Mathematical Relativity, Spring 2023/24
 Instituto Superior Técnico

Due March 1

1. Using the definition of covariant derivative, we showed in class that

$$
\begin{equation*}
\nabla \nabla Z(X, Y, \omega)=\left(\nabla_{X} \nabla_{Y} Z\right)(\omega)-\left(\nabla_{\nabla_{X} Y} Z\right)(\omega) \tag{1}
\end{equation*}
$$

a) Check (1) by calculating both sides in local coordinates.
b) Obtain a formula for

$$
\nabla \nabla \nabla W(X, Y, Z)
$$

2. Recall that the nonzero Christoffel symbols for the Minkowski metric in spherical coordinates,

$$
\eta=-d t^{2}+d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right),
$$

are

$$
\begin{aligned}
& \Gamma_{\theta \theta}^{r}=-r, \quad \Gamma_{\varphi \varphi}^{r}=-r \sin ^{2} \theta, \\
& \Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}=\frac{1}{r}, \quad \Gamma_{\varphi \varphi}^{\theta}=-\sin \theta \cos \theta, \\
& \Gamma_{r \varphi}^{\varphi}=\Gamma_{\varphi r}^{\varphi}=\frac{1}{r}, \quad \Gamma_{\theta \varphi}^{\varphi}=\Gamma_{\varphi \theta}^{\varphi}=\cot \theta
\end{aligned}
$$

Consider the vector field

$$
V=f(r) \partial_{r} .
$$

a) Compute the tensor $\nabla^{\mu} V^{\nu}$.
b) We will show in class that

$$
\frac{1}{2}\left(L_{V} g\right)_{\mu \nu}=\nabla_{(\mu} V_{\nu)}
$$

Use this equality to compute the deformation tensor $\nabla_{(\mu} V_{\nu)}$. Check your answer using the result of a).

Due March 21

3. Draw the Penrose diagram for the Schwarzschild solution with negative mass. Do timelike geodesics hit the naked singularity at $r=0$?
4. Consider an Oppenheimer-Snyder solution obtained by gluing a FLRW metric

$$
-d \tau^{2}+a^{2}(\tau)\left(d \psi^{2}+\psi^{2} d l_{\mathcal{S}^{2}}^{2}\right)
$$

satisfying Friedmann's equations with $k=\Lambda=0$ and $\alpha>0$ with a Schwarzschild metric along an hypersurface $\left\{\psi=\psi_{0}\right\}$ of FLRW. Determine the value of a at the center (in terms of α and ψ_{0}) that corresponds to a light-ray that goes to future timelike infinity i^{+}.
5. Consider the FLRW metric

$$
g=-d \tau^{2}+a^{2}(\tau)\left(\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right)
$$

and the orthonormal frame

$$
\begin{aligned}
\omega^{0} & =d \tau \\
\omega^{r} & =\frac{a}{\sqrt{1-k r^{2}}} d r, \\
\omega^{\theta} & =\operatorname{ard\theta } \\
\omega^{\varphi} & =\operatorname{ar} \sin \theta d \varphi .
\end{aligned}
$$

a) Using Cartan's structure equations, check that

$$
\begin{aligned}
\omega_{0}^{r} & =\frac{\dot{a}}{\sqrt{1-k r^{2}}} d r, \\
\omega_{0}^{\theta} & =\dot{a} r d \theta, \\
\omega_{0}^{\varphi} & =\dot{a} r \sin \theta d \varphi \\
\omega_{r}^{\theta} & =\sqrt{1-k r^{2}} d \theta, \\
\omega_{r}^{\varphi} & =\sqrt{1-k r^{2}} \sin \theta d \varphi, \\
\omega_{\theta}^{\varphi} & =\cos \theta d \varphi .
\end{aligned}
$$

Moreover, check that

$$
\begin{aligned}
& \Omega_{0}^{r}=\frac{\ddot{a}}{a} \omega^{0} \wedge \omega^{r}, \\
& \Omega_{0}^{\theta}=\frac{\ddot{a}}{a} \omega^{0} \wedge \omega^{\theta}, \\
& \Omega_{0}^{\varphi}=\frac{\ddot{a}}{a} \omega^{0} \wedge \omega^{\varphi}, \\
& \Omega_{r}^{\theta}=-\frac{k+\dot{a}^{2}}{a^{2}} \omega^{r} \wedge \omega^{\theta}, \\
& \Omega_{r}^{\varphi}=-\frac{k+\dot{a}^{2}}{a^{2}} \omega^{r} \wedge \omega^{\varphi}, \\
& \Omega_{\theta}^{\varphi}=-\frac{k+\dot{a}^{2}}{a^{2}} \omega^{\theta} \wedge \omega^{\varphi} .
\end{aligned}
$$

Finally, check that

$$
\begin{aligned}
R_{00} & =-\frac{3 \ddot{a}}{a} \\
R_{r r} & =R_{\theta \theta}=R_{\varphi \varphi}=2 \frac{k+\dot{a}^{2}}{a^{2}}+\frac{\ddot{a}}{a},
\end{aligned}
$$

and

$$
R=6\left(\frac{k+\dot{a}^{2}}{a^{2}}+\frac{\ddot{a}}{a}\right) .
$$

b) Using Einstein's equation

$$
G_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi T_{\mu \nu}
$$

with $T=\rho d \tau \otimes d \tau$, check that

$$
\frac{d}{d \tau}\left(\frac{a \dot{a}^{2}}{2}+\frac{k a}{2}-\frac{\Lambda}{6} a^{3}\right)=0
$$

and obtain Friedmann's equations.

Due March 28

6. Consider the Riemannian or Lorentzian metric

$$
g=d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}
$$

Show that
a) The Christoffel symbols are

$$
\Gamma_{i j}^{0}=-K_{i j}, \quad \Gamma_{j k}^{i}=\bar{\Gamma}_{j k}^{i}, \quad \Gamma_{0 j}^{i}=K_{j}^{i},
$$

where $\bar{\Gamma}_{j k}^{i}$ are the Christoffel symbols of h and $K(t)$ is the second fundamental form of the hypersurface $t=$ constant.
b) The components of the Riemann tensor are

$$
\begin{aligned}
R_{0 i 0}{ }^{j} & =-\frac{\partial}{\partial t} K_{i}^{j}-K_{i l} K^{l j}, \\
R_{i j 0}{ }^{l} & =-\bar{\nabla}_{i} K_{j}^{l}+\bar{\nabla}_{j} K_{i}^{l}, \\
R_{i j l}{ }^{m} & =\bar{R}_{i j l}{ }^{m}-K_{i l} K_{j}^{m}+K_{j l} K_{i}^{m},
\end{aligned}
$$

where $\bar{\nabla}$ is the Levi-Civita connection of h and $\bar{R}_{i j l}{ }^{m}$ are the components of the Riemann tensor of h.
c) The components of the Ricci tensor are

$$
\begin{aligned}
R_{00} & =-\frac{\partial}{\partial t} K_{i}^{i}-K_{i j} K^{i j}, \\
R_{0 i} & =-\bar{\nabla}_{i} K_{j}^{j}+\bar{\nabla}_{j} K_{i}^{j}, \\
R_{i j} & =\bar{R}_{i j}-\frac{\partial}{\partial t} K_{i j}+2 K_{i l} K_{j}^{l}-K_{l}^{l} K_{i j},
\end{aligned}
$$

where $\bar{R}_{i j}$ are the components of the Ricci tensor of h.
d) The time derivative of the inverse of h is

$$
\frac{\partial h^{i j}}{\partial t}=-2 K^{i j}
$$

e) The scalar curvature is

$$
\begin{equation*}
R=\bar{R}-2 \frac{\partial}{\partial t} K_{i}^{i}-\left(K_{i}^{i}\right)^{2}-K_{i j} K^{i j}, \tag{2}
\end{equation*}
$$

where \bar{R} is the scalar curvature of h.
f) The component G_{00} of the Einstein tensor is

$$
\begin{equation*}
G_{00}=\frac{1}{2}\left(-\bar{R}+\left(K_{i}^{i}\right)^{2}-K_{i j} K^{i j}\right) . \tag{3}
\end{equation*}
$$

7. Let (M, g) be the quotient of the 2 -dimensional Minkowski spacetime by the group of isometries generated by the map $(t, x) \mapsto(t+1, x+1)$. Show directly that (M, g) is not stably causal, i.e. it is not possible to define a global time function.

Due May 11

8. Consider $\left(\mathbb{R}^{3},-d t^{2}+d x^{2}+d y^{2}\right)$ and the congruence of timelike geodesics with velocity

$$
X=\frac{t \partial_{t}+x \partial_{x}+y \partial_{y}}{\sqrt{t^{2}-x^{2}-y^{2}}}
$$

Consider the orthonormal frame

$$
\mathcal{F}=\left(X, \frac{\left(x^{2}+y^{2}\right) \partial_{t}+t x \partial_{x}+t y \partial_{y}}{\sqrt{x^{2}+y^{2}} \sqrt{t^{2}-x^{2}-y^{2}}}, \frac{-y \partial_{x}+x \partial_{y}}{\sqrt{x^{2}+y^{2}}}\right) .
$$

This frame is parallel along the geodesics.
a) Calculate the second fundamental form of X in the frame $\left(\partial_{t}, \partial_{x}, \partial_{y}\right)$.
b) Calculate the second fundamental form of X in the frame \mathcal{F}.
c) Calculate the expansion θ.
d) Verify Raychaudhuri's equation.
e) Let Y be a deviation vector orthogonal to X and let τ be arc length along a geodesic. What is the relation between \dot{Y} and Y ?
9. Consider $\left(\mathbb{R}^{3},-d t^{2}+d x^{2}+d y^{2}\right)$ and the congruence of timelike geodesics through the x-axis with velocity

$$
X=\frac{t \partial_{t}+y \partial_{y}}{\sqrt{t^{2}-y^{2}}} .
$$

Consider the orthonormal frame \mathcal{F}, given by

$$
\left(X, \partial_{x}, \frac{y \partial_{t}+t \partial_{y}}{\sqrt{t^{2}-y^{2}}}\right) .
$$

a) Write the second fundamental form $B_{\mu \nu}$ of X in the frame \mathcal{F}.
b) Without actually calculating $\nabla_{X} \frac{y \partial_{t}+t \partial_{y}}{\sqrt{t^{2}-y^{2}}}$, justify that $\frac{y \partial_{t}+t \partial_{y}}{\sqrt{t^{2}-y^{2}}}$ is parallel along each integral curve of X.
c) Write the spatial metric $h_{\mu \nu}$. Calculate the expansion, deformation and vorticity, and use these to decompose the second fundamental form.
d) Verify the Raychaudhuri equation.
e) Define an appropriate fundamental solution A of the Jacobi equation to encode the evolution of a general deviation vector orthogonal to X. Calculate the fundamental solution and check that $B=\dot{A} A^{-1}$.

