Riemannian Geometry
 $1^{\text {st }}$ Exam - July 6, 2022
 MMAC

Duration: 120 minutes
Show your calculations

1. Consider $M:=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ with metric

$$
d s^{2}=y^{2}\left(d x^{2}+d y^{2}\right)
$$

and orientation $\left(\partial_{x}, \partial_{y}\right)$.
a) Using $\left(\omega^{x}, \omega^{y}\right)=(y d x, y d y)$ and Cartan's structure equations, calculate $\omega_{y}^{x}, \Omega_{y}^{x}$, and the Gaussian curvature of M.
b) Use the Lagrangian $L=\frac{y^{2}}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)$ to calculate the equations for the geodesics of M. Use these to write down the Christoffel symbols of M in the coordinates (x, y).
c) Use b) to calculate $R\left(\partial_{x}, \partial_{y}\right) \partial_{x}$ and use this to obtain again the Gaussian curvature of M.
d) Let $0<y_{0}<y_{1}$ and $x_{0}>0$. Consider the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<x_{0} \text { and } y_{0}<y<y_{1}\right\} .
$$

Use \mathbf{b}) to show that the vertical pieces of the boundary of R are images of geodesics and determine these explicitly.
e) Calculate the geodesic curvature of the horizontal lines $y=y_{0}$ (transversed from left to right) and $y=y_{1}$ (transversed from right to left).
f) Check the Gauss-Bonnet Theorem for R (remembering that its boundary has four corners).
g) Let ω be the Riemannian volume form on M and X be the vector field $\frac{1}{y} \partial_{y}$. Calculate the Lie derivative $L_{X} \omega$ and the divergence of X. Check the equality of the Divergence Theorem in this particular case,

$$
\int_{R}(\operatorname{div} X) \omega=\int_{\partial R}(X, \nu) d s
$$

for ν the unit exterior normal to ∂R.
2. Let S be a hypersurface of the Riemannian manifold M. Suppose that S admits global coordinates $\left(x^{1}, \ldots, x^{n}\right)$. Let S_{t} be the surface obtained by letting each point p of S flow for time t along the geodesic through p with initial velocity equal to the unit normal to S (chosen smoothly along S).
a) Given $p_{0} \in S$, show that there exists a neighborhood V of p_{0}, such that $\left(t, x^{1}, \ldots, x^{n}\right)$ define coordinates on V.
b) Show that S_{t} is orthogonal to the geodesics orthogonal to S.

