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Introduction: basic setup

I (M2n−1, ξ = kerα) contact manifold, that is, α ∧ (dα)n−1 is
a volume form.

I Examples: starshaped hypersurfaces in R2n and the unit
sphere bundle of a closed Riemannian manifold.

I Let Rα be the Reeb vector field uniquely characterized by
α(Rα) = 1 and iRαdα = 0.

I If M is the energy level of a Hamiltonian then the
corresponding Hamiltonian flow is a reparametrization of
the Reeb flow.



Introduction: existence of elliptic periodic orbits

I Problem: existence of elliptic periodic orbits for the Reeb
flow.

I A periodic orbit is called elliptic if every eigenvalue of its
linearized Poincaré map is in the unit circle.

I The existence of elliptic orbits has several dynamical
consequences: under generic conditions it implies the
presence of KAM tori, transversal homoclinic connections
and positivity of the topological entropy.

I Classical conjecture: every convex hypersurface in R2n

carries an elliptic periodic orbit.

I Unfortunately, with this degree of generality, this is far from
being known.



Introduction: goal

Theorem (Dell’Antonio-D’Onofrio-Ekeland’1995)
If M ⊂ R2n is convex and invariant by the antipodal map then it
carries an elliptic closed orbit.

Our goal: understand and generalize this result using
contact homology.



Conley-Zehnder Index

I Suppose, for simplicity, that ξ = kerα has a global
trivialization Φ : ξ → M × R2n−2.

I Then the linearized Reeb flow along a periodic orbit γ
defines a path Γ : [0,T ]→ Sp(2n − 2) starting at the
identity.

I LetM⊂ Sp(2n − 2) be the Maslov cycle, that is, the
subset of symplectic linear maps A such that
det(A− Id) = 0.

I This is a stratified submanifold of codimension one.
I Then one can associate to Γ an intersection number with
M, called the Conley-Zehnder index of γ and denoted by
µCZ(γ).



Contact Homology

I Contact homology is a Morse homology for the action
functional Aα(γ) =

∫
γ α. The chain complex is generated

by the periodic orbits of Rα graded by the Conley-Zehnder
index and the differential counts rigid finite energy
pseudo-holomorphic cylinders in the symplectization.

I The chain complex depends on the contact form α but
contact homology is an invariant of the contact structure ξ.



Dynamical Convexity: S3

I Definition. (Hofer-Wysocki-Zehnder’1998) A contact
form α on S3 is dynamically convex if every periodic orbit γ
of Rα satisfies µCZ(γ) ≥ 3.

I Theorem. (HWZ) The contact form induced on a convex
hypersurface in R4 is dynamically convex.

I Note that, in contrast to convexity, dynamical convexity is
invariant by contactomorphisms.

I HWZ proved that the Reeb flow of a dynamically convex
contact form admits global sections given by the pages of
an open book decomposition (it works only in dim 3!).



Dynamical Convexity: S2n−1

I The proof of HWZ shows that every periodic orbit γ on a
convex hypersurface in R2n satisfies µCZ(γ) ≥ n + 1.

I It turns out that the term n + 1 has an important meaning:
it corresponds to the lowest CZ-degree with non-trivial
contact homology. Indeed, a computation shows that

HC∗(S2n−1) ∼=

{
Q if ∗ = n + 2k + 1 and k ∈ N0

0 otherwise.



Dynamical Convexity: general contact manifolds

Definition.
Let a be a free homotopy class in M and define

k− = inf{k ∈ Z; HCa
k (M) 6= 0}, k+ = sup{k ∈ Z; HCa

k (M) 6= 0}.

A contact form α is positively (resp. negatively) a-dynamically
convex if k− is an integer and µCZ(γ) ≥ k− (resp. k+ is an
integer and µCZ(γ) ≤ k+) for every periodic orbit γ of Rα with
free homotopy class a.



Main Result: preliminaries

I A contact manifold (M, ξ) is called Boothby-Wang if it
supports a contact form β whose Reeb flow generates a
free circle action.

I Example: spheres.

I Given a Boothby-Wang contact manifold (M, ξ = kerβ), an
arbitrary contact form α and a finite subgroup G ⊂ S1, we
say that α is G-invariant if (ϕt0

β )∗α = α, where ϕt
β is the flow

of Rβ and t0 ∈ S1 is a generator of G.



Main Result: statement

Theorem. (A.-Macarini’2013)
Let (M, ξ = kerβ) be a Boothby-Wang contact manifold and G
a non-trivial finite subgroup of S1. Let a be the free homotopy
class of the (simple) closed orbits of Rβ and assume that one of
the following two conditions holds:

1. M/S1 admits a Morse function such that every critical point
has even Morse index;

2. aj 6= 0 for every j ∈ N.
Then every G-invariant positively (resp. negatively)
a-dynamically convex contact form α supporting ξ has an
elliptic closed orbit γ with free homotopy class a. Moreover,
µCZ(γ) = k− (resp. µCZ(γ) = k+).



Applications and Examples: geodesic flows

Corollary.
Let g be a Riemannian metric on S2 with sectional curvature K
satisfying 1/4 ≤ K ≤ 1. Then g carries an elliptic closed
geodesic γ. Moreover, γ is contractible in SS2 and satisfies
µCZ(γ) = 3.

In fact, Harris-Paternain proved that if 1/4 < K ≤ 1 then the
geodesic flow on SS2 ' RP3 lifts to a (positively) dynamically
convex contact form on S3. An easy perturbation argument
implies the result above where the pinching condition is not
strict.



Applications and Examples: geodesic flows

I Contreras-Oliveira proved that C2-densely a Riemannian
metric on S2 has an elliptic closed geodesic. They used
the global sections constructed by HWZ.

I Ballmann-Thorbergsson-Ziller proved the previous
corollary using different methods.



Applications and Examples: magnetic flows

I Let (N,g) be a Riemannian manifold with a closed 2-form
Ω.

I Let ω0 be the pullback of the canonical symplectic form of
T ∗N to TN via g and consider the symplectic form
ω = ω0 + π∗Ω, where π : TN → N is the projection.

I The Hamiltonian flow of H(x , v) = 1
2g(v , v) is the magnetic

flow associated to the pair (g,Ω).



Applications and Examples: magnetic flows

I G. Benedetti proved in his thesis that if N is a closed
orientable surface of genus g 6= 1 and Ω is a symplectic
form then there exists c > 0 such that H−1(k) is of contact
type for every k < c.

I He also proved that if g = 0 then the lift to S3 is positively
dynamically convex and one can prove, using his thesis
and some contact homology computations, that if g > 1
then there is a |χ(N)|-covering M̃ → H−1(k) such that the
lift of the magnetic flow to M̃ is negatively dynamically
convex. Moreover, M̃ is Boothby-Wang.



Applications and Examples: magnetic flows

Corollary.
Let (N,g) be a closed orientable Riemannian surface of genus
g 6= 1 and Ω a symplectic magnetic field on N. Then the
magnetic flow has an elliptic closed orbit γ on every sufficiently
small energy level. Moreover, γ is freely homotopic to a
|χ(N)|-covering of the fiber of SN and satisfies µCZ(γ) = 3 if
g = 0 and µCZ(γ) = 2χ(N) + 1 otherwise.



Applications and Examples: toric contact manifolds

I Toric contact manifolds can be defined as contact
manifolds of dimension 2n − 1 equipped with an effective
Hamiltonian action of a torus of dimension n.

I A good toric contact manifold has the property that its
symplectization can be obtained by symplectic reduction of
Cd , where d is the number of facets of the corresponding
convex polyhedral cone, by the action of a subtorus
K ⊂ Td , with the action of Td given by the standard linear
one.

I The sphere S2n−1 is an example of a good toric contact
manifold and its symplectization is obtained from Cn with K
being trivial (that is, there is no reduction at all; the
symplectization of S2n−1 can be identified with Cn \ {0}).



Applications and Examples: toric contact manifolds

I Consequently, given a contact form α on a good toric
contact manifold M we can always find a Hamiltonian
Hα : Cd → R invariant by K such that the reduced
Hamiltonian flow of H is the Reeb flow of α.

I Notice that Hα is not unique.
I We say that a contact form α on M is convex if such Hα

can be chosen convex.
I Clearly, in the case of the sphere this holds if and only if

the corresponding hypersurface in Cn is convex.

Theorem. (A.-Macarini’2013)
A convex contact form on a good toric simply-connected
contact manifold is positively dynamically convex.


