Riemannian Geometry

February 3, 2017
LMAC and MMA
1st Test - Question $1-90$ minutes
2nd Test - Question $2-90$ minutes
Exam - Both questions - 3 hours

Show your calculations

1. To each $n \times n$ matrix $A=\left[a_{i j}\right]$ we may associate the vector field in \mathbb{R}^{n}

$$
X^{A}=(A X)^{T} \frac{\partial}{\partial x}=\sum_{i, j=1}^{n} x^{i} a_{j i} \frac{\partial}{\partial x^{j}},
$$

where $\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right\}$ is the canonical basis of \mathbb{R}^{n}.
a) Knowing that $\left[X^{A}, X^{B}\right]=X^{C}$, express C in terms of A and B.
b) Consider the case where $n=2$, and define A and B to be

$$
A=\left[\begin{array}{ll}
0 & 1 \tag{1}\\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The matrices A and B do not commute but $[B, A]=A$. Determine X^{A}, X^{B} and $\left[X^{A}, X^{B}\right]$. Check that your answer is according to the one you gave in \mathbf{a}).
c) Determine the real numbers $s=s(\beta)$ and $t=t(\beta)$ such that

$$
\begin{equation*}
e^{\beta B} e^{\alpha A}=e^{s \alpha A+\beta B}, \quad e^{\alpha A} e^{\beta B}=e^{t \alpha A+\beta B} \tag{2}
\end{equation*}
$$

Suggestion: Compute both sides of the previous equalities.
d) Show that

$$
\begin{equation*}
G=\left\{M \in G L(2): M=e^{\alpha A+\beta B}, \text { with } \alpha, \beta \in \mathbb{R}\right\} \tag{1.5}
\end{equation*}
$$

is a subgroup of $G L(2)$. (In fact, it is a Lie group.)
e) Show that the Lie algebra of G is spanned by A and B. Suggestion:
you may want to use the definition of the exponential of a matrix.
f) Let

$$
\left(g_{1}, g_{2}\right) \cong\left[\begin{array}{cc}
g_{2} & g_{1} \tag{1.5}\\
0 & 1
\end{array}\right]=e^{\alpha A+\beta B}=g \in G
$$

Show that the volume form

$$
\omega=\frac{d x \wedge d y}{y^{2}}
$$

defined on $\mathbb{R} \times \mathbb{R}^{+}$, is invariant under the pull-back by L_{g}. Note: If $g=\left(g_{1}, g_{2}\right)$, then $L_{\left(g_{1}, g_{2}\right)}(a, b)=\left(g_{2} a+g_{1}, g_{2} b\right)=(x, y)$.
g) Define $\eta=\frac{d x}{y}$. Check that $d \eta=\omega$. Let $R>0$. Knowing that you can apply Stokes' Theorem to the region

$$
S:=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}^{+}: x \in\right]-R, R\left[\text { and } x^{2}+y^{2}>R^{2}\right\}
$$

use it to calculate the area of S.
2. Consider the cylinder $M=\mathbb{R} \times S^{1}$ with metric

$$
d s^{2}=d \gamma^{2}+\cosh ^{2} \gamma d \theta^{2}
$$

and orthonormal frame

$$
\begin{equation*}
\left(E_{\gamma}, E_{\theta}\right)=\left(\frac{\partial}{\partial \gamma}, \frac{1}{\cosh \gamma} \frac{\partial}{\partial \theta}\right) \tag{2}
\end{equation*}
$$

a) Show that M has constant curvature equal to -1 .
b) Consider the closed curve $c(\theta)=\left(\gamma_{0}, \theta\right)$, and the vector field

$$
\begin{equation*}
X(\theta):=a(\theta)\left(E_{\gamma}\right)_{c(\theta)}+b(\theta)\left(E_{\theta}\right)_{c(\theta)} \tag{2}
\end{equation*}
$$

defined for $\theta \in[0,2 \pi[$, with $a(0)=1$ and $b(0)=0$. Knowing that it is parallel along c, determine X using connection forms.
c) Let $Y=\lim _{\theta \rightarrow 2 \pi} X(\theta)$. Compute Y using the result of $\left.\mathbf{b}\right)$. What is the angle between Y and $X(0)$? Confirm your answer by calculating the integral of the geodesic curvature of c. For what values of $\gamma_{0} \geq 0$ are $X(0)$ and Y parallel with the same direction?
d) Let $\left(\gamma_{0}\right)_{n}$ and $\left(\gamma_{0}\right)_{n+1}$ be two consecutive values of $\gamma_{0} \geq 0$ as in your answer to \mathbf{c}). Use the Gauss-Bonnet Theorem to calculate the area of the portion of M where $\left(\gamma_{0}\right)_{n} \leq \gamma \leq\left(\gamma_{0}\right)_{n+1}$.
e) Let f be a smooth function of M. Recall that the gradient of f is the vector field X such that, for all $Y \in \mathcal{X}(M)$,

$$
(\nabla f, Y)=d f(Y)
$$

Deduce a formula for the gradient of a vector field in a general system of coordinates where the metric is $g_{i j}$. Particularize to the case of the coordinates (γ, θ) above.
f) Let ω be a volume form on a Riemannian manifold. Recall that, by definition, the divergence of $X \in \mathcal{X}(M)$ is the function div X such that

$$
L_{X} \omega=(\operatorname{div} X) \omega .
$$

Using the formula about the Lie derivative of the tensor product and the fact that the Lie derivative commutes with the exterior derivative, show that

$$
\operatorname{div} X=\frac{1}{\sqrt{\operatorname{det} g}} \partial_{i}\left(\sqrt{\operatorname{det} g} X^{i}\right)
$$

Particularize to the case of the coordinates (γ, θ) above.
g) Write down the expression for the Laplacian of f in the coordinates (γ, θ).

