SYMPLECTIC GEOMETRY - 2nd Semester 2020/21

Problem Set #3

Due date: April 30

- 1. Let (M, ω) be a closed symplectic manifold, $f, g \in C^{\infty}(M)$ two smooth functions and $\phi_t, \psi_t \in \text{Ham}(M, \omega)$ the (autonomous) Hamiltonian flows generated by X_f and X_g . Show that $\phi_t \circ \psi_t = \psi_t \circ \phi_t$, $\forall t \in [0, 1]$, if and only of the Poisson bracket $\{f, g\} \equiv \omega(X_f, X_g) \in C^{\infty}(M)$ is identically zero.
- 2. Show that the flux : $\widetilde{\mathrm{Diff}}_0(M,\omega) \to H^1(M,\mathbb{R})$, defined by

$$flux(\phi_t) = \int_0^1 [X_t \, \lrcorner \, \omega] \, dt \; ,$$

where $\phi_t \in \mathrm{Diff}_0(M,\omega)$ satisfies

$$\frac{d}{dt}\phi_t = X_t \circ \phi_t \qquad e \qquad \phi_0 = id,$$

is in fact a group homomorphism.

3. On a symplectic manifold (M, ω) , consider the symplectomorphism $\psi \in \text{Diff}(M, \omega)$ and an isotopy $\phi_t \in \text{Diff}_0(M, \omega)$, $t \in [0, 1]$. Show that

$$flux(\psi^{-1} \circ \phi_t \circ \psi) = \psi^*(flux(\phi_t))$$
.

4. Consider the symplectic manifold $(M \times M, \tilde{\omega} = -\pi_1^*(\omega) + \pi_2^*(\omega))$, where (M, ω) is a symplectic manifold and $\pi_k : M \times M \to M$, k = 1, 2, are the natural projections. Let $\iota_{\Delta} : M \to M \times M$ be the diagonal inclusion $\iota_{\Delta}(p) = (p, p)$, $\forall p \in M$. Given an isotopy $\phi_t \in \mathrm{Diff}_0(M, \omega)$, $t \in [0, 1]$, show that

$$flux(\phi_t) = \iota_{\Delta}^*(flux(id \times \phi_t))$$
.

- 5. Consider the torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$, with symplectic form ω naturally induced by the standard symplectic form ω_0 on \mathbb{R}^2 . Let $\Gamma \subset H^1(M,\mathbb{R})$ be the flux group, i.e. $\Gamma \equiv \text{flux}(\pi_1(\text{Diff}_0(M,\omega)))$.
 - a) Show that $\Gamma = H^1(M, \mathbb{Z}) \subset H^1(M, \mathbb{R})$.
 - b) Let $\phi_t \in \text{Diff}(\mathbb{T}^2)$, $t \in [0, 1]$, be an isotopy given by

$$\phi_t(x,y) = (x + f_t(x,y), y + g_t(x,y)),$$

with $f_t, g_t : \mathbb{R}^2 \to \mathbb{R}$ two smooth families of smooth periodic functions, with period 1 in each of the variables $x, y \in \mathbb{R}$, and such that $f_0 \equiv g_0 \equiv 0$. Show that if $\phi_t \in \text{Ham}(\mathbb{T}^2, \omega)$, $\forall t \in [0, 1]$, then

$$\int_{\mathbb{T}^2} f_t \, \omega = \int_{\mathbb{T}^2} g_t \, \omega = 0 \,, \, \forall t \in [0, 1] \,.$$