Mathematical Relativity, Spring 2022/23
Instituto Superior Técnico

Due March 16

1. Using the definition of covariant derivative, we showed in class that
VVZ(X,Y,w) = (VxVyZ)(w) = (VyyrZ)(w).
Check this equality by calculating both sides in local coordinates.

2. Recall that the nonzero Christoffel symbols for the Minkowski metric in
spherical coordinates,

n = —dt* + dr* + r*(d6* + sin® § dp?),

are
r r )
Lgg=—r, I',,=—rsin"0,

1

0 0 0 -
r,="r, = - I, = —sinfcos0,
1““’—1“"—1 ry =17, =cotd
re T er Ty b = T T )

Consider the vector field
V = f(r)o,.

Compute the tensor V#V'".

3. We will show in class that

1

5( Vg)uu = V(,u‘/u)

Use this equality to compute the deformation tensor V(,V,) of the vector
field of exercise 2.. Check your answer using the result of exercise 2..

Due March 23

4. Consider M =R x Rt x S with metric
g = —V du® + 2 dudr + r* d§?,

where V =V (r) > 0.
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a) Using the definition of the Hodge dual, calculate x du and * dr.

b) Using the definition of the Hodge dual, calculate x x du and % * dr.
Verify the formula %7 = s(—1)*""%y when 1 = du and when 7 = dr.

c¢) Verify the formula n A £ = s(xn, £)e when n = du and when 1 = dr.

d) Check that the frame

( 1 P 1
VV UNY
is orthonormal and calculate its dual frame (w',w? w?). Use the pro-
perty xw! = (w', w') w? Aw? (and a similar formula for xw?) to confirm
the result you obtained in a).

e) Given a smooth function f defined on M, calculate the Hodge laplacian
of [ Af =(0d+dd)f = —sxdxdf =*d*df.

(0 + VO, %ae))

Due April 3

5. Draw the Penrose diagram for the Schwarzschild solution with negative
mass. Do timelike geodesics hit the naked singularity at » = 07

6. Consider the CDM model (FLRW with aw > 0, A > 0 and k£ = 0).

a) Given ¢ > 0, show that for a sufficiently large

[A [A
= ; -1
3a<a< 3( +e)a

and that for a sufficiently small

V2a 2a(1 +¢)

<a<

Va Va

b) Show that a(7) only goes to +o00 when 7 400 and that there exists
a finite value 7% such that a(7) \ 0 as 7\, 7*.
c¢) Show that the radial null outgoing geodesics (7(),¥(s), §,0) satisfy

, c
)
r C
YT em

d) Let 6 > 0. Show that for sufficiently large ¢,

%(1 —d)lng<7(s) < \/%(1 + ) Ing.
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e) Let § > 0. Show that (for an appropriate choice of affine parameter <)
for ¢ sufficiently close to zero

(1=8)3F <7(Q) -7 < (1+6)
What is the value of 57

Due April 11

7. Consider an Oppenheimer-Snyder solution obtained by gluing a FLRW
metric

—dr? + a®(7)(dp? + *dl%)
satisfying Friedmann’s equations with £ = A = 0 and a > 0 with a Schwarzs-
child metric along an hypersurface {¢) = 1y} of FLRW. Determine the value
of a at the center (in terms of a and 9y) that corresponds to a light-ray that
goes to future timelike infinity ¢%.

Due April 18

8. Consider the FLRW metric

d 2
g = —dr*+ a*(1) (1 —Tkr2 + r2(d6? + sin® 0 dgpQ))
and the orthonormal frame

W= dr,

a

"= —=dr,
V1 — kr?

W' = ards,
w? = arsinfdp.

a) Using Cartan’s structure equations, check that

a
wy = ———dbr,
N
wi = ardd,
wy = arsinfdey,

w? V1—kr2de,
wf = V1—Fkr?sinfdp,
cos @ dp.
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Moreover, check that

i
Qp = - AW
a
a
Q= —wAW,
a
a
QF = —WAw?,
a
k+a®
Q= — 5 W AW
a
k+a®
Qr = - w' A w?,
a2
k+ a’
Qf = —— W Aw?.
a

Finally, check that

Roy = ——,
k4 a2
_|_

R, = Rg = Ry, = 2

-2 .
R:6(k+2a +9).
a a

b) Using Einstein’s equation

and

G + Agy = 87T,

2

with T'= pdr ® dr, check that

d aa2+ka_A3 _0
r\2 "2 6% )"

and obtain Friedmann’s equations.

Due May 9

9. Consider the Riemannian or Lorentzian metric
g =dt* + hy(t,z)dz'da’ .

Show that
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a) The Christoffel symbols are
0 _ i __ TV i __ 1
Ui =—Kij, Dy =T, Lo = K5,

where f‘ék are the Christoffel symbols of h and K (t) is the second fun-
damental form of the hypersurface ¢ = constant.
b) The components of the Riemann tensor are

‘ o . ,

Ry = — =K', — KyKY,
020 _at 7 ) l

Ryt = ViK', + VK,

a5l

where V is the Levi-Civita connection of h and Riﬂ ™ are the compo-
nents of the Riemann tensor of A.
¢) The components of the Ricci tensor are

0

Ry = — =K' —K;K",
i ot T
RO'L’ - —VZ-KJj—i—VjK]i,
_ o)
Ry = Riy— 5 Ky+ 2Ky K, — K"\ Ky,

where Rij are the components of the Ricci tensor of h.
d) The time derivative of the inverse of h is

Oh y
— 2K,
ot
e) The scalar curvature is
E 9 i i\2 ij

where R is the scalar curvature of h.
f) The component Gy of the Einstein tensor is

Goo = = (—R+ (K";)* — K;;K") . (2)

1
2
10. Let (M, g) be the quotient of the 2-dimensional Minkowski spacetime by
the group of isometries generated by the map (¢,z) — (¢t + 1,2 + 1). Show

directly that (M, g) is not stably causal, i.e. it is not possible to define a
global time function.
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Due May 16

11. Consider (R3, —dt? + dx? + dy?*) and the congruence of timelike geodesics
through the z-axis with velocity

Consider the orthonormal frame F, given by

V=2
a) Write the second fundamental form B, of X in the frame F.

b) Without actually calculating V x ydﬁta” , justify that 2222% is parallel
\/ V't 2—y?
along each integral curve of X.

c) Write the spatial metric h,,. Calculate the expansion, deformation and
vorticity, and use these to decompose the second fundamental form.

d) Verify the Raychaudhuri equation.

e) Define an appropriate fundamental solution A of the Jacobi equation
to encode the evolution of a general deviation vector orthogonal to X.
Calculate the fundamental solution and check that B = AA~.

Due May 30

12. Consider R? with the Minkowski metric written in polar coordinates as
g = —dt* + dr* +r* db>.
Let f : R — R be periodic with period 27 and

X = J(6)(@: +0,).

V — (@,X, 18@) .
r

a) Verify that X is null geodesic.

b) Compute the second fundamental form B*, in the coordinates corres-
ponding to V by calculating Vy, X and V%(%X.

c¢) Determine the integral curves (t,r,60) of X through (0,1,6,) in terms
of the affine parameter u. Express r in terms of .

Consider the frame
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d) The vector field Y = 0y is a Jacobi field (89 = Op, — u’}l((gg)) 8u>. Note

however that Y does not commute with X. Correct the equation
VxYH" = B )YV to take this into account and verify the corrected
equation directly.

e) Write the expression for the metric g in the frame V. Compute the
covector X,,.

f) Compute the second fundamental form B, in the coordinates corres-
ponding to V by calculating V5, X, and V 1, X,. To check your answer,
verify that B, = g,,B7,.

13. Use ideas similar to those leading to the proof of Hawking’s singularity
theorem to prove Myers’s Theorem: if (M, g) is a complete Riemannian ma-
nifold such that there exists an € > 0 so that R, X*X" > ¢¢,, X*X", then
M is compact.

Due June 15

14. State why Hawking’s Singularity Theorem and state why Penrose’s Sin-
gularity Theorem do not apply to each of the following geodesically complete
Lorentzian manifolds:

a) Minkowski’s spacetime;

b) Einstein’s spacetime;

c) de Sitter’s spacetime;

d) Anti-de Sitter spacetime.

15. Calculate the following two expressions for the divergence of X in local

coordinates

1
div X = ——=—=0), (/[detg|X*) = V,.X",

V| det g|

thereby checking that they agree.
16. Verify that the critical points of the action

1 1
I(¢) = 3 /(grad ¢, grad ¢) = 3 /g“”8“¢ﬁu¢\/ | det g| da’dx'd2?dax®
are the solutions of the wave equation
ViV ¢ = 0.
Do not worry about boundary terms.
17. Check that if ¢ satisfies the Euler-Lagrange equation for L(z, ¢, 0¢), then
oL
™ (¢) = ———=0"¢p — g"'L
= 5.0
satisfies V, 7" = 0.



