SYMPLECTIC GEOMETRY - $2^{\underline{nd}}$ Semester 2020/21 Problem Set $\sharp 1$

Due date: March 19

- 1. Let (V, ω) be a symplectic vector space. Show that any codimension 1 subspace $S \subset V$ is coisotropic.
- 2. (a) Let E be a real vector space. Show that $E \oplus E^*$ has a canonical symplectic structure ω_0 determined by $\omega_0(u \oplus \alpha, v \oplus \beta) = \beta(u) \alpha(v)$.
 - (b) Let L be a Lagrangian subspace of a symplectic vector space (V, ω) . Show that there exists a symplectic linear map $\psi : (V, \omega) \to (L \oplus L^*, \omega_0)$ such that $\psi(u) = u \oplus 0$, $\forall u \in L$.
- 3. Let (V, ω) be a symplectic vector space, $J \in \mathcal{J}(V, \omega)$ a complex structure compatible with ω and $g_J(\cdot, \cdot) = \omega(\cdot, J \cdot)$ the associated inner product. Show that a subspace $L \subset V$ is Lagrangian iff $J(L) = L^{\perp} \equiv$ orthogonal complement of L with respect to g_J . Conclude that L is Lagrangian iff J(L) is Lagrangian.
- 4. Let V be a real vector space of dimension 2n and $J:V\to V$ a complex structure Show that the space of symplectic forms on V that are compatible with J is convex.
- 5. Consider the symplectic manifold (S^2, ω) , where

$$S^2 = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\} \subset \mathbb{R}^3$$

and $\omega \in \Omega^2(S^2)$ is given by

$$\omega_x(u,v) = \langle x, u \times v \rangle, \ \forall x \in S^2, \ \forall u, v \in T_x S^2 = \{x\}^{\perp} \subset \mathbb{R}^3$$

- $(\langle \cdot, \cdot \rangle$ denotes the usual inner product on \mathbb{R}^3 and \times denotes the cross product). In other words, ω is the area form on S^2 induced by the Euclidean metric on \mathbb{R}^3 .
- (a) Show that on $S^2 \setminus \{(0,0,\pm 1)\}$, the symplectic form ω is given in polar cylindrical coordinates (θ,x_3) , with $0 \le \theta < 2\pi$ and $-1 < x_3 < 1$, by $\omega = d\theta \wedge dx_3$. Note: this shows that the horizontal projection of the cylinder to the sphere is area preserving, a well known fact since Archimedes.
- (b) Use the previous result to show that the Hamiltonian flow generated by the function $h: S^2 \to \mathbb{R}$, $h(x) = x_3$, consists of rotations of S^2 around its vertical axis.
- 6. (a) Let L be a smooth manifold. Any diffeomorphism $f:L\to L$ induces naturally a diffeomorphism $F:T^*L\to T^*L$ by the formula

$$F(x,\alpha) = (f(x), ((df)_x^{-1})^*\alpha)$$
.

Show that F is a symplectomorphism of T^*L , i.e. $F^*\omega_{\rm can} = \omega_{\rm can}$.

(b) Let Y be a vector field on L, $f_t: L \to L$ the flow generated by Y, $F_t: T^*L \to T^*L$ the 1-parameter group of symplectomorphisms induced by f_t , and X the vector field on T^*L that generates F_t . Show that $X = X_h$ is the Hamiltonian vector field of the function $h: T^*L \to \mathbb{R}$ given by $h(x, \alpha) = \alpha_x(Y(x))$.