Mathematical Relativity, Spring 2022/23
 Instituto Superior Técnico

Due March 16

1. Using the definition of covariant derivative, we showed in class that

$$
\nabla \nabla Z(X, Y, \omega)=\left(\nabla_{X} \nabla_{Y} Z\right)(\omega)-\left(\nabla_{\nabla_{X} Y} Z\right)(\omega)
$$

Check this equality by calculating both sides in local coordinates.
2. Recall that the nonzero Christoffel symbols for the Minkowski metric in spherical coordinates,

$$
\eta=-d t^{2}+d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right),
$$

are

$$
\begin{aligned}
& \Gamma_{\theta \theta}^{r}=-r, \quad \Gamma_{\varphi \varphi}^{r}=-r \sin ^{2} \theta \\
& \Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}=\frac{1}{r}, \quad \Gamma_{\varphi \varphi}^{\theta}=-\sin \theta \cos \theta \\
& \Gamma_{r \varphi}^{\varphi}=\Gamma_{\varphi r}^{\varphi}=\frac{1}{r}, \quad \Gamma_{\theta \varphi}^{\varphi}=\Gamma_{\varphi \theta}^{\varphi}=\cot \theta
\end{aligned}
$$

Consider the vector field

$$
V=f(r) \partial_{r}
$$

Compute the tensor $\nabla^{\mu} V^{\nu}$.
3. We will show in class that

$$
\frac{1}{2}\left(L_{V} g\right)_{\mu \nu}=\nabla_{(\mu} V_{\nu)} .
$$

Use this equality to compute the deformation tensor $\nabla_{(\mu} V_{\nu)}$ of the vector field of exercise 2. Check your answer using the result of exercise $\mathbf{2}$.

Due March 23

4. Consider $\mathcal{M}=\mathbb{R} \times \mathbb{R}^{+} \times S^{1}$ with metric

$$
g=-V d u^{2}+2 d u d r+r^{2} d \theta^{2}
$$

where $V=V(r)>0$.
a) Using the definition of the Hodge dual, calculate $\star d u$ and $\star d r$.
b) Using the definition of the Hodge dual, calculate $\star \star d u$ and $\star \star d r$. Verify the formula $\star \star \eta=s(-1)^{k(n-k)} \eta$ when $\eta=d u$ and when $\eta=d r$.
c) Verify the formula $\eta \wedge \xi=s(\star \eta, \xi) \varepsilon$ when $\eta=d u$ and when $\eta=d r$.
d) Check that the frame

$$
\left.\left(\frac{1}{\sqrt{V}} \partial_{u}, \frac{1}{\sqrt{V}}\left(\partial_{u}+V \partial_{r}\right), \frac{1}{r} \partial_{\theta}\right)\right)
$$

is orthonormal and calculate its dual frame $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$. Use the property $\star \omega^{1}=\left(\omega^{1}, \omega^{1}\right) \omega^{2} \wedge \omega^{3}$ (and a similar formula for $\star \omega^{2}$) to confirm the result you obtained in a).
e) Given a smooth function f defined on \mathcal{M}, calculate the Hodge laplacian of $f, \Delta f=(\delta d+d \delta) f=-s \star d \star d f=\star d \star d f$.

```
Due April 3
```

5. Draw the Penrose diagram for the Schwarzschild solution with negative mass. Do timelike geodesics hit the naked singularity at $r=0$?
6. Consider the CDM model (FLRW with $\alpha>0, \Lambda>0$ and $k=0$).
a) Given $\varepsilon>0$, show that for a sufficiently large

$$
\sqrt{\frac{\Lambda}{3}} a<\dot{a}<\sqrt{\frac{\Lambda}{3}(1+\varepsilon)} a
$$

and that for a sufficiently small

$$
\frac{\sqrt{2 \alpha}}{\sqrt{a}}<\dot{a}<\frac{\sqrt{2 \alpha(1+\varepsilon)}}{\sqrt{a}}
$$

b) Show that $a(\tau)$ only goes to $+\infty$ when $\tau \nearrow+\infty$ and that there exists a finite value τ^{\star} such that $a(\tau) \searrow 0$ as $\tau \searrow \tau^{\star}$.
c) Show that the radial null outgoing geodesics $\left(\tau(\varsigma), \psi(\varsigma), \frac{\pi}{2}, 0\right)$ satisfy

$$
\begin{aligned}
\tau^{\prime} & =\frac{c}{a(\tau)} \\
\psi^{\prime} & =\frac{c}{a^{2}(\tau)}
\end{aligned}
$$

d) Let $\delta>0$. Show that for sufficiently large ς,

$$
\sqrt{\frac{3}{\Lambda}}(1-\delta) \ln \varsigma<\tau(\varsigma)<\sqrt{\frac{3}{\Lambda}}(1+\delta) \ln \varsigma
$$

e) Let $\delta>0$. Show that (for an appropriate choice of affine parameter $\tilde{\varsigma}$) for $\tilde{\varsigma}$ sufficiently close to zero

$$
(1-\delta) \tilde{\varsigma}^{\beta} \leq \tau(\tilde{\varsigma})-\tau^{\star} \leq(1+\delta) \tilde{\varsigma}^{\beta} .
$$

What is the value of β ?

Due April 11

7. Consider an Oppenheimer-Snyder solution obtained by gluing a FLRW metric

$$
-d \tau^{2}+a^{2}(\tau)\left(d \psi^{2}+\psi^{2} d l_{\mathcal{S}^{2}}^{2}\right)
$$

satisfying Friedmann's equations with $k=\Lambda=0$ and $\alpha>0$ with a Schwarzschild metric along an hypersurface $\left\{\psi=\psi_{0}\right\}$ of FLRW. Determine the value of a at the center (in terms of α and ψ_{0}) that corresponds to a light-ray that goes to future timelike infinity i^{+}.

Due April 18

8. Consider the FLRW metric

$$
g=-d \tau^{2}+a^{2}(\tau)\left(\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right)
$$

and the orthonormal frame

$$
\begin{aligned}
\omega^{0} & =d \tau \\
\omega^{r} & =\frac{a}{\sqrt{1-k r^{2}}} d r \\
\omega^{\theta} & =a r d \theta \\
\omega^{\varphi} & =\operatorname{ar} \sin \theta d \varphi
\end{aligned}
$$

a) Using Cartan's structure equations, check that

$$
\begin{aligned}
\omega_{0}^{r} & =\frac{\dot{a}}{\sqrt{1-k r^{2}}} d r, \\
\omega_{0}^{\theta} & =\dot{a} r d \theta, \\
\omega_{0}^{\varphi} & =\dot{a} r \sin \theta d \varphi, \\
\omega_{r}^{\theta} & =\sqrt{1-k r^{2}} d \theta, \\
\omega_{r}^{\varphi} & =\sqrt{1-k r^{2}} \sin \theta d \varphi, \\
\omega_{\theta}^{\varphi} & =\cos \theta d \varphi .
\end{aligned}
$$

Moreover, check that

$$
\begin{aligned}
\Omega_{0}^{r} & =\frac{\ddot{a}}{a} \omega^{0} \wedge \omega^{r}, \\
\Omega_{0}^{\theta} & =\frac{\ddot{a}}{a} \omega^{0} \wedge \omega^{\theta}, \\
\Omega_{0}^{\varphi} & =\frac{\ddot{a}}{a} \omega^{0} \wedge \omega^{\varphi}, \\
\Omega_{r}^{\theta} & =-\frac{k+\dot{a}^{2}}{a^{2}} \omega^{r} \wedge \omega^{\theta}, \\
\Omega_{r}^{\varphi} & =-\frac{k+\dot{a}^{2}}{a^{2}} \omega^{r} \wedge \omega^{\varphi}, \\
\Omega_{\theta}^{\varphi} & =-\frac{k+\dot{a}^{2}}{a^{2}} \omega^{\theta} \wedge \omega^{\varphi} .
\end{aligned}
$$

Finally, check that

$$
\begin{aligned}
R_{00} & =-\frac{3 \ddot{a}}{a} \\
R_{r r} & =R_{\theta \theta}=R_{\varphi \varphi}=2 \frac{k+\dot{a}^{2}}{a^{2}}+\frac{\ddot{a}}{a},
\end{aligned}
$$

and

$$
R=6\left(\frac{k+\dot{a}^{2}}{a^{2}}+\frac{\ddot{a}}{a}\right) .
$$

b) Using Einstein's equation

$$
G_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi T_{\mu \nu},
$$

with $T=\rho d \tau \otimes d \tau$, check that

$$
\frac{d}{d \tau}\left(\frac{a \dot{a}^{2}}{2}+\frac{k a}{2}-\frac{\Lambda}{6} a^{3}\right)=0
$$

and obtain Friedmann's equations.

Due May 9

9. Consider the Riemannian or Lorentzian metric

$$
g=d t^{2}+h_{i j}(t, x) d x^{i} d x^{j} .
$$

Show that
a) The Christoffel symbols are

$$
\Gamma_{i j}^{0}=-K_{i j}, \quad \Gamma_{j k}^{i}=\bar{\Gamma}_{j k}^{i}, \quad \Gamma_{0 j}^{i}=K_{j}^{i},
$$

where $\bar{\Gamma}_{j k}^{i}$ are the Christoffel symbols of h and $K(t)$ is the second fundamental form of the hypersurface $t=$ constant.
b) The components of the Riemann tensor are

$$
\begin{aligned}
R_{0 i 0}{ }^{j} & =-\frac{\partial}{\partial t} K_{i}^{j}-K_{i l} K^{l j}, \\
R_{i j 0}^{l} & =-\bar{\nabla}_{i} K_{j}^{l}+\bar{\nabla}_{j} K_{i}^{l}, \\
R_{i j l}{ }^{m} & =\bar{R}_{i j l}{ }^{m}-K_{i l} K_{j}^{m}+K_{j l} K_{i}^{m},
\end{aligned}
$$

where $\bar{\nabla}$ is the Levi-Civita connection of h and $\bar{R}_{i j l}{ }^{m}$ are the components of the Riemann tensor of h.
c) The components of the Ricci tensor are

$$
\begin{aligned}
R_{00} & =-\frac{\partial}{\partial t} K_{i}^{i}-K_{i j} K^{i j}, \\
R_{0 i} & =-\bar{\nabla}_{i} K_{j}^{j}+\bar{\nabla}_{j} K_{i}^{j}, \\
R_{i j} & =\bar{R}_{i j}-\frac{\partial}{\partial t} K_{i j}+2 K_{i l} K_{j}^{l}-K_{l}^{l} K_{i j},
\end{aligned}
$$

where $\bar{R}_{i j}$ are the components of the Ricci tensor of h.
d) The time derivative of the inverse of h is

$$
\frac{\partial h^{i j}}{\partial t}=-2 K^{i j}
$$

e) The scalar curvature is

$$
\begin{equation*}
R=\bar{R}-2 \frac{\partial}{\partial t} K_{i}^{i}-\left(K_{i}^{i}\right)^{2}-K_{i j} K^{i j}, \tag{1}
\end{equation*}
$$

where \bar{R} is the scalar curvature of h.
f) The component G_{00} of the Einstein tensor is

$$
\begin{equation*}
G_{00}=\frac{1}{2}\left(-\bar{R}+\left(K_{i}^{i}\right)^{2}-K_{i j} K^{i j}\right) . \tag{2}
\end{equation*}
$$

10. Let (M, g) be the quotient of the 2 -dimensional Minkowski spacetime by the group of isometries generated by the map $(t, x) \mapsto(t+1, x+1)$. Show directly that (M, g) is not stably causal, i.e. it is not possible to define a global time function.

Due May 16

11. Consider $\left(\mathbb{R}^{3},-d t^{2}+d x^{2}+d y^{2}\right)$ and the congruence of timelike geodesics through the x-axis with velocity

$$
X=\frac{t \partial_{t}+y \partial_{y}}{\sqrt{t^{2}-y^{2}}} .
$$

Consider the orthonormal frame \mathcal{F}, given by

$$
\left(X, \partial_{x}, \frac{y \partial_{t}+t \partial_{y}}{\sqrt{t^{2}-y^{2}}}\right) .
$$

a) Write the second fundamental form $B_{\mu \nu}$ of X in the frame \mathcal{F}.
b) Without actually calculating $\nabla_{X} \frac{y \partial_{t}+t \partial_{y}}{\sqrt{t^{2}-y^{2}}}$, justify that $\frac{y \partial_{t}+t \partial_{y}}{\sqrt{t^{2}-y^{2}}}$ is parallel along each integral curve of X.
c) Write the spatial metric $h_{\mu \nu}$. Calculate the expansion, deformation and vorticity, and use these to decompose the second fundamental form.
d) Verify the Raychaudhuri equation.
e) Define an appropriate fundamental solution A of the Jacobi equation to encode the evolution of a general deviation vector orthogonal to X. Calculate the fundamental solution and check that $B=\dot{A} A^{-1}$.

Due May 30

12. Consider \mathbb{R}^{3} with the Minkowski metric written in polar coordinates as

$$
g=-d t^{2}+d r^{2}+r^{2} d \theta^{2} .
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be periodic with period 2π and

$$
X=f(\theta)\left(\partial_{t}+\partial_{r}\right)
$$

Consider the frame

$$
\mathcal{V}=\left(\partial_{t}, X, \frac{1}{r} \partial_{\theta}\right) .
$$

a) Verify that X is null geodesic.
b) Compute the second fundamental form $B^{\mu}{ }_{\nu}$ in the coordinates corresponding to \mathcal{V} by calculating $\nabla_{\partial_{t}} X$ and $\nabla_{\frac{1}{r} \partial_{\theta}} X$.
c) Determine the integral curves (t, r, θ) of X through $\left(0,1, \theta_{0}\right)$ in terms of the affine parameter u. Express r in terms of t.
d) The vector field $Y=\partial_{\theta}$ is a Jacobi field $\left(\partial_{\theta}=\partial_{\theta_{0}}-u \frac{f^{\prime}\left(\theta_{0}\right)}{f\left(\theta_{0}\right)} \partial_{u}\right)$. Note however that Y does not commute with X. Correct the equation $\nabla_{X} Y^{\mu}=B^{\mu}{ }_{\nu} Y^{\nu}$ to take this into account and verify the corrected equation directly.
e) Write the expression for the metric g in the frame \mathcal{V}. Compute the covector X_{b}.
f) Compute the second fundamental form $B_{\mu \nu}$ in the coordinates corresponding to \mathcal{V} by calculating $\nabla_{\partial_{t}} X_{\mathrm{b}}$ and $\nabla_{\frac{1}{r} \partial_{\theta}} X_{\mathrm{b}}$. To check your answer, verify that $B_{\mu \nu}=g_{\mu \gamma} B^{\gamma}{ }_{\nu}$.
13. Use ideas similar to those leading to the proof of Hawking's singularity theorem to prove Myers's Theorem: if (M, g) is a complete Riemannian manifold such that there exists an $\varepsilon>0$ so that $R_{\mu \nu} X^{\mu} X^{\nu} \geq \varepsilon g_{\mu \nu} X^{\mu} X^{\nu}$, then M is compact.

```
Due June 15
```

14. State why Hawking's Singularity Theorem and state why Penrose's Singularity Theorem do not apply to each of the following geodesically complete Lorentzian manifolds:
a) Minkowski's spacetime;
b) Einstein's spacetime;
c) de Sitter's spacetime;
d) Anti-de Sitter spacetime.
15. Calculate the following two expressions for the divergence of X in local coordinates

$$
\operatorname{div} X=\frac{1}{\sqrt{|\operatorname{det} g|}} \partial_{\mu}\left(\sqrt{|\operatorname{det} g|} X^{\mu}\right)=\nabla_{\mu} X^{\mu}
$$

thereby checking that they agree.
16. Verify that the critical points of the action

$$
I(\phi)=\frac{1}{2} \int(\operatorname{grad} \phi, \operatorname{grad} \phi)=\frac{1}{2} \int g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi \sqrt{|\operatorname{det} g|} d x^{0} d x^{1} d x^{2} d x^{3}
$$

are the solutions of the wave equation

$$
\nabla^{\mu} \nabla_{\mu} \phi=0 .
$$

Do not worry about boundary terms.
17. Check that if ϕ satisfies the Euler-Lagrange equation for $L(x, \phi, \partial \phi)$, then

$$
T^{\mu \nu}(\phi):=\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \partial^{\nu} \phi-g^{\mu \nu} L
$$

satisfies $\nabla_{\mu} T^{\mu \nu}=0$.

