g} \, X^i) \, dx^1 \wedge \dots \wedge dx^n$$

$$= \frac{1}{\sqrt{\det g}} \partial_i (\sqrt{\det g} \, X^i) \, \omega$$

$$= \operatorname{div} X \omega.$$

We have used the fact that

$$d(L_X x^i) = d(X \cdot x^i) = dX^i = \frac{\partial X^i}{\partial x_i} dx^j.$$

Therefore,

$$\operatorname{div} X = \frac{1}{\sqrt{\det g}} \partial_i (\sqrt{\det g} X^i).$$

For X a vector field on M, in the above coordinates,

$$\operatorname{div} X = \frac{1}{\cosh \gamma} \partial_{\gamma} (\cosh \gamma X^{\gamma}) + \frac{1}{\cosh \gamma} \partial_{\theta} (\cosh \gamma X^{\theta})$$
$$= \partial_{\gamma} X^{\gamma} + \tanh \gamma X^{\gamma} + \partial_{\theta} X^{\theta}.$$

g)
$$\Delta f = \frac{1}{\cosh \gamma} \partial_{\gamma} (\cosh \gamma \, \partial_{\gamma} f) + \frac{1}{\cosh^{2} \gamma} \partial_{\theta} \partial_{\theta} f.$$