SYMPLECTIC GEOMETRY - 2^{nd} Semester 2020/21 Problem Set $\sharp 2$

Due date: April 09

1. Let (M, ω) be a symplectic manifold, $\psi: M \to M$ a symplectomorphism and $h: M \to \mathbb{R}$ a smooth function. Show that the Hamiltonian vector fields X_h and $X_{h \circ \psi^{-1}}$ satisfy the relation

$$X_{h \circ \psi^{-1}} = \psi_* X_h$$
.

2. Let L be a smooth manifold and T^*L its cotangent bundle equipped with the canonical symplectic form $\omega_{\text{can}} = -d\lambda_{\text{can}}$. Let also $h: L \to \mathbb{R}$ be a smooth function and $\psi_h: T^*L \to T^*L$ a diffeomorphism defined by

$$\psi_h(x,\alpha) = (x,\alpha + dh_x), \ \forall x \in L, \ \alpha \in T_x^*L.$$

Show that

$$\psi_h^*(\lambda_{\rm can}) = \lambda_{\rm can} + \pi^*(dh)$$
,

where $\pi: T^*L \to L$ is the natural projection $\pi(x,\alpha) = x$. Conclude that ψ_h is a symplectomprphism of $(T^*L, \omega_{\text{can}})$.

- 3. Let M be a closed, connected, smooth manifold of dimension m, and let $\sigma_0, \sigma_1 \in \Omega^m(M)$ be two volume forms. Show that if $[\sigma_0] = [\sigma_1]$ in $H^m_{dR}(M)$, i.e. $\int_M \sigma_0 = \int_M \sigma_1$, then there exists a diffeomorphism $\phi: M \to M$ such that $\phi^*(\sigma_1) = \sigma_0$.
- 4. Consider the torus $\mathbb{T}^4 = \mathbb{R}^4/\mathbb{Z}^4 \cong S^1 \times S^1 \times S^1 \times S^1$, with symplectic form ω naturally induced by the standard symplectic form ω_0 on \mathbb{R}^4 . Give examples of symplectic, isotropic, coisotropic and Lagrangian submanifolds of (\mathbb{T}^4, ω) .
- 5. Let (M, ω) be a symplectic manifold, $h: M \to \mathbb{R}$ a smooth function with 0 as a regular value and $Q \subset M$ a codimension 1 (hence coisotropic) submanifold defined by $Q = h^{-1}(0)$. Show that the Hamiltonian vector field X_h satisfies

$$(X_h)_q \in (T_q Q)^{\omega}, \ \forall q \in Q.$$

6. Let (M, ω) be a symplectic manifold and $Q \subset M$ a coisotropic submanifold. Show that the distribution $(TQ)^{\omega} \subset TQ$ is isotropic and integrable.