Dynamical Convexity and Elliptic Orbits for Reeb Flows

Miguel Abreu

(joint with Leonardo Macarini (UFRJ))

Center for Mathematical Analysis, Geometry and Dynamical Systems Instituto Superior Técnico, Lisbon, Portugal

Workshop on Conservative Dynamics and Symplectic Geometry

IMPA, Rio de Janeiro, September 2-6, 2013

Introduction: basic setup

(M²ⁿ⁻¹, ξ = ker α) contact manifold, that is, α ∧ (dα)ⁿ⁻¹ is a volume form.

- ► Examples: starshaped hypersurfaces in ℝ²ⁿ and the unit sphere bundle of a closed Riemannian manifold.
- ► Let R_{α} be the Reeb vector field uniquely characterized by $\alpha(R_{\alpha}) = 1$ and $i_{B_{\alpha}} d\alpha = 0$.
- If *M* is the energy level of a Hamiltonian then the corresponding Hamiltonian flow is a reparametrization of the Reeb flow.

Introduction: existence of elliptic periodic orbits

- Problem: existence of elliptic periodic orbits for the Reeb flow.
- A periodic orbit is called elliptic if every eigenvalue of its linearized Poincaré map is in the unit circle.
- The existence of elliptic orbits has several dynamical consequences: under generic conditions it implies the presence of KAM tori, transversal homoclinic connections and positivity of the topological entropy.
- ► Classical conjecture: every convex hypersurface in ℝ²ⁿ carries an elliptic periodic orbit.
- Unfortunately, with this degree of generality, this is far from being known.

Theorem (Dell'Antonio-D'Onofrio-Ekeland'1995)

If $M \subset \mathbb{R}^{2n}$ is convex and invariant by the antipodal map then it carries an elliptic closed orbit.

Our goal: understand and generalize this result using contact homology.

Conley-Zehnder Index

- Suppose, for simplicity, that $\xi = \ker \alpha$ has a global trivialization $\Phi : \xi \to M \times \mathbb{R}^{2n-2}$.
- Then the linearized Reeb flow along a periodic orbit γ defines a path Γ : [0, T] → Sp(2n − 2) starting at the identity.
- Let M ⊂ Sp(2n − 2) be the Maslov cycle, that is, the subset of symplectic linear maps A such that det(A − Id) = 0.
- This is a stratified submanifold of codimension one.
- ► Then one can associate to Γ an intersection number with \mathcal{M} , called the Conley-Zehnder index of γ and denoted by $\mu_{CZ}(\gamma)$.

Contact Homology

• Contact homology is a Morse homology for the action functional $A_{\alpha}(\gamma) = \int_{\gamma} \alpha$. The chain complex is generated by the periodic orbits of R_{α} graded by the Conley-Zehnder index and the differential counts rigid finite energy pseudo-holomorphic cylinders in the symplectization.

The chain complex depends on the contact form α but contact homology is an invariant of the contact structure ξ.

Dynamical Convexity: S³

- Definition. (Hofer-Wysocki-Zehnder'1998) A contact form α on S³ is dynamically convex if every periodic orbit γ of R_α satisfies μ_{CZ}(γ) ≥ 3.
- ► Theorem. (HWZ) The contact form induced on a convex hypersurface in ℝ⁴ is dynamically convex.
- Note that, in contrast to convexity, dynamical convexity is invariant by contactomorphisms.
- HWZ proved that the Reeb flow of a dynamically convex contact form admits global sections given by the pages of an open book decomposition (it works only in dim 3!).

Dynamical Convexity: S^{2n-1}

The proof of HWZ shows that every periodic orbit γ on a convex hypersurface in ℝ²ⁿ satisfies μ_{CZ}(γ) ≥ n + 1.

It turns out that the term n + 1 has an important meaning: it corresponds to the lowest CZ-degree with non-trivial contact homology. Indeed, a computation shows that

$$\mathit{HC}_*(S^{2n-1})\cong egin{cases} \mathbb{Q} & ext{if } *=n+2k+1 ext{ and } k\in\mathbb{N}_0 \ 0 & ext{otherwise.} \end{cases}$$

Dynamical Convexity: general contact manifolds

Definition.

Let a be a free homotopy class in M and define

 $\mathbf{k}_{-} = \inf\{\mathbf{k} \in \mathbb{Z}; \mathbf{HC}^{\mathbf{a}}_{\mathbf{k}}(\mathbf{M}) \neq \mathbf{0}\}, \ \mathbf{k}_{+} = \sup\{\mathbf{k} \in \mathbb{Z}; \mathbf{HC}^{\mathbf{a}}_{\mathbf{k}}(\mathbf{M}) \neq \mathbf{0}\}.$

A contact form α is positively (resp. negatively) *a*-dynamically convex if k_{-} is an integer and $\mu_{CZ}(\gamma) \ge k_{-}$ (resp. k_{+} is an integer and $\mu_{CZ}(\gamma) \le k_{+}$) for every periodic orbit γ of R_{α} with free homotopy class *a*.

Main Result: preliminaries

A contact manifold (*M*, ξ) is called Boothby-Wang if it supports a contact form β whose Reeb flow generates a free circle action.

Example: spheres.

Given a Boothby-Wang contact manifold (*M*, ξ = ker β), an arbitrary contact form α and a finite subgroup *G* ⊂ *S*¹, we say that α is *G*-invariant if (φ^{t₀}_β)*α = α, where φ^t_β is the flow of *R_β* and t₀ ∈ *S*¹ is a generator of *G*.

Main Result: statement

Theorem. (A.-Macarini'2013)

Let $(M, \xi = \ker \beta)$ be a Boothby-Wang contact manifold and G a non-trivial finite subgroup of S^1 . Let a be the free homotopy class of the (simple) closed orbits of R_β and assume that one of the following two conditions holds:

- 1. M/S^1 admits a Morse function such that every critical point has even Morse index;
- 2. $a^{j} \neq 0$ for every $j \in \mathbb{N}$.

Then every *G*-invariant positively (resp. negatively) *a*-dynamically convex contact form α supporting ξ has an elliptic closed orbit γ with free homotopy class *a*. Moreover, $\mu_{CZ}(\gamma) = k_-$ (resp. $\mu_{CZ}(\gamma) = k_+$).

Applications and Examples: geodesic flows

Corollary.

Let *g* be a Riemannian metric on S^2 with sectional curvature *K* satisfying $1/4 \le K \le 1$. Then *g* carries an elliptic closed geodesic γ . Moreover, γ is contractible in SS^2 and satisfies $\mu_{CZ}(\gamma) = 3$.

In fact, Harris-Paternain proved that if $1/4 < K \le 1$ then the geodesic flow on $SS^2 \simeq \mathbb{RP}^3$ lifts to a (positively) dynamically convex contact form on S^3 . An easy perturbation argument implies the result above where the pinching condition is not strict.

Applications and Examples: geodesic flows

Contreras-Oliveira proved that C²-densely a Riemannian metric on S² has an elliptic closed geodesic. They used the global sections constructed by HWZ.

 Ballmann-Thorbergsson-Ziller proved the previous corollary using different methods. Applications and Examples: magnetic flows

- Let (N, g) be a Riemannian manifold with a closed 2-form Ω .
- Let ω_0 be the pullback of the canonical symplectic form of T^*N to TN via g and consider the symplectic form $\omega = \omega_0 + \pi^*\Omega$, where $\pi : TN \to N$ is the projection.
- ► The Hamiltonian flow of $H(x, v) = \frac{1}{2}g(v, v)$ is the magnetic flow associated to the pair (g, Ω) .

Applications and Examples: magnetic flows

- G. Benedetti proved in his thesis that if N is a closed orientable surface of genus g ≠ 1 and Ω is a symplectic form then there exists c > 0 such that H⁻¹(k) is of contact type for every k < c.</p>
- ► He also proved that if $\mathfrak{g} = 0$ then the lift to S^3 is positively dynamically convex and one can prove, using his thesis and some contact homology computations, that if $\mathfrak{g} > 1$ then there is a $|\chi(N)|$ -covering $\widetilde{M} \to H^{-1}(k)$ such that the lift of the magnetic flow to \widetilde{M} is negatively dynamically convex. Moreover, \widetilde{M} is Boothby-Wang.

Corollary.

Let (N, g) be a closed orientable Riemannian surface of genus $g \neq 1$ and Ω a symplectic magnetic field on N. Then the magnetic flow has an elliptic closed orbit γ on every sufficiently small energy level. Moreover, γ is freely homotopic to a $|\chi(N)|$ -covering of the fiber of *SN* and satisfies $\mu_{CZ}(\gamma) = 3$ if g = 0 and $\mu_{CZ}(\gamma) = 2\chi(N) + 1$ otherwise.

Applications and Examples: toric contact manifolds

- Toric contact manifolds can be defined as contact manifolds of dimension 2n – 1 equipped with an effective Hamiltonian action of a torus of dimension n.
- A good toric contact manifold has the property that its symplectization can be obtained by symplectic reduction of C^d, where d is the number of facets of the corresponding convex polyhedral cone, by the action of a subtorus K ⊂ T^d, with the action of T^d given by the standard linear one.
- The sphere S²ⁿ⁻¹ is an example of a good toric contact manifold and its symplectization is obtained from Cⁿ with K being trivial (that is, there is no reduction at all; the symplectization of S²ⁿ⁻¹ can be identified with Cⁿ \ {0}).

Applications and Examples: toric contact manifolds

- Consequently, given a contact form α on a good toric contact manifold *M* we can always find a Hamiltonian *H*_α : C^d → ℝ invariant by *K* such that the reduced Hamiltonian flow of *H* is the Reeb flow of α.
- Notice that H_{α} is not unique.
- We say that a contact form α on M is convex if such H_α can be chosen convex.
- Clearly, in the case of the sphere this holds if and only if the corresponding hypersurface in Cⁿ is convex.

Theorem. (A.-Macarini'2013)

A convex contact form on a good toric simply-connected contact manifold is positively dynamically convex.