SYMPLECTIC GEOMETRY - $2^{\underline{n}\underline{d}}$ Semester 2020/21

Problem Set #4

Due date: May 14

- 1. Let (M, J) be an almost complex manifold and $f: M \to \mathbb{C}$ a smooth function such that $0 \in \mathbb{C}$ is a regular value. Show that if $(\bar{\partial} f)_p = 0$ at any point $p \in N := f^{-1}(0)$, then N is a complex submanifold of (M, J).
- 2. Let $H: \mathbb{R}^n \to \mathcal{S}_n \equiv$ symmetric $n \times n$ matrices, be a smooth map such that H(x) is non-singular for all $x \in \mathbb{R}^n$. Consider the almost complex structure J defined on \mathbb{R}^{2n} by

$$J_{(x,y)} = \begin{bmatrix} 0 & -H(x)^{-1} \\ H(x) & 0 \end{bmatrix}$$

a) Show that J is integrable if and only if there exists a smooth function $h: \mathbb{R}^n \to \mathbb{R}$ such that

$$H = \operatorname{Hess}_x(h) \equiv \left[\frac{\partial^2 h}{\partial x_k \partial x_l}\right]_{k,l=1}^n$$
.

- b) Assuming J integrable, find local holomorphic coordinates for (\mathbb{R}^{2n}, J) , i.e. local complex isomorphisms between (\mathbb{R}^{2n}, J) e (\mathbb{C}^n, i) .
- 3. Let (M, ω) be a symplectic manifold, $J \in \mathcal{J}(M, \omega)$ an almost complex structure compatible with ω and $\langle \cdot, \cdot \rangle_{\mathbb{J}} \equiv \omega(\cdot, J \cdot)$ the Riemannian metric associated to ω and J. Given a smooth function $h: M \to \mathbb{R}$ let $X_h, \nabla h \in \mathcal{X}(M)$ be the symplectic and Riemannian gradients of h, i.e. defined by the relation

$$\omega(X_h,\cdot) = dh(\cdot) = \langle \nabla h, \cdot \rangle_{\mathtt{J}}$$
.

Show that

$$\nabla h = J X_h$$
 e $(\nabla h) \, \lrcorner \, \omega = i(\bar{\partial} - \partial) h$.

4. Let (M, J) be a complex manifold and $f: M \to \mathbb{R}$ a smooth strictly pluri-subharmonic function, i.e. a function such that the (1, 1)-form $\omega_f = \frac{i}{2}\partial\bar{\partial}f$ is symplectic and compatible with J on M. Let $\nabla f \in \mathcal{X}(M)$ be the gradient of f defined with respect to the Riemannian metric on M given by $\langle \cdot, \cdot \rangle_f \equiv \omega_f(\cdot, J \cdot)$. Assuming it exists, show that the 1-parameter flow of ∇f , denoted by ϕ_t , $t \in \mathbb{R}$, is such that

$$\phi_t^*(\omega_f) = e^{4t}\omega_f .$$

<u>Hint:</u> use exercise 3 to show that $\mathcal{L}_{\nabla f} \omega_f = 4\omega_f$.

5. Consider the Kähler manifold (S^2, ω, J) , where

$$S^2 = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1)^2 + (x_2)^2 + (x_3)^2 = 1\} \subset \mathbb{R}^3$$

and $\omega \in \Omega^2(S^2)$, $J \in \operatorname{Aut}(TS^2)$ are given by

$$\omega_x(u,v) = \langle x, u \times v \rangle$$
 and $J_x(u) = x \times u$, $\forall x \in S^2$, $\forall u, v \in T_x S^2 \subset \mathbb{R}^3$

 $(\langle \cdot, \cdot \rangle$ denotes the usual \mathbb{R}^3 inner product and \times denotes the cross product).

a) Let $\phi: S^2 \setminus (0,0,1) \to \mathbb{R}^2$ be the stereographic projection. Show that ϕ is a Kähler isomorphism between $(S^2 \setminus (0,0,1), \omega, J)$ and $(\mathbb{R}^2, \tau, J_0)$, where

$$\tau = \frac{4 \, dx \wedge dy}{(x^2 + y^2 + 1)^2}$$

and J_0 is the standard complex structure on \mathbb{R}^2 , i.e. $(\mathbb{R}^2, J_0) \cong (\mathbb{C}, i)$.

b) Build a Kähler isomorphism between (S^2, ω, J) and $(\mathbb{C}P^1, 4\omega_{FS}, i)$. Conclude that $\int_{\mathbb{C}P^1} \omega_{FS} = \pi$.