Riemannian Geometry

February 3, 2017 LMAC and MMA

1st Test - Question 1 - 90 minutes 2nd Test - Question 2 - 90 minutes Exam - Both questions - 3 hours

Show your calculations

1. To each $n \times n$ matrix $A = [a_{ij}]$ we may associate the vector field in \mathbb{R}^n

$$X^{A} = (AX)^{T} \frac{\partial}{\partial x} = \sum_{i,j=1}^{n} x^{i} a_{ji} \frac{\partial}{\partial x^{j}},$$

where $\left\{\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}\right\}$ is the canonical basis of \mathbb{R}^n .

- a) Knowing that $[X^A, X^B] = X^C$, express C in terms of A and B. (1.5)
- b) Consider the case where n = 2, and define A and B to be (1)

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \qquad B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right].$$

The matrices A and B do not commute but [B, A] = A. Determine X^A, X^B and $[X^A, X^B]$. Check that your answer is according to the one you gave in a).

c) Determine the real numbers $s = s(\beta)$ and $t = t(\beta)$ such that (2)

$$e^{\beta B}e^{\alpha A} = e^{s\alpha A + \beta B}, \qquad e^{\alpha A}e^{\beta B} = e^{t\alpha A + \beta B}.$$

Suggestion: Compute both sides of the previous equalities.

d) Show that (1.5)

$$G = \{ M \in GL(2) : M = e^{\alpha A + \beta B}, \text{ with } \alpha, \beta \in \mathbb{R} \}.$$

is a subgroup of GL(2). (In fact, it is a Lie group.)

e) Show that the Lie algebra of G is spanned by A and B. Suggestion: (1) you may want to use the definition of the exponential of a matrix.

$$\mathbf{f)} \ \text{Let} \tag{1.5}$$

$$(g_1, g_2) \cong \begin{bmatrix} g_2 & g_1 \\ 0 & 1 \end{bmatrix} = e^{\alpha A + \beta B} = g \in G.$$

(1)

Show that the volume form

$$\omega = \frac{dx \wedge dy}{y^2},$$

defined on $\mathbb{R} \times \mathbb{R}^+$, is invariant under the pull-back by L_q . Note: If

 $g=(g_1,g_2)$, then $L_{(g_1,g_2)}(a,b)=(g_2a+g_1,g_2b)=(x,y)$. **g)** Define $\eta=\frac{dx}{y}$. Check that $d\eta=\omega$. Let R>0. Knowing that you can apply Stokes' Theorem to the region (1.5)

$$S := \{(x, y) \in \mathbb{R} \times \mathbb{R}^+ : x \in] - R, R[\text{ and } x^2 + y^2 > R^2 \},$$

use it to calculate the area of S.

2. Consider the cylinder $M = \mathbb{R} \times S^1$ with metric

$$ds^2 = d\gamma^2 + \cosh^2 \gamma \, d\theta^2,$$

and orthonormal frame

$$(E_{\gamma}, E_{\theta}) = \left(\frac{\partial}{\partial \gamma}, \frac{1}{\cosh \gamma} \frac{\partial}{\partial \theta}\right).$$

- a) Show that M has constant curvature equal to -1. (2)
- **b)** Consider the closed curve $c(\theta) = (\gamma_0, \theta)$, and the vector field (2)

$$X(\theta) := a(\theta)(E_{\gamma})_{c(\theta)} + b(\theta)(E_{\theta})_{c(\theta)},$$

defined for $\theta \in [0, 2\pi[$, with a(0) = 1 and b(0) = 0. Knowing that it is parallel along c, determine X using connection forms.

- c) Let $Y = \lim_{\theta \to 2\pi} X(\theta)$. Compute Y using the result of b). What is the angle between Y and X(0)? Confirm your answer by calculating the integral of the geodesic curvature of c. For what values of $\gamma_0 \geq 0$ are X(0) and Y parallel with the same direction?
- d) Let $(\gamma_0)_n$ and $(\gamma_0)_{n+1}$ be two consecutive values of $\gamma_0 \geq 0$ as in your (1.5)answer to c). Use the Gauss-Bonnet Theorem to calculate the area of the portion of M where $(\gamma_0)_n \leq \gamma \leq (\gamma_0)_{n+1}$.
- e) Let f be a smooth function of M. Recall that the gradient of f is the (1)vector field X such that, for all $Y \in \mathcal{X}(M)$,

$$(\nabla f, Y) = df(Y).$$

Deduce a formula for the gradient of a vector field in a general system of coordinates where the metric is g_{ij} . Particularize to the case of the coordinates (γ, θ) above.

f) Let ω be a volume form on a Riemannian manifold. Recall that, by definition, the divergence of $X \in \mathcal{X}(M)$ is the function div X such that

$$L_X\omega = (\operatorname{div} X) \omega.$$

Using the formula about the Lie derivative of the tensor product and the fact that the Lie derivative commutes with the exterior derivative, show that

$$\operatorname{div} X = \frac{1}{\sqrt{\det g}} \partial_i \left(\sqrt{\det g} \, X^i \right).$$

Particularize to the case of the coordinates (γ, θ) above.

g) Write down the expression for the Laplacian of f in the coordinates (1) (γ, θ) .