SYMPLECTIC GEOMETRY - $2^{\underline{nd}}$ Semester 2020/21

Problem Set #5

Due date: May 28

1. Let $F: \mathbb{R}^n \to \mathcal{S}_n \equiv \text{symmetric } n \times n \text{ matrices, a smooth function such that } F(u) \text{ is non-singular for all } u \in \mathbb{R}^n$. Consider a 2-form ω defined in $\mathbb{R}^{2n} = \{(u, v) : u, v \in \mathbb{R}^n\}$ by the skew-symmetric matrix

$$\omega_{(u,v)} = \begin{bmatrix} 0 & F(u) \\ -F(u) & 0 \end{bmatrix}$$

a) Show that $d\omega = 0$ if and only if there exists a smooth function $f : \mathbb{R}^n \to \mathbb{R}$, f = f(u), such that

$$F = \operatorname{Hess}_{u}(f) \equiv \left[\frac{\partial^{2} f}{\partial u_{k} \partial u_{l}}\right]_{k,l=1}^{n,n}$$
.

b) Consider the action of \mathbb{R}^n on \mathbb{R}^{2n} given by

$$t \cdot (u, v) = (u, v + t), \ \forall t, u, v \in \mathbb{R}^n$$
.

Assuming that $d\omega = 0$, show that this action of \mathbb{R}^n on $(\mathbb{R}^{2n}, \omega)$ is Hamiltonian and determine a moment map $\mu : \mathbb{R}^{2n} \to \mathbb{R}^n$.

- c) Under the conditions of b), determine local symplectic coordinates for $(\mathbb{R}^{2n}, \omega)$, i.e. local symplectomorphisms between $(\mathbb{R}^{2n} = \{(u, v)\}, \omega_{(u,v)})$ and $(\mathbb{R}^{2n} = \{(x, y)\}, \omega_0 = dx \wedge dy)$.
- 2. Let (M, ω) be a symplectic manifold and $\phi : \mathbb{T}^m \to \operatorname{Ham}(M, \omega)$ a Hamiltonian action with moment map $\mu : M \to \mathbb{R}^m$. Let $\psi : \mathbb{T}^l \to \mathbb{T}^m$ be a homomorphism given by $\psi(\theta) = A\theta$, with $A \in \mathbb{Z}^{m \times l}$ a $(m \times l)$ matrix with entries in \mathbb{Z} . Show that $\phi \circ \psi : \mathbb{T}^l \to \operatorname{Ham}(M, \omega)$ is a Hamiltonian action with moment map $\nu : M \to \mathbb{R}^l$ given by $\nu = A^t \mu$.
- 3. Let (M, ω) be a symplectic manifold and $\phi : \mathbb{T}^m = \mathbb{T}^{m_1} \times \mathbb{T}^{m_2} \to \operatorname{Ham}(M, \omega)$ a Hamiltonian action with moment map $\mu = (\mu_1, \mu_2) : M \to \mathbb{R}^m = \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$.
 - a) Show that $\mu_i: M \to \mathbb{R}^{m_i}$, i = 1, 2, is a moment map for the Hamiltonian action of \mathbb{T}^{m_i} on (M, ω) naturally induced by ϕ .
 - b) Let $Z_1 = \mu_1^{-1}(0)$, suppose that \mathbb{T}^{m_1} acts freely on Z_1 , and denote by (M_0, τ_0) the corresponding symplectic reduction, i.e. $M_0 = Z_1/\mathbb{T}^{m_1}$ and τ_0 is the symplectic form on M_0 characterized by $\pi^*(\tau_0) = \iota^*(\omega)$, where $\pi: Z_1 \to M_0$ and $\iota: Z_1 \to M_0$ denote, respectively, the natural projection and inclusion. Show that the Hamiltonian action of \mathbb{T}^{m_2} on M naturally induces a Hamiltonian action of \mathbb{T}^{m_2} on M_0 with a moment map characterized $\nu: M_0 \to \mathbb{R}^{m_2}$ characterized by $\nu \circ \pi = \mu_2 \circ \iota$.

4. Consider the action of $\mathbb{T}^1 = S^1$ on $(\mathbb{R}^{2(n+1)}, \omega_0)$ that, using the natural identification $\mathbb{R}^{2(n+1)} = \mathbb{C}^{n+1}$, is given by

$$\theta \cdot (z_0, \dots, z_n) = (e^{-i\theta} z_0, \dots, e^{-i\theta} z_n), \ \forall z \in \mathbb{C}^{n+1}, \ \theta \in \mathbb{R}.$$

a) Check that this action is Hamiltonian with moment map $\mu: \mathbb{C}^{n+1} \to \mathbb{R}$ given by

$$\mu(z) = \frac{1}{2}(|z|^2 - 1) .$$

Hint: use exercise 2.

- b) Show that the symplectic reduction $(M_0 = \mu^{-1}(0)/S^1, \tau_0)$ is $\mathbb{C}P^n$ with the Fubini-Study symplectic form ω_{FS} .
- 5. Show that the action of \mathbb{T}^n on $(\mathbb{C}P^n, \omega_{FS})$ given by

$$(\theta_1,\ldots,\theta_n)\cdot[z_0,\ldots,z_n]=[z_0,e^{-i\theta_1}z_1,\ldots,e^{-i\theta_n}z_n],\ \forall\,z\in\mathbb{C}^{n+1},\ \theta\in\mathbb{R}^n\,$$

is Hamiltonian and determine a moment map $\mu: \mathbb{C}\mathrm{P}^n \to \mathbb{R}^n$. Characterize explicitly (i.e. without using the Atiyah-Guillemin-Sternberg Convexity Theorem) the moment polytope $\mu(\mathbb{C}\mathrm{P}^n)$.

Hint: use exercises 3 and 4.