Geometric Mechanics ^{2nd} Exam - February 7, 2025 MMAC

Solutions

1.

a) Let

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

be the matrix that rotates (x, y) by θ radians counterclockwise around the origin, i.e.

 $R(\theta) \left[\begin{array}{c} x \\ y \end{array} \right]$

is the vector which will be at (x,y) after a rotation by θ radians clockwise around the origin. The vector

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] R(\theta) \left[\begin{array}{c} x \\ y \end{array}\right]$$

is orthogonal to the hyperbolas $x^2 - y^2 = c$ at $R(\theta) \begin{bmatrix} x \\ y \end{bmatrix}$. After a rotation by θ radians clockwise around the origin, these hyperbolas have normal vector

$$R(-\theta) \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] R(\theta) \left[\begin{array}{c} x \\ y \end{array} \right]$$

at $\begin{bmatrix} x \\ y \end{bmatrix}$. Since

$$R(-\theta) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} R(\theta) = \begin{bmatrix} \cos(2\theta) & -\sin(2\theta) \\ -\sin(2\theta) & -\cos(2\theta) \end{bmatrix},$$

the velocities of the particles are in the kernel of

$$\omega = (x\cos(2\theta) - y\sin(2\theta)) dx - (x\sin(2\theta) + y\cos(2\theta)) dy.$$

2

b) The distribution Σ is the kernel of ω . As

$$d\omega = -2x\sin(2\theta) d\theta \wedge dx - 2y\cos(2\theta) d\theta \wedge dx$$
$$-\sin(2\theta) dy \wedge dx$$
$$-2x\cos(2\theta) d\theta \wedge dy + 2y\sin(2\theta) d\theta \wedge dy$$
$$-\sin(2\theta) dx \wedge dy$$
$$= -2(x\sin(2\theta) + y\cos(2\theta)) d\theta \wedge dx$$
$$+2(-x\cos(2\theta) + y\sin(2\theta)) d\theta \wedge dy,$$

we have

$$d\omega \wedge \omega = 2(x\sin(2\theta) + y\cos(2\theta))^2 d\theta \wedge dx \wedge dy +2(x\cos(2\theta) - y\sin(2\theta))^2 d\theta \wedge dx \wedge dy$$
$$= 2(x^2 + y^2) d\theta \wedge dx \wedge dy.$$

The distribution is not integrable because $d\omega \wedge \omega$ is not zero.

c) The motion of the particle and the plane are determined by Newton's equation

$$\mu\left(\frac{D\dot{c}}{dt}\right) = \mathcal{R}(\dot{c}),$$

where $\mathcal{R}(\dot{c}) = \lambda \omega(\dot{c})$, for some real $\lambda = \lambda(x, y, \theta, \dot{x}, \dot{y}, \dot{c})$. Indeed, if c is admissible, then

$$(\mu^{-1}\mathcal{R}, \dot{c}) = \mathcal{R}(\dot{c}) = \lambda\omega(\dot{c}) = 0.$$

In our coordinates, Newton's and the constraint equation are written as

$$\begin{cases} m\ddot{x} &= \lambda(x\cos(2\theta) - y\sin(2\theta)), \\ m\ddot{y} &= -\lambda(x\sin(2\theta) + y\cos(2\theta)), \\ I\ddot{\theta} &= 0, \\ 0 &= (x\cos(2\theta) - y\sin(2\theta))\dot{x} - (x\sin(2\theta) + y\cos(2\theta))\dot{y}. \end{cases}$$

d) If θ is constant, we may integrate the constraint equation to obtain

$$\frac{x^2}{2}\cos(2\theta) - xy\sin(2\theta) - \frac{y^2}{2}\cos(2\theta) = \text{constant}.$$

So, the assertion follows from

$$(x\cos\theta - y\sin\theta)^2 - (x\sin\theta + y\cos\theta)^2$$

= $x^2\cos(2\theta) - 2xy\sin(2\theta) - y^2\cos(2\theta)$.

e) This is immediate as

$$(\cos t \cos(2t) + \sin t \sin(2t)) = \cos t,$$

$$(\cos t \sin(2t) - \sin t \cos(2t)) = \sin t,$$

so that the constraint equation becomes

$$\cos t(-\sin t) + \sin t \cos t = 0.$$

The value of λ is equal to -m.

2.

a) The length of the arch o catenary between (0,0) and $(s, 1-\cosh s)$ is

$$\int_0^s \sqrt{1+\sinh^2 \tau} \, d\tau = \sinh s.$$

The unit tangent vector to the catenary at $(s, 1 - \cosh s)$ is

$$\frac{(1,-\sinh s)}{\cosh s}.$$

Thus, the angle, φ , between the bar and the s-axis satisfies

$$\tan \varphi = -\sinh s$$
, or $\varphi = -\arctan \sinh s$.

The position o the center of mass of the bar is at

$$(s, 1 - \cosh s) - \frac{(1, -\sinh s)}{\cosh s} \sinh s = (s - \tanh s, 1 - \operatorname{sech} s).$$

b) The velocity of the center of mass of the bar is

$$(\dot{x}(s),\dot{y}(s)) = (1 - \operatorname{sech}^2 s, \operatorname{sech} s \tanh s) = (\tanh^2 s, \operatorname{sech} s \tanh s).$$

So,

$$\left\|\dot{x}^2 + \dot{y}^2\right\|(s) = \tanh^2 s.$$

Moreover, we have

$$\dot{\varphi}(s) = -\frac{\cosh s}{1 + \sinh^2 s} = \operatorname{sech} s.$$

Finally, the center of mass of the bar satisfies $y = (1 - \operatorname{sech} s)$.

c) The equation for the motion of the bar is

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{s}} - \frac{\partial L}{\partial s} = 0,$$

or

$$\ddot{s} + \operatorname{sech} s \tanh s = 0.$$

d) The Legendre transformation is

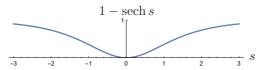
$$p = \frac{\partial L}{\partial \dot{s}} = \dot{s}.$$

It is invertible, $\dot{s}=p,$ so the Lagrangian is hyper-regular. The Hamiltonian is

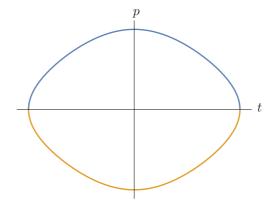
$$H = p\dot{s} - L = \frac{p^2}{2} + 1 - \mathrm{sech}\,s.$$

It is completely integrable because H itself is an integral, whose differential only vanishes at the origin.

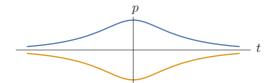
e) We sketch the graph of $s \mapsto 1 - \operatorname{sech} s$.



For l < 0, the l level set of H is empty. The 0 level set of H is the origin. For 0 < l < 1, the l level set of H has the following sketch in the (s,p) plane:

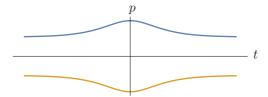


The 1 level set of H has the following sketch in the (s, p) plane:



5

For l > 1, the l level set of H has the following sketch in the (s, p) plane:



The level sets of H are compact for levels $l \in (-\infty, 1)$. The flow of H progresses along its level sets. For p positive, s increases, and for p negative, s decreases. The origin corresponds to a stable equilibrium point.

f) The symplectic form is $\omega = dp \wedge ds$. The Hamiltonian gradient of H is

$$X_H = \frac{\partial H}{\partial p} \frac{\partial}{\partial s} - \frac{\partial H}{\partial s} \frac{\partial}{\partial p} = p \frac{\partial}{\partial s} - \operatorname{sech} s \tanh s \frac{\partial}{\partial p}.$$

The Poisson bracket is

$$\{H,G\} = \frac{\partial H}{\partial p} \frac{\partial G}{\partial s} - \frac{\partial H}{\partial s} \frac{\partial G}{\partial p}.$$

The Poisson bivector is

$$B = \frac{\partial}{\partial p} \otimes \frac{\partial}{\partial s} - \frac{\partial}{\partial s} \otimes \frac{\partial}{\partial p}.$$