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Abstract
Faculdade de Ciências da Universidade do Porto
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On the Energy of gravitational waves in a De Sitter background

by José Queirós

This thesis is a small step forward in the complicated endeavour of building a complete

framework isolating in a full non-linear way the gravitational degrees of freedom of an

asymptotically De Sitter spacetime. We study the much simpler problem of a linearized

gravitational field in a De Sitter background, computing its energy flux on the cosmological

horizon and relating it to the quadrupole moments of a source described by a su�ciently

general energy-momentum tensor.

We start by reviewing a framework in chapter 2, the covariant phase space formalism

following [key-8, key-14, key-17], since it gives us a method to define the energy and

its flux, deriving formulas for conserved charges generated by asymptotic symetries and

respective fluxes at a spacetime boundary. In Chapters 3 and 4, we review the work of

Chandrasekaran et al who in [key-17] applied the work of Wald and Zoupas [key-9] to a

general null surface, and derived expressions for charges and fluxes in terms of intrinsic

objects on the null surface. In chapter 5, we apply these results to the case of GR with

positive L, and apply these to our special case of a perturbed solution.

Since we’ll be interested in the weak field regime, where we take perturbations to De

Sitter, in chapter 6, we review the fundamentals of De Sitter spacetime, and use these

to, in chapter 7, study linear perturbations to De Sitter. We compute the energy of our

solutions in the cosmological horizon, and relate them to the quadrupole moments of the

source, generalizing the Einstein’s Quadrupole formula.
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Sobre o fluxo de energia de ondas gravitacionais num background de De Sitter

por José Queirós

Esta tese representa um pequeno avanço na complicada tarefa de construir um for-

malism que isole de forma não linear os graus de liberdade do campo gravitacional num

espaço-tempo assintoticamente De Sitter. Estudamos o problema mais simples de um

campo gravitacional linearizado num background de De Sitter, calculamos o seu fluxo de

energia no horizonte cosmológico e relacionamos com os momentos do quadrupolo de uma

fonte descrita por um tensor de energia-momento suficientemente geral.

Começamos por rever no capítulo 2, o formalismo do espaço de fase covariante seguindo

[referência-8, referência-14, referência-17], uma vez que nos proporciona um método para

definir a energia e o seu fluxo, derivando fórmulas para cargas conservadas geradas por

simetrias assintóticas e respetivos fluxos numa fronteira do espaço-tempo. Nos Capítulos 3

e 4, revimos o trabalho de Chandrasekaran et al, que em [referência-17] aplicou o trabalho

de Wald e Zoupas [referência-9] a uma superfície nula, e obteve expressões para cargas

e fluxos em termos de objetos intrínsecos na superfície nula. No capítulo 5, aplicamos

esses resultados ao caso da Relatividade Geral com L positivo e aplicamo-los ao nosso caso

especial de uma solução perturbada.

Dado que estamos interessados no regime de campo fraco, onde efetuamos perturbações

em De Sitter, no capítulo 6, revimos alguns conceitos importantes do espaço-tempo de

De Sitter e usamo-los para, no capítulo 7, estudar perturbações lineares em De Sitter.

Calculamos a energia das nossas soluções no horizonte cosmológico e relacionamo-las com

os momentos de quadrupolo da fonte, generalizando a fórmula do Quadrupolo de Einstein.
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Chapter 1

Introduction

It is an established fact since [1] was published, that the expansion of the universe is

accelerating, which can be best modeled by a positive cosmologival constant L. Motivated

by this, in recent years, the study of gravitational waves in the presence of a positive L

has received a lot of attention.

Gravitational waves were first predicted in 1916 by Einstein, who was able to isolate the

gravitational degrees of freedom in the weak field approximation and derive the quadrupole

formula, relating the energy of these waves to the dynamics of the source. There was, for

many years, a lot of debate concerning the physics of these results: were these just a

coordinate artifact and a product of the linear regime, or did they indeed describe physical

waves? The debate was put to an end in the 1950s when Trautman [2] obtained expressions

for energy and and momentum of gravitational waves in full non-linear General Relativity

and in the early 1960’s with the pioneering work of Bondi et al [2]. They studied the

asymptotics of a metric in full non-linear GR as it approached null infinity, and were able

to isolate the gravitational degrees of freedom via a second rank, trace free, transverse

tensor field Nab, which provided an invariant caracterization of the graviational degrees of

freedom. Later, Penrose and Newman [2] extended their work, using conformal techniques.

Both of these works provide nowadays the theoretical foundation for computations in the

study of gravitational waves in Numerical Relativity.

Independently, in the 1980s a sympletic approach to GR was applied to the study

of GW’s, and in [5] the results of Trautmann, Bondi and others were recovered. Later,

Wald and Zoupas in [6] provided a general algorithm to compute fluxes of charges at an

asymptotic boundary for di�eomorphism covariant theories in the context of the covariant

1



2 On the Energy of gravitational waves in a De Sitter background

phase space formalism, and by carefully chosing the sympletic potential Q, also recovered

the results in earlier works.

These works are valid in the context of asymptotically flat spacetimes, where no cos-

mological constant is present. Since observations [1] have established the existence of a

positive L, it is important to construct a similar framework in this context. Recently, in a

series of papers [7–9], Ashtekar and colaborators started the endeavour of trying to extend

the previous framework to asymptotically de Sitter spacetimes, but have encountered some

fundamental di�culties. In asymptotically flat space, one is able to define energy via a

charge generated by an asymptotic symmetry which is timelike in a neighborhood of null

infinity, but in asymptotically de Sitter spacetimes null infinity is a space-like hypersurface,

and hence all symmetry vector fields will be space-like in a neigborhood of I; this implies

that not only is it not obvious how to define energy but also that any definition will not

be bounded by below. Also, contrary to the case L = 0, here I has virtually no universal

structure, and the asymptotic symmetry group is the full di�eomorphism group. In [7] a

more restrictive boundary condition was studied but it was shown to be too restrictive. In

subsequent papers graviational radiation was studied in the weak field regime; expressions

for fluxes in the presence of L were proposed and a quadrupole formula was derived. Dif-

ferent arguments, proposals, definitions and ideas have been been brough out in the last

few years by many authors, namely [10, 11].

In [8, 9] it was suggested that a more appropriate arena for these calculations might be

the cosmological horizon H of De Sitter, since it is a null surface and for realistic physical

situations, the flux on H should equal to the flux on I. The goal of this thesis is to

generalize the quadrupole formula in the cosmological horizon of a De Sitter background.

Recently, this calculation was done in [7], and for that reason our aim is to reproduce and

clarify the results of [24].

We will start by briefly introducing linearized gravity without a cosmological constant.

A much more detailed discussion will be made in chapter 6, when we treat the case of a

linearized perturbation in a de Sitter background. Here our aim is to give a very short

review of some of the standard results, to give motivation for what follows. A more

thorough treatment of this subject can be for example found in [21]and [22].
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1.1 Linearized gravity without a cosmological constant

When gravity is very weak, it can be useful to regard spacetime as a perturbation to

Minkowski spacetime. Here, we assume that the spacetime manifold is such that one can

find a set of ’almost inertial’ coordinates {xa} in which the metric can be written as a

small deviation hab to Minkowski

gab = ÷ab + hab (1.1)

Since we don�t have any natural metric from which to measure the smallness of hab,

here we assume that the components of hab are much smaller than 1 in this almost inertial

frame. In this context the Einstein equations are given by

G
(1)
ab [h] = ≠1

2ˆcˆch̄ab + ˆcˆ(bh̄a)c ≠ 1
2÷abˆ

cˆdh̄cd = 8fiTab (1.2)

where it was defined the trace reversed pertrubation h̄ab = hab ≠ 1
2÷abh, and G

(1)
ab is only

first order in h̄ab. Since GR is a di�eomorphism invariant theory, a space time and a stress

energy tensor (M , g, T ) is physically equivalent to another (M , „úg, „úT ) if „ : M æ M is

a di�eomorphism. In the context of Linearized gravity this leads to a gauge freedom: two

perturbations h and h+L›÷ are physically equivalent perturbations. This freedom can be

used to simplify the Einstein equations, in particular one can always find some › so that

the corresponding gauge transformed h obeys the gauge condition ˆah̄ab = 0. This is the

Lorentz gauge, and in this gauge the Einstein’s equations simplify to

ˆcˆch̄ab = ≠16fiTab (1.3)

In vaccum, the linearized Einstein’s equations reduce to a source-free wave equation,

which means the theory admits gravitational waves. An arbitrary well behaved solution to

the vaccum Einstein equations will be a superposition of plane waves

h̄ab = Habe
ik·x (1.4)

where Hab is a constant tensor field which describes the polarization of the waves. The

vaccum Einstein’s equations restrict ka to be null, which implies that gravitational waves

travel at the speed of light relative to the background Minkowski field, and the Lorentz

gauge restricts the waves to be transverse. The remaining gauge freedom can be used to
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show that Hab only has two independent components, which is a way of seeing that the

gravitational field has two degrees of freedom.

1.2 The Quadrupole Formula

In order for these wave like solutions to be produced, some strong gravity phenomena is

needed, where the linear approximation is not valid, and the full nonlinear Eintein equations

must be used. It is however still instructive to study the problem of a linear perturbation

sourced by some energy momentum tensor Tab .

We then return to equation (1.3). Since each component of h satisfies a sourced scalar

wave equation, its solution can be given by the same retarded Green’s function we know

for a scalar field in eletromagnetism

h̄ab(x, t) = 4
⁄

d3xÕ
Tab(t ≠ |x ≠ xÕ|, xÕ)

|x ≠ xÕ| (1.5)

We assume that the matter is confined in a compact region near the origin of size d π r

and that it moves non-relativistically. Then far from the source we have

h̄ab(x, t) ¥ 4
r

⁄
d3xÕTab(x

Õ, tret) (1.6)

where tret = t ≠ r. At linear order, h̄00 and h̄0i are related to the energy and momentum

of the source which will be conserved (at linear order only) and hence do not capture the

dynamics we are interested in. Let’s take a look at h̄ij

⁄
d3xÕT ij =

⁄
d3xÕ[ˆk(T

ikxj) ≠ (ˆkT ik)xj ]

= ˆ0

⁄
d3xÕˆ0T i0xj

where we dropped a surface term a used the conservation of T ab. Symmetrizing now

gives

⁄
d3xÕT ij = ˆ0

⁄
d3xÕ

1
2 [ˆk(T

0kxixj) ≠ (ˆkT 0k)xixj ]

=
1
2ˆ2

0Qij
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where again we dropped a surface term a used the conservation of T ab. In the end, we

defined the quadrupole moment of the source

Qij =
⁄

d3xÕT00xixj (1.7)

which is the second moment of the energy density (the zeroth being the total energy,

and the first the energy dipole). We hence see that gravitational waves will apear when

Qij has a time dependence.

Now, since it is expected that the source will lose energy, and the gravitational waves

should carry such energy to null infinity, we move on to try to compute such flux. Such

calculation is more subtle than one might assume. Since in GR the dynamical field is g

itself, one could expect the energy density of the gravitational field to be related to some

quadratric funtion of first derivatives of g. But we know, that at any point, one can always

find coordinates for which these vanish. As we’ll see, one can define gravitational energy,

but not in a local sense. Here, we will follow a very short and direct path to compute the

energy. Its not the most rigorous, but it will be enough for the purposes of this section.

To do this we go to second order in perturbation theory. At second order ÷ + h fails to

satisfy the Einstein equation, hence we consider

gab = ÷ab + hab + h
(2)
ab (1.8)

where the components of h(2) will be O(‘2) if we assume the components of h to be

O(‘). In second order the Einstein tensor will be composed of terms linear in h and h(2)

and a term quadratic in h

Gab[g] = G
(1)
ab [h] + G

(1)
ab [h

(2)] + G
(2)
ab [h] (1.9)

We assume that no matter is present. This implies that G
(1)
ab [h] = 0 as we’ve seen

before and we are left with

G
(1)
ab [h

(2)] = 8fitab[h] (1.10)

where

tab[h] © ≠ 1
8fi

G
(2)
ab [h] (1.11)
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In fact, the contracted Bianchi identitiy gacÒcGab at first order, and the equations of

motion G(1) = 0 immediatly imply the conservation of tab

ˆatab = 0 (1.12)

Hence, we have a symmetric tensor (in the background spacetime) that is quadratic in h,

conserved, and that sources the Einstein equation for the second order perturbation. This

would be a very nice candidate for a local energy momentum tensor for the gravitational

field, but unfortunately it it is not gauge invariant. This is again a way of seeing the

impossibility of defining a local notion of energy in GR.

However, one can define the total energy on a spacelike hypersurface
q

E =
⁄

d3xt00 (1.13)

and this is in fact gauge invariant, provided the field h and its derivatives decay suficiently

rapidly as r æ Œ (aymptotic flatness), and we restrict to gauge transformations which

obey the same boundary conditions.

In [21], it was shown that if we average tab in a certain way, over a region much larger

than the wavelength of the gravitational wave, we obtain a gauge invariant object. They

used this object to define the flux of energy and the power of the gravitational wave. Here

we take a more direct approach, we consider

F = ≠
⁄

S
ta0dSa (1.14)

In a time-dependent spacetime which is stationary initially and at later stages, this is

gauge invariant and naturally defines the flux of energy of gravitational waves. Here S

is a timelike surface bounded by two asymptotically null surfaces assumed to be in the

future and past stationary regions, and where asyntoptic flatness is again assumed. Using

1.11and 1.14 and after a very lengthy calculation one obtains

F =
1
5

⁄
dt

ÿ

ij

(
...
q ij)

2(tret) (1.15)

where qij = Qij ≠ 1
3”ijQ is the trace-free quadrupole moment tensor. This is the

quadrupole formula for energy lost via gravitational waves by a time-varying quadrupole.The

main goal of these thesis will be to derive a generalization of this formula to the case of a

perturbation to de Sitter spacetime.



Chapter 2

Covariant phase space for field

theories

In di�eomorphism covariant theories such as GR, there is no local notion of stress-energy

tensor for the gravitational field. Nevertheless, in asymptotically flat spacetimes charges

associated with asymptotic symmetries have been defined at spatial and null infinity [3,

14].Most recent approaches to the problem of defining energy in asymptotically de Sitter

spacetimes use results from the so called covariant phase space formalism. We now turn

to a discussion of some of these results, following [6, 12]

2.1 Hamiltonian formalism

In classical mechanics, the phase space is a manifold parameterized by position and mo-

mentum coordinates (q, p). The hamiltonian is a scalar function on this manifold that

generates dynamics via the Hamilton’s equations

q̇ =
ˆH

ˆp
(2.1)

ṗ = ≠ˆH

ˆq
(2.2)

There is a geometric manner to present this subject which will allows us to generalize

to field theories.The idea is that phase space can be caracterized as a sympletic manifold,

that is a manifold equiped with a closed, non-degenerate two form Ê, which we call a

sympletic form. Given this structure, one is able to produce a vector field XH out of H,

7
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and as we will see, particles just follow the flow of XH . Any two-form provides a map from

vectors to one forms, via the interior product X · Ê . Since the two form is assumed to be

degenerate, this map has an inverse. We can then take a function H, build a one form out

of it dH and use this inverse to construct a vector field

XH · Ê = ≠dH (2.3)

If we introduce local coordinates x = (q, p), and invert the previous expression, one

obtains the equations for the intregal curves of XH

dxµ

dt
= Xµ

H = Êµ‹ˆ‹H (2.4)

Hamilton’s equations are recovered if we take Ê = dp · dq. Given two functions on M

one can play the same game and recover the usual Poisson bracket

{f , g} = Ê(Xg, Xf ) = Ê≠1(df , dg) (2.5)

in terms of which we have the time evolution

ḟ = {f , H} = XH(f) = LXH
f (2.6)

It is clear why the form is required to be degenerate. The requirement that it is a

closed form ensures that the poisson bracket is invariant under the Hamiltonian flow, or

equivalently that the form itself is invariant

= XH · dÊ + d(X · Ê)

= XH · dÊ ≠ d2H

= XH · dÊ

which vanishes for arbitrary H if dÊ = 0.

Before going further to the fields, a few important remarks are in order.

• The phase space of a dynamical system is usually seen as the set of initial data on

a time slice, which makes it a non-covariant construction. Fortunately, there is an

isomorphism between these to the space of solutions. We have just seen that the

sympletic form is invariant under the flow of the hamiltonian, hence the sympletic
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structure that we pullback to space of solutions is independent of the choice of ini-

tial time slice. Being also a manifold, the space of solutions is in fact a sympletic

manifold, one which we will call the covariant phase space of the system. This is the

construction that we will be able to apply also for fields.

• In this new setting, an important question arises, how do we talk about dynamics

in this construction? If a point in the phase space is one allowed history, what does

’time translation’ look like in here? This notion can be introduced as follows: given

a solution with some in initial data at t1, we map it to another solution whose initial

data at t0 is the same as the initial data of the previous solution at t1.

2.2 The presympletic form

We consider a d-dimensional manifold M , and some dynamical fields defined on it which

we collectively denote as „ (backgroup fields “ are also allowed, the lagrangian can in

general depend on them, but its dependence on them will be neglected for simplicity).

The boundary of the manifold ˆM will in general be a number of di�erent components

ˆM =
t

i Bi, where Bi may be at a finite location for example a cosmological horizon (our

case of interest), or an asymptotic boundary, in which case our manifold of interest will be

the conformal completion of some physical spacetime.

We define a space of configurantions C (an infinite dimensional manifold) of dynamical

fields on M that satisfy suitable smoothness and boundary conditions on each Bi and their

intersections. These will depend on the specific theories, and for now we only assume that

these were specified.

We assume that the dynamics of the theory are specified by a lagrangian d-form L

which depends locally on the fields „ = („, “).

Consider variations of the fields „ æ „+ ”„ that obey the boundary conditions. These

will induce a variation on the lagrangian

”L = Ea(„)”„a + d◊(„a, ”„a) (2.7)

where E is a d-form on spacetime that implies the equations of motion E = 0. The (d-1)

form ◊ arises in the usual integration by parts, and is required to be constructed locally

and covariantly out of „ and ”„.
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Before going further, we should take a detour to discuss some notation. Consider a

smooth one-parameter family of solutions „⁄ that obey the boundary conditions; a variation

is usually seen as ”„ © ˆ⁄„⁄|⁄=0. Similarly, given a funtion L on C, its variation is just

ˆ⁄L|⁄=0 =
”L

”„
ˆ⁄„⁄|⁄=0 (2.8)

Variations ”„a can then be seen as components of elements X of the tangent space T„C.

The action of tangent vector X on funtions f : C æ R is just

X(f) =
⁄

ÁXa(„, x)
”f

”„a
(2.9)

What about the dual space (T„C)ú? Elements of the dual space will be one-forms that

map X to the real numbers. In order to describe its elements, we would like to see the

quantitty ”„ not as a variation, but as coordinate di�erential, so that ” is now an exterior

derivative on forms on C. Its action on tangent vectors X is given by

”„b(
⁄

ÁXa(„, xÕ)
”f

”„a
) = Xb(„, x) (2.10)

If we wish to convert ”„ back to a variation we can act with it on a vector whose

components Xa are the desired variation. A 1-form in the configuratoin space can in

general be written

Ê =
⁄

ÁÊa”„a (2.11)

Note that the potential ◊, being a funtion of Xa = ”„a can be seen as a 1-form on C.

The lagrangian L is a scalar funtion on C and hence in this new way, ”L is a one-form. We

can recover the old variation as the action of a vector field on it X(L) = X · ”L.

To set up the Hamiltonian formalism we now introduce the pre-phase space and the

pre-sympletic form. We define the pre-phase space ÂF as the elements of the configuration

space C that also obey the equations of motion E(„) = 0. As we will see later, for theories

with continuous local symmetries this space is still too ’big’ for our purposes. We now

define the pre-sympletic current on ÂF as

Ê = ”◊| ÂF (2.12)

By construction, it is a closed 2-form on ÂF , and we can show that is also also a closed

(d-1) form on spacetime M
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dÊ = d(”◊)

= ”(”L ≠ E”„)

= ”2L ≠ ”E · ”„

= 0

since [”, d] = 0, E| ÂF = 0 and ”2 is an identity. Hence the pre-sympletic current, is also

a conserved current on spacetime. Its action on variations Xa = ”1„a and Y a = ”1„a is

Ê(X, Y ) =”◊(X, Y )

=X(◊(Y )) ≠ Y (◊(X)) + [X, Y ]

=X(◊(Y )) ≠ Y (◊(X))

since variations commute. We then recover the usual definition of the pre-sympletic

current.

Note that elements X of the tangent to ÂF will satisfy the linearized field equations.

We can see this as follows: if Xa = ”„a is tangent to ÂF , then there exists a one-parameter

family of solutions „⁄ in ÂF such that ”„a = ˆ⁄„|⁄=0. Since „⁄ œ ÂF , we have E(„⁄) = 0 for

all ⁄, so that dE(„⁄)/d⁄|⁄=0 = F (”„) = 0 which are the linearized equations of motion

for Xa = ”„a.

Consider now a slice S, that is a closed, embedded (n-1) dimensional submanifold of

M . We define the presympletic form WS on ÂF as

ÂWS =
⁄

S
Ê (2.13)

Consider now a spacetime volume V bounded by two slices S1 and S2. Using Stokes

theorem we have

0 =
⁄

V
dÊ

=
⁄

S1
Ê ≠

⁄

S2
Ê +

⁄

B12
Ê

where B12 is a subset of one of the boundary elements bounded by ˆS1 and ˆS2. This

shows that in general ÂWS will depend on S. Now, if the slices are compact or are required
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to be Cauchy surfaces so that B12 µ i0 then ÂWS will not depend on S provided suitable

asymptotic conditions are imposed on the fields.

2.3 The sympletic form and the covariant phase space

For theories with continuous local symmetries, a problem will arise. The redundancy in

the description of the solutions appears as a degeneracy of the pre-sympletic form. This

is solved by quotienting ÂF by the action of the group of zero modes of the presympletic

form.

Take two vector fields X, Y for which X · W = Y · W = 0; its commutator also anihilates

W

LXY · W = LX(Y · W) ≠ Y · LX W

= ≠Y · (X · dW + d(X · W))

= 0

which shows that the zero modes form a Lie algebra. Frobenius’s theorem then implies

that the zero modes are jointly tangent to a set of submanifolds which foliate ÂF . These

are just the orbits of the degeneracy group G whose Lie algebra are just the zero modes of

W. The covariant phase space is then defined as the quotient

F = ÂF/G (2.14)

2.4 Symmetries and di�eomorphism covariance

The formalism we are developing is especially useful for theories whose dynamics are invari-

ant under at least some subgroup of spacetime di�eomorphisms. These di�eomorphisms

will be described on phase space by some vector field X that will generate the flow for the

dynamical fields.

We define a continuous symmetry of a lagrangian field theory to be a vector field X

tangent to the configuration space C, such that

X · ”L = d– (2.15)
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where – is a (d-1) form locally constructed out of the fields „. Note that two lagrangians

are equivalent if they di�er by some boundary term d–, and we are essentially saying that

the vector field X is a symmetry if its action on the lagrangian leaves it invariant up to

these boundary terms.

Consider now infinitesimal di�eomorphisms M æ M , that preserve the boundary ˆM .

These will be generated by a vector field ›, and induce variations on the dynamical fields

„ æ „ + ”›„ with ”›„ = L›„. We call X› the vector field on TC whose components are

L›„, and that generates the › flow in phase space

”›„ = L›„ = X› · ”„ = X›(„) = LX›
„ (2.16)

In order for X› to be a continuous symmetry, that is in order for it to leave the

lagrangian invariant, it should map solutions to solutions. Hence, let D(B) to be the

group of di�eomorphisms in M that preserve the boundary B and map F to F , and

D0(B) the group of di�eomorphisms that are the identity on B; we define the symmetry

group G as

G = D(G)/D0(G) (2.17)

The lie algebra g of this group is obtained by modding out from the set of representatives

of infinitesimal di�eomoprhisms › the ones which correspond to the trivial di�eomorphisms

(whose charges vanish). An example of this, is the well known BMS algebra at null infinity.

Note that if › œ G, one can show, using the same argument we used before for tangent

vectors to F , that L≥ª obeys the linearized equations of motion and hence X› is tangent

to F .

As previously mentioned, a vector field X› will evolve the dynamical fields, but this is

not the case for a general infinitesimal di�eomorphism represented by › on M ; these will

also act on the background fields.

Consider a configuration space tensor ‡ that is also a spacetime tensor locally con-

structed out of dynamical and backgroud fields; one says that ‡ is covariant under › if

LX›
„ = L›„ (2.18)

The lagrangian will be covariant under ›; if › is either a symmetry of the background

fields that is if L›“ = 0 , or the lagrangian is built in such a way that any background fields
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enter in combinations that are invariant under ›. An extreme case is if the lagrangian does

not depend in any background fields, like for example the Einstein-Hilbert Lagrangian. In

fact, it was shown in [16] that this is the only way for a lagrangian to be covariant under

arbitrary di�eomorphisms.

2.5 Existence of an Hamiltonian

In the first section we tried to construct a vector field out of an Hamiltonian on phase space.

Now, we need to do the exact opposite: given some representiative › of an asymptotic

symmetry, we would like to construct the corresponding Hamiltonian H›.

In other words, given the pre-sympletic form ÂW on pre-space ÂF , we would like to find

a function such that

”H› = ≠X› · ÂW (2.19)

Since for any zero mode ÂX of ÂW we have

ÂX · ”H› = ÂW( ÂX, X›) = 0 (2.20)

the function H› will be a well defined one on the phase space. This is the analogue of

Hamilton’s equations on the covariant phase space; if such function exists one F we will

call it the Hamiltonean H›. Applied to a variation ”„ œ T„F we read

”H› = W(„, ”„, L›„) =
⁄

S
Ê(„, ”„, L›„) (2.21)

Suppose that such function exists, then assuming that F is connected, its value on

F will be uniquely determined by 2.21 up to an arbitrary constant, that can be fixed by

requiring that H› vanishes for some reference solution, for example Minkowski spacetime.

It is convenient to define the Noether current

j› = X› · ◊ ≠ › · L (2.22)

This is a scalar function on C and a (d-1)-form on M . Note that
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dj› = d(X› · ◊) ≠ d(› · L)

= X› · (”L ≠ E”„) ≠ L›L

= ”›L ≠ L›L ≠ EL›„

= ≠EL≥ª

and we see that, when the equations of motion of the theory are satisfied, j› is a closed

form. Assume, for now that the lagrangian is covariant under arbitrary di�eomorphisms

(hence prohibiting any background fields); that is if f is a di�eomorphism f : M æ M

then L(fú„) = fúL(„). Theories arising from these lagrangians will be di�eomorphism

covariant.

It can be shown (see [23]) that for di�eomorphism covariant lagrangians, j› it is exact

as well. That is, there is a noether potencial Q› so that

j› = dQ› (2.23)

If the equations of motion of the theory are not satisfied, it was shown that that there

is a d-form C so that

j› = dQ› + › · C (2.24)

In fact, C = 0 will be equal to zero whenever E = 0; it corresponds to the constraints

of the theory. Let’s now look at the variation of j›

”j› = ”(X› · ◊) ≠ ”(› · L)

= LX›
◊ ≠ X› · ”◊ ≠ › · E”„ ≠ › · d◊

= ≠X› · Ê + d(› · ◊)

Hence, we get

”H› = ≠
⁄

S
X› · Ê

=
⁄

S
”j› ≠

⁄

ˆS
(› · ◊)
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If we assume a di�eomoprhism covariant lagrangian, we’ll have

”H› =
⁄

ˆS
(”Q› ≠ › · ◊) (2.25)

Hence, we see that if H› exists, when evaluted on F it is only a surface term. A

necessary condition for existence of H› imediatly arises: since ”2 = 0 is an identity

0 = ”2H›

= ≠
⁄

ˆS
› · Ê (2.26)

Hence, a solution will only exist, if the previous integral vanishes. In fact, it was shown

in [6] that it is also a suficient condition for the existence of H›. If the integrand vanishes

on ˆS, the condition will automatically be satisfied. This can happen in two ways:

• either the pullback of Ê to ˆS vanishes

• or › is tangent to ˆS, so that the pulback of › · Ê to ˆS will be zero

2.6 Generalized Wald-Zoupas charges

As we’ve seen in the last section, the consistency condition may not always be satisfied.,

so that an Hamiltonean cannot be defined. In fact, this will be true, in many interesting

situations. In this section, we wish to give a presctiption to define conserved quantities

even when no Hamiltonian can be defined.

First of all, some terminology and assumptions should be clarified. We assume a man-

ifold M with boundary ˆM = B. If no boundary exists, a boundary B may be attached

by conformal compactification, so that M
t

B is a manifold with boundary. The boundary

conditions will be specified by requiring certain limiting behaviour of the dynamical fields

„ as one approaches B. In general, M
t

B will be equipped with additional structure, that

will enter into the specification of the limitng behaviour of the fields, and will be part of

the definition of C and F .We further assume:

• C has been defined so that in F , Ê extends continuosly to B

• silces S extend smoothly to B and intersect B in a (n ≠ 2)-dimensional submanifold

ˆS, that we will call a cross-section of B

Consider now an infinitesimal asymptotic symmetry, represented by a vector field ›, and a

slice S. Two situations will arise.
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• The pullback of Ê to B vanishes, in which case an Hamiltonean exists. In this

situation, one can show that the H› is in fact a conserved quantity, that is, it doesn’t

depend on the choice of slice S. Consider two slices S1 and S2 which intersect B in

two cross-sections ˆS1 and ˆS2 that bound a region B12 µ B. We have

”H›|S1 ≠ ”H›|S2 = (
⁄

ˆS1
≠

⁄

ˆS2
)(”Q› ≠ › · ◊)

=
⁄

B12
d(”Q› ≠ › · ◊)

= ≠
⁄

B12
X› · Ê

which shows that ˆH› is independent of the cross-section. If a reference solution is

chosen so that H› is zero for any cross-section, then H› will also be independent of the

choice of cross-section.

• The pullback of Ê to B is nonzero, so that in general H› cannot be defined. The

exception will be when › is tangent to ˆS. In this case, even tough an Hamiltonian

can be defined, it will not be conserved since

”H›|S1 ≠ ”H›|S2 = ≠
⁄

B12
X› · Ê (2.27)

will not vanish in general.

One now wishes to provide a prescription to define charges in this second situation. We

do that by trying to find a term that compensates the o�ending term in the consistency

equation (2.26).

Consider the pullback Ễ of Ê to B. Let be ◊̃ be a potential for this sympletic current

so that on B we have Ễ = ”◊̃. This potential is required to be locally constructed from the

fields in B and to be independent of the coices of universal strucure on B [6]. Note that a

potential ◊̃ will be defined up to ◊̃ æ ◊̃ + ”W for some 3-form suitably constructed from

the fields on B. We then define a conserved quantity H› by

”H› =
⁄

ˆS
(”Q› ≠ › · ◊) +

⁄

ˆS
› · ◊̃ (2.28)

It is easy to check that this quantity satisfies the consistency condition (2.26), and hence

there will be some function H› that defines a ’conserved quantity’. It will not actually be

conserved since
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”H›|S1 ≠ ”H›|S2 = (
⁄

ˆS1
≠

⁄

ˆS2
)(”Q› ≠ › · ◊ + › · ◊̃)

=
⁄

B12
d(”Q› ≠ › · ◊ + › · ◊̃)

=
⁄

B12
(≠X› · Ê + d(› · ◊̃)) =

⁄

B12
”f›

which in general does not vanish. This is to be expected due to the possible presence

of radiation at B. Hence, we will have a (3-form) f› at B that describes the flux of H› on

B.

Note however, that the potencial is not uniquely defined. We can fix it by demanding

that f› vanishes when no radiation is present. This is expected to happen when „ is a

stationary solution, that is, when there is a nonzero infinitesimal asymptotic symmetry

represented by an exact symmetry ta which is timelike in a neighborhood of B. We then

require that f› vanishes for any asymptotic symmetry ›a on a stationary solution.

To see what condition on ◊̃ will ensure that this happens, we first note

”F› = ≠ X› · ÊÕ + d(› · ◊̃)

= ≠ X› · ÊÕ + L›◊Õ ≠ › · d◊̃

= ≠ X› · ÊÕ + L› ◊̃

where we used that › · d◊̃ = 0 since › is tangent to B. Now, since we assume ◊̃ to be

convariant, we have

L› ◊̃ = LX›
◊̃ = ”(X› · ◊̃) + X› · ”◊̃ (2.29)

to finally get

”f› = ”(X› · ◊̃) (2.30)

Note that while defining H› we assumed that there was some reference solution „0

on which H› should vanish for all cross-sections; this immediately implies that f› also

vanishes on this reference solution. We assume that this solution is stationary, and impose

the requirement that ◊̃ vanishes on stationary solutions. Since both ◊̃ and f› vanish on „0

we get
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f› = X› · ◊̃ (2.31)

The requirement that ◊̃ vanishes on all stationary solutions, then immediately implies

the flux f› is zero as desired.

A quick summary of what we’ve done:

• given a representative › of an asymptotic symmetry, we defined a charge H› on a

cross section of S of B as a solution of

”H› =
⁄

S1
(”Q› ≠ › · ◊ + › · ◊̃) (2.32)

with H› defined by requiring that it vanishes on a reference solution (that is assumed

to be stationary) on all cross-sections S and for all ›

• Also, we required that ◊̃ vanishes on all stationary solutions, fixing its ambiguity.

The charge H› will then not be conserved, since in general there will be non-zero flux

of H› on B

H›(S1) ≠ H›(S2) =
⁄

DB
f› = F› (2.33)

2.7 Theories with a background metric

In the analysis of the last few sections, we assumed that the lagrangian was di�eomorphism

covariant, which implied that background fields ‰ were forbidden in the lagrangian. In this

section will derive a few important results in the presence of a backgroung metric g.

We then assume a lagrangian dependent on some dynamical fields „ and non-dynamical

metric g. We will for now assume that the metric is not fixed so that a general variation

of the lagrangian is of the form

”L = (Eg)
ab”gab + E„”„ + d◊ (2.34)

We define a symmetric stress-energy tensor of the fields „ by

‘
1
2T ab = (Eg)

ab (2.35)

Let’s now look at the behaviour of the lagrangian under the action of an infinitesimal

di�eomorphism ›
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X› · L = (Eg)
ab”›gab + E„”›„ + d(X› · ◊)

= ‘
1
2T abL›gab + E„”›„ + d(X› · ◊)

= ‘T abÒa›b + E„”›„ + d(X› · ◊)

We can fix the metric and impose the matter field equations E„ so that we are now

on-shell in the original theory. We have

X› · L = ‘T abÒa›b + d(X› · ◊)

= ‘(ÒaT ab›b ≠ Òa(T
ab›b) + d(X› · ◊)

= ‘ÒaT ab›b + d(X› · ◊ ≠ k› · ‘)

where we’ve defined ka
› © ÒaT ab›b and noted that for a vector field S we have d(S · ‘) =

ÒaSa‘.We’ve defined previously a symmetry as a vector field X that changed that left the

lagrangian invariant up to boundary terms

X · L = d– (2.36)

Since › is arbitrary, it follows that

ÒaT ab = 0 (2.37)

We’ve hence, shown that covariance of the lagrangian implies the conservation of the stress-

energy tensor. Again, if we allow the metric g to be varied, the noether current j› will no

longer be conserved when the „≠field equations are obeyd since

dj› = ≠‘
1
2T abL›gab

= ≠‘T abÒa›b

= ≠d(k› · ‘) + ‘ÒaT ab›b

By inspection of the last equality, we see that ‘ÒaT ab›b should be exact for arbitrary

›. But this is only possible unless
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ÒaT ab = 0 (2.38)

and we again recover the conservation of the stress energy tensor. Note that from this (*)

yields

d(j› + k› · ‘) = 0 (2.39)

from which it follows that

j› + k› · ‘ = dK› (2.40)

for some 2-form K› locally constructed out of gab, „, › and their derivatives. In other

words, we’ve shown that, apart from a surface term K›, the noether current j› is just

≠T ab›b.

As we’ve seen above, to a slice S and a symmetry X› is associated an hamiltonian H›

that solves

”H› =
⁄

S
”j› ≠

⁄

ˆS
(› · ◊) (2.41)

Note that such an hamiltonian exists if we can find an (n-1) form B such that

”
⁄

ˆS
(› · B) =

⁄

ˆS
(› · ◊) (2.42)

and

H› =
⁄

S
j› ≠

⁄

ˆS
(› · B) (2.43)

We see that apart from a surface term (which will vanish for the most commonly

considered theories) the hamiltonian is the integral of j› over a slice S.Note that since we

now longer have j› = dQ›, the hamiltonian will not be a surface integral, and it will depend

on representative › of the infinitesimal symetry X›.Also, since j› is no longer closed, H›

will depend on the choice of slice S.Using (*) we have

H› = ≠
⁄

S
k› · ‘ +

⁄

ˆS
(K› ≠ › · B)

=
⁄

S
‘̃Tabn

b›b +
⁄

ˆS
(K› ≠ › · B)
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where n is the future directed unit normal to S and ‘̃ = n · ‘ is the volume form induced

on S by M .In particular if › © t is timelike, we define the canonical energy as E = Ht,

and see apart from possible contributions at ’infinity’, the canonical energy is the usual

formula for the energy of some field „.

Now, if › is an isometry of the background metric g, j› is closed and so is k› · ‘. Then,

in the case where S is a Cauchu surface, the fields „ decay su�ciently rapidly to infinity,

and B|ˆS = 0 (as it usually happens); H› will not depend on S.

Suppose now that g is stationary (there is a timelike killing vector), and consider a one-

parameter familiy of of solutions „⁄ in the phase space F such that „0 is also stationary

(Lt„0 = 0 for the timelike killing field ta).

Let E⁄ be the canonical energy on the solutions „⁄. Consider now its derivative d/d⁄ =

Y⁄

dE⁄

d⁄
= Y⁄(E⁄) = Y⁄ · ”E⁄ = ≠(Xt · W)(Y⁄)

= W„⁄
(
d„⁄

d⁄
, Lt„⁄)

Since we assumed that Lt„0 = 0 we have

d

d⁄
E|⁄=0 = Y · ”E = 0 (2.44)

Consider now the second derivative of E with respect to ⁄. A nonzero contribution will

occur (??) only when the derivative acts on Lt„⁄. Hence we find

d2

d⁄2 E|⁄=0 =
1
2W„(”„, Lt”„) (2.45)

We showed that given a 1-parameter family of solutions „⁄ with Lt„0 = 0, the second

order change to the energy of „ due to a perturbation ”„ is just (up to a factor of 1/2)

the integral of the sympletic form acting on ”„ and Lt”„ .

In particular one can establish the following result.Let g be a nondynamical spacetime

metric so that Ltg = 0, and g⁄ a 1-parameter family of metrics with g⁄=0 = g. As we’ve

shown in section (+) ”g will be solution the linearized field equations. Given a slice S,the

energy of a perturbation ”g on S; to first order in ”g is

E”g =
1
2

⁄

S
Ê(”g, Lt”g) (2.46)
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where Ê is the presympletic current of the original nonperturbed theory.





Chapter 3

Geometry of null hypersurfaces

3.1 Basic definitions

Given a 4-dimensional spacetime (M , gab), an hypersurface is the image of the embedding

  : N æ M . Vectors in N can be mapped to vectors in M via push-forward Pú. Similarly,

forms in M are mapped to forms in N via pull-back Pú, in particular the spacetime M

will induce a metric q on M q =  úg.

We define a null hypersurface, as an hypersurface N whose normal la is null, that is

gablalb|N = 0. Locally, an embedded hypersurface can be described as the zero sets of a

scalar funtion f on M , which implies that la = efldfa where la = gablb. Note that the the

null vector la is defined only on the null surface N . The vector field l can be extended in

a neighborhood of N in an arbitrary way; we define this extension by considering N as

an element of a foliation Nf of M which are level sets of f , so that l is defined to be null

and normal to each Nf , and fl is now also a scalar field on an open region of M around N .

This allows us to define the covariant derivative of l.

Now, one can show that the null hypersurface is ruled by null geodesics, that is the

integral curves of l are null geodesics. First note that

dl = dfl · l (3.1)

which can be seen by applying the exterior derivative on l = efldf . Now, since gablalb = 0

we have

l · dl = (l · dfl)l (3.2)

25
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Noting that

(l · dl)a = lbÒbla ≠ lbÒalb = lbÒbla (3.3)

where we used lbÒalb = 1/2Òa(lblb) = 0; we get the geodesic equation for a non-

a�nelly parameterized geodesic

laÒalb = klb (3.4)

with k © l · dfl, the non-a�nity coe�cient.

Note that a choice of null normal la is not unique, a rescalling of the following form

gives a new null null vector

la æ e‡la (3.5)

where ‡ is smooth funtion on M . Under a rescaling the non-a�nity transforms as

k æ e‡(k + Ll‡) (3.6)

We will say that a function that transforms as f æ e‡f under a rescaling of the null

normals, has scaling weight n.

The tangent space T (N ) will be those vectors that satisfy valb = 0. Since la lies in

this subspace, we identify it with a vector field li on N . Covectors Êa on M are mapped

to covectors Êi on N via pullback

Êa æ Êi = Pa
i Êa (3.7)

The pullback of the normal la is identically null since livi = 0 for all vi

la æ li = Pa
i la = 0 (3.8)

3.2 Geometric fields on a null surface

The metric g on M induces a metric q on N via pullback, which in local coordinates is just

qij = Pa
i Pb

jgab (3.9)

The pullback of la = gablb is
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li = qijlj = 0 (3.10)

which shows that li is an eigenvector of the induced metric with eigenvalue zero, and

the metric qij has signature (0,+,+). We denote by Wp the two-dimensional subspace

of Tp(N )ú consisting of covectors Êi that satisfy Êili = 0. Tensors built on Wp will be

denoted by indices A, B. Note that gij can be regarded as a tensor on Wp ¢ Wp, which we

write as gAB. Its inverse is written as gAB, and we’ll use these to raise and lower capital

letter indices.

Consider now the map

K(X) = Y aÒal (3.11)

which is a map between vectors on T (M ) to vectors on T (M ); and its pullback to

T (N )

(PúK)(X) = K(PúX) = XiPa
i Òal (3.12)

In local coordinates we write it as Ka
i . Note that XiKa

i is a vector field on N since

laKa
i = laPb

iÒbl
a = Pb

iÒb(l
ala)/2 = 0 (3.13)

where we used lala|N = 0 and the fact that the derivative is along the surface. Hence

K maps vector fields on N to vector fields on N , and it is an intrinsic tensor that we write

in local coordinates as Kj
i . We call it the Weingarten map.

It follows immediately that

liKj
i = Ÿlj (3.14)

We now define a map on TM ¢ TM

K(X, Y ) = (ÒX l)(Y ) = XaY bÒalb = XaY bKab (3.15)

Its pullback to N is the second fundamental form of N . We write it in coordinates as

Kij = Pa
i Pb

jÒalb (3.16)
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Since la is hypersurface-orthogonal it follows from frobenius theorem that Ò[alb] = l[aÊb]

for some 1-form Ê in N . Hence

K[ij] = Pa
i Pb

jÒ[alb]

= l[iÊj]

= 0

where the last equality follows since li = Pa
i la = 0. Also, note that K(X, Y ) =

q(X, K(Y )). Hence, in local coordinates we’ll have

Kik = qijKj
i (3.17)

Similarly from the pullback of laÒalb = Ÿlb it follows that

liKij = 0 (3.18)

We see that K lies in the subspace Wp ¢ Wp and so we can write its components as

KAB. We can uniquely decompose the second fundamental form as

KAB =
1
2◊qAB + ‡AB (3.19)

where ◊ is called the expansion and is the trace of KAB and ‡AB is the shear, and is

the traceless part of KAB. There is another nice way to compute the second fundamental

form. We first note that Llgab = 2Ò(alb), then taking the pullback to N and noting that

the pullback commutes with the Lie derivative we obtain

Kij =
1
2Llqij (3.20)

We will say that a region of a null surface is stationary if there is a choice of normal

vector T which satisfies the killing equation on the surface and to first order in deviations

from the surface, that is

LT gab|N = 0 (3.21)

Òc(LT gab)|N = 0 (3.22)
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We will call the non-a�nity of T as ŸT , the surface gravity. Taking the pullback to N

of the previous equations and using the fact the pullback commutes with the lie derivate

we have

Kij = 0 (3.23)

that is, the surface is shear free and expansion free.

The volume form ‘N of a non-null hypersurface N is defined as the unique 3-form on

N which gives 1 when applied to an orthonormal basis of TpN . Given a volume form ‘ of

M , and a unit normal vector N , one can define the form

‘̃ = N · ‘ (3.24)

Given any orthonormal basis {X}p of TpN with the right orientation; {N ; X}p will

constitute an orthonormal basis of TpM , so that ‘̃ will be 1 when applied to it. This is

valid for any ponit p, and hence

‘̃ = N · ‘ (3.25)

is the unique volume form induced by M . Note also that, given a volume form ‘̃ on N

a volume form on M can be constructed by

‘ = N · ‘̃ (3.26)

Consider now, the case where N is null. First,notice that there is no unit normal, but

in fact a class of null normals. Secondly, given a choice of null normal l, the pull back of

‘̃ = l · ‘ is immediately zero since l is tangent to N . We consifer then a class of forms that

satisfy ‘ = l · ‘̃. A choice of ‘̃ is not unique, since ‘̃ + – where – is a 3-form such that

l · – = 0|N would also be permissible. Notice however that their pullback to N will be

unique. In coordinates it is given by

‘ijk = Pa
i Pb

jPc
k ‘̃abc (3.27)

One can see explicitly that this choice is the one that allows to prove the divergence

theorem. We also define the antisymetric tensor so that

‘̃a1...an
‘̃a1...an = n! (3.28)
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and

Â‘a1...ajaj+1...an ‘̃a1...ajbj+1...bn
= (n ≠ j)!j!”[aj+1

bj+1 ...”an]
bn

(3.29)

with n = 3.

Given a non-degenerate metric g, we know that there is a unique connection connection

D which is compatible with g , that is Dg = 0;we call it Levi-Civita connection. Since

the induced metric q to N is degenerate, there will be a class of compatible connections.

Given a vector field X in M , and a connection Ò, one might define a connection in N ,

by projection the (1,1) tensor ÒX, but since N is null, even tough one is able to define a

projector, such map depends on a choice of auxiliary vector field which is also not unique.

However, one knows how to define exterior derivatives of forms in N , and one can use

it to define a divergence operator. With a volume form, one can define the following maps

ú : Wr(M ) æ WÕn≠r(M )

(úS)a1...an≠r
=

1
r!

‘̃a1...an≠rb1...br
Sb1...br (3.30)

and ú : WÕr(M ) æ Wn≠r(M )

(úÊ)a1...an≠r =
1
r!

‘̃a1...an≠rb1...br Êb1...br
(3.31)

A divergence operator can then be defined as

DiX
i =: úd(úX)

=
1
2 ‘̃ijkD[i(‘̃jk]mXm)

=
1
2 ‘̃ijkDi(‘̃jkmXm)

where D is any connection on N . This obviously independent of the choice of D, and

in fact we have

1
2 ‘̃ijkDi(‘̃jkmXm) =

1
2 ‘̃ijk ‘̃jkmDiX

m

= DiX
i
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3.3 Universal intrinsic structure of a null hypersurface

Consider a manifold N which is equipped with a smooth, nowhere vanishing vector field

li and a smooth funtion Ÿ. We define the base space Z as the space of integral curves of

li, and assume that N is di�eomorphic to Z ◊ R. We will say that two pairs (li, Ÿ) are

equivalent if they are related by

li æ e‡li (3.32)

Ÿ æ e‡(Ÿ + Ll‡)

where ‡ is a smooth funtion on N . This leads to the equivalence class u = {li, Ÿ} of

pairs related by (3.32), which we call the intrinsic structure of N .

Suppose now that the surface N is part of the boundary of a spacetime (M , g). The

spacetime will then induce a structure u in the following way: the metric g will determine

li by raising the index of a choice of normal covector; Ÿ is just the non-a�nity of li as

defined in the previous section.

The intrinsic structure determines a foliation and a coordinate system on N as follows:

• Pick a cross section S of N

• Pick a member of u for which Ÿ vanishes, (li, Ÿ = 0)

• Lie drag S along integral curves of li to get a foliation of N

• Take a funtion u : N æ R, which satisifes u|S = 0 and Llu = 1; the funtion u will

be constant on the foliation we just defined and we’ll have li = (ˆu)i

• Pick any coordinates ◊A on S and extend them to N requiring that Ll◊A = 0

{u, ◊A} is then a coordinate system on N adapted to the foliation {S}. We will say that

an intrinsic structure is complete if the generators li are complete, that is if their a�ne

parameters can be extended arbitrarly. In the coordinate system we just discussed, this

means that the range of u is (≠Œ, Œ).

The equivalence class u is intrinsic in the sense that if we have two di�erent complete

intrinsic structures, they should be di�eomorphic.
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3.4 Symmetry group of an intrinsic structure

The symmetry group Gu of a complete intrinsic structure is the group of di�eomorphisms

Ï : N æ N which send an element of u to another one. Hence, Ï œ Gu i� for any choice

of representative, there is a smooth function —Ï so that

(Ï)úli = e—Ï li

(Ï)úŸ = e—Ï(Ÿ + Ll‡)

In fact, if this holds for one choice of representative (li, Ÿ) it will hold for any (lÕ
Õ , ŸÕ)

with —Ï(e‡l) = —Ï(l) + (Ï)ú‡ ≠ ‡ where ‡ is such that lÕ = e‡l.

The lie algebra gu of Gu are the vector fields › on N whose flow gives the di�eo-

morphisms Ï. They’re Lie derivative on the pair (l, Ÿ) can be worked out explicitly, and

gives

L›l = —›l

L›Ÿ = —› + Ll—

where —Ï is another funtion on N . Its dependence on the normal l is

—›(e
‡l) = —›(l) + L›‡ (3.33)

Pick now a representative (li, Ÿ = 0) and coordinates xi = (u, ◊A) : N æ U µ R3 for

which li = (ˆu)i. We consider di�eomorphisms Ï that map a representative li = (ˆu)i to

a representative li = (ˆū)i. The action of such di�eomorphism on the coordinates can be

given in geral by (Ïúx)i = x̄i where x̄i are given by

ū(u, ◊A) = –(◊A) + e≠—(◊A)u

◊̄A(u, ◊B) = ◊̄A(◊B)

The symmetry algebra of these transformations, are solutions of (+) and its explicit

form can be worked out quite easily by linearizing the tranformation (+)

› = [–(◊A) ≠ —(◊A)u]ˆu + XA(◊B)ˆA (3.34)
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for arbitrary XA(◊B).

The group is parameterized by the three funtions –, —, ◊̄, and its subgroups can be

caracterized as follows:

1. ◊A = ◊̄A, – = 0, — = 0 are the di�eomorphisms on the base space Z. In most cases,

Z will be di�eomorphic to a S2

2. ◊A = ◊A, – = –(◊A), — = —(◊A) which are reparametrizations of the null generators

and are called supertranslations (analog to the supertranslations of the BMS group

at null infinity)

• ◊A = ◊A, –(◊A), — = 0 are the a�ne supertranslations since they are just angle

dependent dispacements in a�ne parameter

• ◊A = ◊A, – = 0, —(◊A) are angle dependent rescalings of the a�ne parameter

The Lie algebra gu was already defined. It inherits the lie bracket structure of the space of

vector fields on N . From the defintion of Gu as a subgroup of the group of di�eomoprhisms

in N , it follows that gu is closed under the Lie bracket. In [13] its structure was worked

out in detail. Because its derivation is out of the scope of this thesis, we will only briefly

describe it.

In [13],it was argued that

gu
≥= di�(Z)n (bn s0) (3.35)

where di�(Z) is the algebra of linearized di�eomorphism of Z; s0 is an abelian algebra of

linearized a�ne supertranslations with its elements satisfying ‰i = fli and Llf + Ÿf = 0;

finally b is an abelian algebra of linearized rescalings and its elements ‰i = fli with

Ll(Llf + Ÿf) = 0. The semi-direct product bn s0 ≥= s is the algebra of linearized super-

translations.





Chapter 4

Charges in a null boundary

4.1 Lagrangian, pre-sympletic and noether potentials in GR

Given a Lagrangian d-form L, all the quantities discussed can be easily computed by

varying L. Here, we will review a method to do so, and derive expressions for all the

relevant quantities.

The Einstein-Hilbert Lagrangian is

L = R‘ (4.1)

where R is the Ricci scalar. Consider a one parameter familiy of metrics g⁄ in the

configuration space C, with g0 © g. A variation ” © ˆ⁄|⁄=0 of L is

”L = ”R‘ + R”‘ (4.2)

In order for us to compute the variation of the Ricci scalar, we will consider two a�ne

connections Ò and Ò̃ on M and the map

C(X, Y ) = (Ò̃X ≠ ÒX)(Y ) (4.3)

which is a map from TpM ◊ TpM to TpM . Linearity in X follows from the definition

of a connection. For the linearity in Y note

35
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C(X, gY + fZ) = (Ò̃X ≠ ÒX)(gY + fZ)

= (Ò̃X ≠ ÒX)(gY ) + (Ò̃X ≠ ÒX)(fZ)

= g(Ò̃X ≠ ÒX)(Y ) + f(Ò̃X ≠ ÒX)(Z)

Hence, C is a (2, 1) tensor. If both connections are torsion-free we’ll have

ÒXY ≠ ÒY X = Ò̃XY ≠ Ò̃Y X = [X, Y ] (4.4)

and hence

0 = (ÒXY ≠ ÒY X) ≠ (Ò̃XY ≠ Ò̃Y X)

= C(X, Y ) ≠ C(Y , X)

which implies that C is symmetric. Its components are defined by C(ˆa, ˆb) = Cc
abˆc =

(≈̃ c
ab ≠ ≈ c

ab)ˆc and we write

Ò̃aY b = ÒaY b + Cb
acY

c (4.5)

We may also define another map C̃

C̃(X, –) = (Ò̃X ≠ ÒX)(–)

which similarly is a (1, 2) tensor.It can easily be checked that its components are C̃c
ab =

≠Cc
ab.For any tensor, the relation between the two connections can be easily derived using

the leibniz rule. For example

Ò̃aT b
cd = ÒT b

cd + Cb
af T f

cd ≠ Cf
acT

b
fd ≠ Cf

adT b
cf (4.6)

Assume now that Ò̃ is compatible with g so that Ò̃g = 0. Then we have

0 = Ò̃agbc

= Òagbc ≠ Cf
abgfc ≠ Cf

acgbf
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By subtrating this from its two cyclic permutations, one can easily obtain

Cc
ab =

1
2gcf (Òagbf + Òbgaf ≠ Òf gab) (4.7)

In order for us to compare the Riemann tensors of the two connections note

Ò̃aÒ̃bY
c = Ò̃aY b = Ò̃a(ÒbY

c + Cc
bf Y f )

= ÒaÒbY
c + Cf

abÒf Y c ≠ Cc
af ÒbY

f

+ (ÒaCc
bf )Y

f + Cc
bf (ÒaY f ) + Cc

aeCe
bf Y f ≠ Ce

abC
c
ef Y f

so that

R̃c
abdY d = (Ò̃aÒ̃b ≠ Ò̃bÒ̃aY c)Y c

= (Rc
abd + ÒaCc

bf ≠ ÒbC
c
af + Cc

aeCe
bf ≠ Cc

beCe
af )Y

f

Note that te usual expressions for the Christo�el symbols and the Riemann tensor are

recovered when Òa = ˆa.

The variation of the Ricci scalar can now be easily computed. First, note

”Cc
ab =

1
2gcf (Òa”gbf + Òb”gaf ≠ Òf ”gab)

=
1
2 (Òa”gc

b + Òb”gc
a ≠ Òc”gab)

where we used the fact that all indices are raised and loweres using g. Note that ”gab

is the variation of gab, and we can use g to raise its indices, but we need to be careful. For

example, one might naively think that ”gab = gacgbd”gcd is the variation of gcd but since

gabgbc = ”c
a one has

”(gab)g
bc = ≠gab”(g

bc) (4.8)

so that

”(gcd) = ≠gbcgad”gab = ≠”gcd (4.9)

The variation of the Riemann tensor is just
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”Rc
abd = Òa”Cc

bf ≠ Òb”Cc
af (4.10)

The variation of the Ricci tensor follows by contracting indices

”Rab = Òf ”Cf
ab ≠ Òa”Cf

fb

=
1
2Òf (Òa”gf

b + Òb”gf
a ≠ Òf ”gab) ≠ 1

2ÒaÒb”gf
f

The Ricci scalar can then be varied:

”R = ”(gabRab) = gab”Rab + ”gabRab

= ÒaQa ≠ ”gabR
ab

where we’ve defined Qa = gabÒc”gbc ≠ gcbÒa”gcb, and used ≠gbcgad”gab = ”gcd. Using

the well known result ”‘ = 1
2gab”gab‘, one concludes

”L = ”R‘ + R”‘

= ‘(≠Gab”gab + ÒaQa)

= Eab(g)”gab + ÒaQa‘

where Gab is the Einstein tensor. Now, note that if ◊ = Q · ‘, one can show that

d◊ = ÒaQa‘. Hence

”L = Eab(g)”gab + d◊(g, ”g) (4.11)

with

◊ = Q · ‘ (4.12)

We have then obtained an expression for the pre-sympletic potential ◊. The noether

current j› was defined as j› = X› · ◊ ≠ › · L, and using the previous result one has

j› = J› · ‘ (4.13)

with
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Ja
› = ÒbÒ[b›a] ≠ Eab›b (4.14)

As we’ve noted previously, on pre-phase space where Eab = 0 there is a noether poten-

tial so that j› = dQ›. Indeed, note that for any 2-form s one has

d ú s = S · ‘ (4.15)

with

Sa = Òbs
ab (4.16)

Hence, one imediately obtains

Q› = ≠ ú d› (4.17)

with components

(Q›)ab = ≠‘abcdÒc›d (4.18)

4.2 Noether potential on a null surface

In order for us to compute the charges H› and their fluxes F›, one needs to compute first

the noether potential Q› and its variation ”Q› on a null surface N . Its pullback to N is

given by

(Q›)ij = ≠Pa
i Pb

j‘abcdÒc›d

= ≠Pa
i Pb

j [‘̃abcld ≠ ‘̃dablc + ‘̃cdalb ≠ ‘̃bcdla]Òc›d

= ≠Pa
i Pb

j ‘̃abcq
c

where we used Pa
i la = 0 and defined qc = 2ldÒ[c›d]. Note that we have lcqc =

2lcldÒ[c›d] = 0, since the contraction of anti-symmetric and symmetric indices yields zero,

and then qc œ TN . Hence, one should have

(Q›)ij = ≠‘̃ijkqk (4.19)

The vector qc can be rewritten as
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qc = ldÒc›d ≠ ldÒd›c

= L›lc + gacL›la ≠ 2›dÒdlc

= 2—›lc ≠ 2›dÒdlc

where we’ve used the definition of —. Now, its straightforward to write Q› in terms of

intrinsic objects

(Q›)ij = 2‘̃ijk(›
pKk

p ≠ —›lk) (4.20)

Note that Q› is invariant under the scaling transformation l æ e‡l.

We now turn to the computation of the variation of the noether potential. In order for

us to do so, one needs to know ”‘̃ and ”K, since

(”Q›)ij = 2”‘̃ijk(›
pKk

p ≠ —›lk) + 2‘̃ijk(›
p”Kk

p) (4.21)

We already know that ”‘ = 1
2‘gab”gab, so that ”‘̃ = 1

2 ‘̃”q with ”q = qAB”qAB = h.

From now on, we’ll denote ”g and ”q as h. Hence

(”Q›)ij = ‘̃ijk(h›pKk
p ≠ h—›lk + 2›p”Kk

p) (4.22)

Let’s now look at the variation of Kj
i . In order to define it, we first introduced a map

K : TM æ TM with tensor components Kb
a = Òalb, and noticed that the pull back Pa

i Kb
a

defined a map TN æ TN a hence the tensor with intrinsic coordinates Kj
i . Hence we need

to compute the variation of Pa
i Kb

a .

Notice that, given two connections Ò̃ and Ò we’ll have

K̃b
a = Kb

a + Cb
acl

c (4.23)

so that Pa
i ”Kb

a can be seen imediately from ”Cc
ab

Pa
i ”Kb

a = Pa
i ”Cb

abl
c

=
1
2Pa

i (Òahb
c + Òch

b
a ≠ Òbhac)l

c
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The first and last terms can be rewritten using the defintion of the 1-form G, which was

defined as

d(ha) = l · G with ha = lchc
a. Note

Òahb
c ≠ Òbhac = Òahb ≠ Òbha + hc

aÒblc ≠ hbcÒalc

= 2gbcl[aGc] + hc
aÒblc ≠ hbcÒalc

= laGb ≠ Galb + hc
aÒblc ≠ hbcÒalc

The second term can be rewritten noticing Llhb
a = lcÒchb

a + hb
cÒalc ≠ hc

aÒclb. Since

li = 0 we get

2Pa
i ”Kb

a = Pa
i (≠Galb + Llh

b
a + 2hc

aÒcl
b ≠ 2hb

cÒalc) (4.24)

Notice that every term is orthogonal to lb so that they give rise to tensors instrinsic to

N . Hence

”Kj
i = ≠1

2Gil
j +

1
2Llh

j
i + hk

i Kj
k ≠ hj

kKk
i (4.25)

This finishes the job and we finally obtain a full expression for the variation of the

pullback of the noether potential 2-form

(”Q›)ij = ‘̃ijk[h›pKk
p ≠ h—›lk + 2›p(≠1

2Gil
j +

1
2Llh

j
i + hk

i Kj
k ≠ hj

kKk
i )] (4.26)

4.3 Hamiltonian

As we’ve seen previously, to a generator › of an asymptotic symmetry, and a slice S, it is

associated an hamiltonean H› that we’ve shown to be the solution of

”H› =
⁄

ˆS
(”Q› ≠ › · ◊) (4.27)

We know assume that a cross-section S of N is a component of the boundary ˆS so

that

”H› =
⁄

S
(”Q› ≠ › · ◊) + (...) (4.28)
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where (...) are the contributions from the other components of ˆS. We’ve already

computed the pullback of ”Q› to N , and the remainign contribution is from ›c◊cab where

◊abc is given by

◊abc = ‘abcdQd (4.29)

with Qd = gef Òdhef ≠ gdeÒf hef . The pullback of this to N is

Pa
i Pb

jPc
k◊abc = Pa

i Pb
jPc

k‘abcdQd

= Pa
i Pb

jPc
kPc

k ‘̃[abcld]Qd

= ‘̃ijkldQd

since li = 0. Since ≠lf Òehe
f = he

f Òelf and using the definition of the Weingarten map

we get

◊ = ‘̃[Llh + hj
i Ki

j ]

= ‘̃[Llh + hAB(
1
2◊qAB + ‡AB)]

Combining everything we get a full expression for the component in N of the variation

of the Hamiltonean. In general, given the conditions prescribed on the boundary, there

might be no solution to (4.28). This can be seen explicitly by computing the presympletic

form explicity and showing that the

⁄

S
› · Ê = 0 (4.30)

may not be satisfied in general. This was done in [13].

4.4 Generalized charges and corresponding fluxes

Since, as we’ve just seen an Hamiltonean H› may not exist, we now turn to the calculation

of the generalized charges H› and respective fluxes F›. To this end one needs to compute

a presympletic potential ◊̃ for the pullback of Ê to N . This potential is not unique, and we

required that it should be such that the flux vanishes for stationary solutions. In general,

a choice of a potential can be parameterized as
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◊̃ = (Pú◊) ≠ ”– (4.31)

where – is a 3-form on N locally constructed from the pullback of the fields to N . Its

components are

◊̃ijk = ◊ijk ≠ ”–ijk (4.32)

With this choice of ◊Õ, H› takes the form

H› =
⁄

S
(Q› ≠ › · –) (4.33)

up to an overall constant of integration on phase space, that can be fixed by fixing the

value of H› on a reference solution.

As previously mentioned, we say that a solution g is stationary, when there is a nonzero

infinitesimal asymptotic symmetry represented by an exact symmetry T which is timelike

in a neighborhood of B. This implies that T satisfies Killings equation on N . We’ve

also showed that if › represents an asymptotic boundary symmetry, we have ›ala. Hence,

from our previous discussion this implies that N is shear and expansion free on a stationary

solution. Hence, since f› = X› · ◊̃, the requirement of vanishing flux on stationary solutions

amounts to the requirement that ◊̃ = 0 when ◊ = ‡AB = 0. Note that –ijk = ‘̃ijk– for

some function on N , and then

◊̃ = ‘̃[Llh + hAB(
1
2◊qAB + ‡AB) ≠ ”–] (4.34)

We are then looking for a choice of a funtion – locally constructed from the fields so

that ”– = Llh + f(◊, ‡ab) for some funtion f which vanishes when ◊ = ‡ = 0. We’ll chose

– = 2◊‘̃ (4.35)

and show that in fact it fits our requirements. One easily obtains ”◊ = 1
2Llh and

”– = ‘̃(Llh + h◊) (4.36)

so that
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◊̃ = ‘̃hAB(
1
2◊qAB + ‡AB)

= ‘̃(hj
i Ki

j ≠ h◊)

which vanishes when ◊ = ‡AB = 0. With this choice of –, H› becomes

H› =
⁄

S
h› · ‘̃ (4.37)

with

h› = K(›) ≠ ◊› ≠ —›l (4.38)

One can show explicitly that hÕ

› · ‘̃ is invariant under a rescaling of the null normal.

We now compute f› = X› · ◊̃ = ◊̃(L›gab). Note that

◊̃ = ‘̃(hj
i Ki

j ≠ h◊))

= ‘̃hab(Òalb ≠ gab◊)

so that hab = L›gab = Ò(a›b) implies

f› =
1

8fi
‘̃Òa›b(Ò(alb) ≠ gab◊) (4.39)

One can similarly compute f› by noting that f› = d(h› · ‘̃) = ‘̃Dihi
› or

f› =
1

8fi
‘̃Dp(›

mKp
m ≠ ◊›p ≠ —›lp) (4.40)

4.5 Flux for a supertranslation

Take a now a supertranslation › = fl, which are the ones we will be interested in. The

flux F› is then given by
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F› =
1

8fi

⁄
‘̃Dp(›

mKp
m ≠ ◊›p ≠ —›lp)

=
1

8fi

⁄
‘̃Dp(fŸ ≠ ◊f + Llf)l

p

=
1

8fi

⁄
‘̃f(Ÿ◊ ≠ ◊2 ≠ Ll◊)

=
1

8fi

⁄
‘̃f(‡AB‡AB ≠ 1

2◊2)

where in the last equality we used the Raychaduri’s equation.

Consider now a 1-parameter familiy of metrics g⁄ œ F (that depend smoothly on ⁄), so

that g0 = g. In particular we will be interested in the case of a spacetime M and a metric

g0 for which the boundary of interest is expansion and shear free. A taylor expansion

around ⁄ = 0 gives

gab(⁄) = gab + ⁄hab (4.41)

where ”gab = dgab/d⁄|⁄=0 is a first order perturbation. Charges will also depend

smoothly on ⁄ so that

f›(⁄) = f› + ⁄”f› +
1
2⁄2”2f›

The first variation is trivially zero if both zero if ◊ and ‡AB vanish. The second variation

is

”2f› =
1

8fi
‘[2”‡AB”‡AB ≠ ”◊”◊] (4.42)

The variation of ◊ is

”◊ =
1
2Llh =

1
2L›hABqAB

and the variation of ‡AB is
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”‡ij = ”Kij ≠ 1
2”◊qij

= Pa
i Pb

j”Kab ≠ 1
2 (L›h)qij

= L›hij ≠ 1
2 (L›h)qij

In terms of these we have the final result

1
2”2f› =

1
32fi

‘qABqCD(L›hACL›hBD ≠ L›hADL›hBC) (4.43)

For the purpose of these thesis, this is the main result of this chapter. In chapter 6, we

will use it to compute the flux of energy of gravitational waves in the cosmological horizon

of a de Sitter background.



Chapter 5

De Sitter space

5.1 De Sitter as an embedding

The D-dimensional De sitter spacetime dSD is the maximally symmetric solution to Ein-

stein’s equations

Gab + Lgab = 0 (5.1)

A maximally-symmetric space is a space with a maximal number of killing vectors,

which in a D-dim manifold is D(D + 1)/2. Locally, a maximally symmetric space is fully

specified by its scalar curvature R which is contant, and its Riemann tensor has the simple

form

Rabcd =
R

D(D ≠ 1) (gacgbd ≠ gdagbc) (5.2)

Anticipating the definition of l as the de Sitter radius we will have

Rab =
(D ≠ 1)

l2
gab; R =

D(D ≠ 1)
l2

(5.3)

D-dimensional de Sitter can be viewed as a timelike hyperboloid, embedded in a (D+1)-

dim Minkowski spacetime M1,D with metric

÷ = ÷ABdxAdxB = ≠dX2
0 +

Dÿ

i=1
dX2

i (5.4)

where ÷AB is the (d + 1)-dim minkowski metric. and A, B = 0, ..., D. In M1,D, de

Sitter is the defined as the hypersurface Hl

47
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÷ABXAXB = ≠X2
0 +

Dÿ

i=1
X2

i = l2 (5.5)

where l is the de Sitter radius introduced earlier. Given this description, it’s easy to

find coordinates for dSD. It’s clear that cross-sections of dSD at constant X0 are spheres

SD≠1. The hyperboloid can be parametrized by

X0 = l sinh(t/l), Xi = l cosh(t/l)zi (5.6)

where i = 1, ..., D and zi are constrained to the unit sphere SD≠1
1 ,

q
i zi

2 = 1. Coordi-

nates on the sphere can be built in the usual way (◊1, ..., ◊D≠1)

z1 = cos ◊1

z2 = sin ◊1 cos ◊2

...

zD≠1 = sin ◊1 . . . sin ◊D≠2 cos ◊D≠1

zD≠1 = sin ◊1 . . . sin ◊D≠2 sin ◊D≠1

The de sitter metric is then the pull back of ḡ to Hl

g = ≠dt2 + l2 cosh2(t/l)dW2
D≠1 (5.7)

where dW2
D≠1 is the metric on a unit sphere SD≠1

1 in coordinantes (◊1, ..., ◊D≠1). These

are called global coordinantes since they cover the entire de Sitter space. In these coordi-

nates, de Sitter can be seen as a contracting and expanding sphere.

One can compute the Riemann tensor, Ricci tensor and Ricci scalar and recover the

formulas introduced before. By plugging them in the Einstein’s equations (+) one gets

L =
(D ≠ 1)(D ≠ 2)

2l2

Since a maximally symmetric space is uniquelly defined by the constant value of R, the

metric we instroduced describes in fact the geometry of de Sitter.
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5.2 Isometries of de Sitter

In this embbeding view the isometries of de Sitter can be seen as the isometries of M1,D

that preserve Hl. By our knowledge of Minkowski spacetime, we know that the group of

these isometries is just the Lorentz group SO(D, 1) of the embedding (D+1)-dim space.

The D(D + 1)/2 generators of SO(D, 1) can be written as

JAB = ÷ACXCˆB ≠ ÷BCXCˆA (5.8)

with JAB = ≠JBA. Its lie algebra is

[JAB, JCD] = ÷ADJBC + ÷BCJAD ≠ ÷ACJBD ≠ ÷BDJAC

These D(D + 1)/2 naturally decompose in D(D ≠ 1)/2 rotations

Jij = Xiˆj ≠ Xjˆi (5.9)

and D boosts

Ki = J0i = X0ˆi + Xiˆ0 (5.10)

5.3 Penrose Diagram

In order for us to better understand the causal structure of dSD we will build its penrose

diagram. A penrose diagram is a compactified representation of a spacetime as a bounded

subset of R2 endowed with a lorentzian metric, so that light rays travel at 45º. ’Infinity’

will be at finite coordinates and hence part of the boundary of this region. In order for us

to do so, one needs to design a new coordinate system that

1. covers the whole spacetime

2. makes massless particles travel at 45º (that is, makes null geodesics where we fix all

but one timelike and spacelike coordinates travel at 45º)

3. has finite range, so that one is able to fit inside R2

Note that given a spacetime (M , g) one can define a new spacetime (M , g̃) where ḡ = W2g

and W is a smooth positive funtion on M . Given two vectors X, Y its easy to see that
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g(X, Y ) and g̃(X, Y ) have the same sign; in particular null curves on (M , g) will also be

null curves on (M , ḡ) (similarly for spacelike or timelike curves). Then, these spacetimes

will have the same light cones, and hence the same causal structure. Noticing this, we only

to find coordinantes for which the metric is conformally related to one where we know that

light rays travel at 45º .

Notice that in general, by using coordinates where ’infinity’ is at finite coordinates,

the metric g will be singular at these coordinates, and we will need W æ 0 so that W2g

is regular at ’infinity’. Then the spacetime (M , ḡ) will be extendible, that is it will be

isometric to a proper subet of a larger spacetime (M̄ , ḡ) where ˆM which corresponds to

’infinity’ is in M̄ . We call (M̄ , ḡ) the conformal compactification of (M , g). Our conformal

diagram will be the projection of (M̄ , ḡ) to a plane.

The global coordinates that we introduced in the last section fit the first requirement.

In order to achieve the order two note that we can expand the spherical part of the metric

as

g = ≠dt2 + l2 cosh2(t/l)(d◊2
1 + sin2 ◊D≠2dW2

D≠2) (5.11)

Any ◊1 but ◊1 = 0 and ◊1 = fi are (D ≠ 2)-spheres. These two values of ◊1 are just

points, and we call them the north and south pole respectively. Note that null geodesics

in the (t, ◊1) plane (geodesics where we fix all other ◊i’s) do not travel at 45º .

We wish to make a transformation t æ ‡(t) that transform the metric as

≠dt2 + l2 cosh2(t/l)d◊2
1 = W≠2(‡)[≠d‡2 + d◊2

1] (5.12)

This can happen if we make the transformation

dt = W≠1d‡

with W≠1 = l cosh(t/l) with solution

cos(‡) = 1/ cosh(t/l) (5.13)

This accomplishes our second requirement. For the last one, note that t œ (≠Œ, Œ)

corresponds to ‡ œ (≠fi/2, fi/2), so that it is also automatically satisfied.

The metric in the new coordinates is then
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g = W≠2(‡)[≠d‡2 + d◊2
1 + sin2 ◊1dW2

D≠2] (5.14)

with W(‡) = cos(‡)
l . Note that this metric is in fact singular for ‡ œ {≠fi/2, fi/2},

but ḡ = W2g is not, and (M̄ , ḡ) is a viable conformal compactification of our spacetime.

Then our conformal diagram is just the projection of (M̄ , ḡ) to the plane (‡, ◊1). A few

comments about it

• It’s a square in the (‡, ◊1) plane, since ‡ and ◊1 have coordinate range fi

• Slices of constant ‡are the constant SD≠1’s

• Points in the diagram are SD≠2’s. The exception are the points ‡ œ {≠fi/2, fi/2},

(right and left boundaries) which are the poles of the SD≠1’s

• The top and bottom boundaries are just past and future conformal infinities I±.

Every causal curve reaches it but it takes infinite a�ne parameter to do so

• Null geodesics resctricted to the (t, ◊) plane on the physical spacetime will travel at

45º . Null geodesics with nontrivial motion on the SD≠2’s (other spherical coordinates

not fixed along the motion) will not

• No single observer can access the entire spacetime. Take for example an observer at

the north pole: this observer will not be able to receive signals from points outside

the region O≠ (figure(+)). The boundary of this region, the line that stretches from

the south pole at I≠ to the north pole at I+, is called the event horizon of this

observer. It is similar to the event horizon of a black hole, since signals beyond it

will not be able to reach her. However, it is an observer dependent horizon, other

observer will have di�erent horizons. We call them cosmological horizons.

• Similarly, this observer at the north pole will only able to send signals to another

half of the spacetime O+. The boundary of this region, the line that stretches from

the north pole at I≠ to the south pole at I+, is called the particle horizon of this

observer.

• The intersection of these two regions O+ fl O≠ is called the (northern) causal dia-

mond. It is the region fully acessible to the observer at the north pole, one is able to

send a signal to someone in this region and receive it before we reach I+. Note that
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the causal diamon of an observer at the south pole is causally disconnected from the

northern diamond.

Figure 5.1: Conformal diagram of De Sitter. Diagram taken from [25]

5.4 Other coordinates on de Sitter

We introduced de Sitter as an hyperboloid on an higher dimension minkowski space. We

used this embedding to introduce a set of coordinates that cover the whole de Sitter space.

In these coordinates, de Sitter is seen as an expanding a contracting SD≠1. Given the high

degree of symmetry of de Sitter, di�erent sets of coordinates, and hence di�erent foliations

will uncover very di�erent presepectives on it. We’ll introduce two of them, which will

cover di�erent parts of de Sitter.

5.4.1 Flat slicing

Again, we use the embbeding on M1,D. In terms of the coordinates XA we define the

coordinates (t, xi) as

X0 = l sinh(t/l) +
r2

2l
et/l X1 = l cosh(t/l) ≠ r2

2l et/l Xi = et/lxi



5. De Sitter space 53

with i = 2, ..., D and r2 =
q

i x2
i . One can verify that in fact ÷ABXAXB = l2 as

required. In the new coordinates the metric of de Sitter is just

g = ≠dt2 + e2t/ldx2 (5.15)

where dx2 =
q

dx2
i is just the flat metric of RD≠1 in the coordinates xi. Its clear that

this t is a di�erent time from the time used in the global coordinates. These are the planar

coordinates of de Sitter, or the flat slicing coordinates.

Note that

X0 + X1 = l(cosh(t/l) + sinh(t/l)) > 0 (5.16)

for all t.Since we have in global coordinates

X0 = l sinh(t/l), X1 = l cosh(t/l) cos ◊1 (5.17)

XO = ≠X1 will be in conformal coordinates

sin ‡ = ≠ cos ◊1 ∆ ‡ = ≠(◊! ≠ fi/2)

This is the diagonal line that goes from the north pole at I+ to the south pole at I≠.

Hence we see that these coordinates only cover the upper triangle (figure (+). Similar

coordinates can be chosen to cover the lower triangle. Since flat slicing cover only a part

of dSD, the spacetime described by these coordinates (M , g) will be past-geodesically

incomplete, since all timelike geodesics will exit this region in the past, in finite a�ne

parameter (unless we restric them to sit at the south pole).

In order for us to relate these coordinates to the global ones we introduces before let’s

write the metric as

g = ≠dt2 + e2t/l(dr2 + r2dW2
D≠2) (5.18)

where we put spherical coordinates on the flat slices. From this it’s clear that we need

to map (tg, ◊!) to (t, r). Using the definitions of both of these coordinates in terms of the

embbedng coordinates XA, with a lit bit of algebra, we get

et/l = cos ◊1 cosh(tg/l) + sinh(tg/l), l

r
et/l = sin ◊1 cosh(tg/l) (5.19)
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Note in particular that for large times one has t ≥ tg and cosh t/l ≥ et/l.

It will be also useful to transform the flat slicing coordinates (t, xi) to conformal flat

slicing coordinates (÷, xi). Again these will be defined so that

g = ≠dt2 + e2t/ldx2

= W(t)≠2(≠d÷ + dx2)

where ÷ was defined by W≠1d÷ = dt with W≠1 = et/l. We get

÷

l
= ≠W(t) (5.20)

so that t œ (≠Œ, Œ) corresponds to ÷ œ (≠Œ, 0). The metric in these coordinates is

g = (l/÷)2(≠d÷2 + dx2) (5.21)

5.4.2 Flat vs global in cosmology

In an introductory cosmology course one showed that an homogenoeous and isotropic

universe could be described by a FRW metric

gF RW = ≠dt2 + a(t)2dS2 (5.22)

where a(t) is a scale factor, and dS2 is the metric for a maximally symmetric (D-1)-

dimensional slice S wich could be closed with positive curvature (SD≠1), flat with zero

curvature (RD≠1) or open with negative curvature (hyperbolas HD≠1).

In global coordinates we wrote the metric of dSD as

g = ≠dt2 + l2 cosh2(t/l)dW2
D≠1 (5.23)

It’s clear that in this coordinates dSD can be seen as closed FRW universe with a(t) =

l cosh(t/l) and S = SD≠1; as we’ve mentioned, it describes an exponentially decreasing

SD≠1 until t = 0 which then expands.

But also note that in flat slicing we got

g = ≠dt2 + e2t/ldx2 (5.24)

which describes an expanding flat FRW universe with S = RD≠1 and a(t) = et/l.
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In Cosmology one usually assumes that matter has a prefered rest frame - the average

rest frame of the galaxies - so that one assumes all the matter to be comoving in some fixed

coordinate. In the case of global de Sitter we have an universe where matter is comoving at

fixed ◊ coordinates, where proper distances first shrink and then expand. In the flat slicing

de Sitter, matter is comoving at a fixed x coordinate, and proper distances are expanding

exponentially.

Even tough one hasn’t included any matter in the Einstein’s equations, this will be a

good approximation when the energy density of the cosmological consta dominates over

all the other components.

Note that we got two di�erent FRW universes from the same de Sitter spacetime. This

happens because de Sitter has no preferred coordinate system and hence no preferred rest

frame. However, in the context of cosmology, matter will set an average rest frame. When

we specify di�erent coordinates, one is setting a di�erent rest frame for the matter, and

hence describing di�erent universes. This amounts to a choice of di�erent initial conditions

on the matter distribution. Note however that for asymptotic times, as the sphere becomes

larger, the two spaces become the same.

5.4.3 Static coordinates

Has we’ve seen de Sitter we’ll have a bunch of timelike isometries, but in the coordinates

we’ve seen the metric was always dependent on the timelike coordinate. One wishes to

construct a coordinate system where the timelike coordinate does not appear in the metric.

This amounts to picking a coordinante system where ˆt is proportional to one of the timelike

isometries, for example K1

ˆt =
ˆX0
ˆt

ˆ0 +
ˆX1
ˆt

ˆ1 Ã K1 = X0ˆ1 + X1ˆ0 (5.25)

Take for example rindler (fl, t) coordinates in the (X0, X1) plane

X0 = fl sinh(t/l) X1 = fl cosh(t/l) (5.26)

with fl > 0 which covers X1 > 0 . In these coordinates we have

g = ≠ (
fl

l
)2dt2 + dfl2
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and by (+)

ˆt =
1
l
K1 (5.27)

One can generalize this to build coordinates on the hyperbola ÷ABXAXB = l2. Take

the following parametrization of the hyperbola inspired by the rindler coordinates

X0 =


l2 ≠ r2 sinh(t/l) X1 =
Ô

l2 ≠ r2 cosh(t/l) Xi = rzi

in terms of coordinates (t, r, zi) with i = 2, ..., D, r < l and
q

i z2
i = 1. In terms of

these coordinates, the de Sitter metric is just

g = ≠(1 ≠ r2/l2)dt2 +
dr2

1 ≠ r2/l2
+ r2dW2

D≠2 (5.28)

The metric is independent of t as we intended. In fact, one can repeat the steps that

let to (+) to get ˆt = 1
l K1. These are then called the static patch coordinates.Note that

the metric is singular when r æ l. What happens when r æ l? Looking at the embbeding

coordinates one might assume that X0, X4 æ 0, but we can do a little bit better. Close

to l we write r = l(1 ≠ ‘2/2) with ‘ π 1 so that r æ l is equivalent to ‘ æ 0 and XA

becomes

X0 ≥ ‘ sinh(t/l) X1 ≥ ‘ cosh(t/l)

The limit ‘ æ 0 can now be done while fixing XA if we also send t æ ±Œ and keep

‘e±t/l finite. Hence we see that we can identify the surface r = l with X0 = ±X1.If we

replay the computations that led to (+) in section (+) we see that r æ l in the conformal

diagram is just the boundary of the southern causal diamond. Hence this set of coordinates

only cover the causal diamond of an observer at the south pole; a similar coordinate system

can be designed to cover the northern causal diamond as well as the future and past causal

diamonds. In fact note that when r æ l we have

ˆt Ã ˆ0 ≠ ˆ1 (5.29)

which implies that it is null in the horizon. In fact it will be normal to it. Hence we

see that the cosmological horizon of an observer sitting at the north pole is a bifurcate
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killing horizon for ˆt and the bifurcation sphere is SD≠2 at the middle of the penrose

diagram. One could use this timelike killing vector to define a notion of energy on dSD,

but unfortunately the situation is a bit more tricky. One can see explicitly that K1 is

timelike in the southern and northern causal diamonds but spacelike in the future and past

causal diamonds. Crucially it will be spacelike in a neighborhood of I+. In fact any killing

field will since they should be tangent to it, and I in de Sitter is spacelike. More generally

there is no asymptotic symmetry which is timelike in a neighborhood of I.





Chapter 6

Linearized gravity with a

cosmological constant

6.1 De Sitter in a Poincare Patch

When a cosmological constant is not present, gravitational waves can be studied as linear

perturbations to Minkowski spacetime as we’ve seen in 1.2. They are solutions to the

linearized Einstein equations. In the presence of a cosmological constant, one wishes to

study linear perturbations to de Sitter spacetime. Since the de Sitter causal structure is

quite di�erent from the one of Minkowski, a few considerations need to be made.

Consider a situation where matter fields are bounded to some region
q

, with fixed

physical size. What we mean by this is that given some some foliation of de Sitter in

spacelike hypersurfaces (for example the SD≠1 spheres in the global chart or the RD≠1

in flat slicing) the matter fields should be bounded by some constant proper distance. If

this is the case, region S will have future and past endpoints in i± (see Figure 6.1), since

the spacelike hypersurfaces will be expanding (or contracting in the limit to I≠). To see

this just take conformal coordinates, and notice that in order for proper distance to be

preserved as ‡ æ ±fi/2 (t æ ±Œ) we need ◊ æ 0.

Note also that, as we’ve discussed earlier, in contrast to Minkowski, in de Sitter there is

an oberver dependent horizon. In particular in Minkowski E+(i≠) is the whole Minkowski

space, but in de Sitter it is only O+, which we call the Poincaré Patch.

Hence, in order to study the radiation emitted by matter confined to the the region
q

, we can restrict ourselves to this region, since any oberver whose wordline is confined

outside of this region will never be able to measure the radiation.

59
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Note that in the linear case, if we impose no incoming radiation across E+(i≠), the flux

across E≠(i+) will equal that across I. Also the time translation killing field considered is

future pointing and timelike inside the region bounded by these surfaces, and null on both

surfaces. This seems to mimick the behaviour of the time translation field on Minkowski

spacetime. For these reasons, and since E≠(i+) is null and could be taken to be in the

’far zone’, it was suggested in [8, 9] that its analog in the non-linear theory could be the

apropriate arena to study gravitational waves.

Figure 6.1: Conformal diagram of De Sitter. Diagram taken from [9]

In O+, we already know that the metric can be written in flat coordinates as

g = ≠dt2 + e2t/ldx2 (6.1)

or in conformal coordinates

g = (
l

÷
)2(≠d÷2 + dx2) (6.2)

We will be mostly using the conformal metric, but notice that these coordintes are

not well suited for L æ 0 (1/l æ 0) limit. To do that, we need to go back to flat slicing.

Hence, when making comparisions with minkowski, we should use the di�erential structure

induced by (t, x).
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As discussed before, this metric admits 10 killing vectors locally, but only 7 preserve

the poincaré Patch: 3 spatial translations Ti 3 spatial rotations Ri and a dilation T =

≠H [÷ˆ÷ + ”ijxiˆi].

Note that if we take the limit as the mass goes to zero of the dilation we get the

time translation in the Schwarzchild de Sitter spacetime. Also, the limit W æ 0 takes

the dilation to time translation in minkowski. For these reasons we will refer to T as a

time translation. These killing vectors form a lie algebra (lie algebra of symmetries of the

poincare patch).

6.2 Linearized theory

In order for us to study gravitational perturbations of de Sitter spacetime, we consider a

1-parameter family of metrics g⁄

g⁄ = g + ”g⁄

= g + h⁄

with g0 = g and where g is the de Sitter metric, ”g = dg
d⁄ |⁄=0 and ⁄ π 1 since we

are interested in metrics close to the de sitter metric (small perturbations). We omit the

dependence on ⁄ for simplicity of notation and will write in general

ḡab = gab + hab (6.3)

We see that the components of h are of O(Á) where Á π 1, and h will be treated as a

first order quantity. Indices will be raised and lowered using g and we’ll have

ḡab = gab ≠ hab (6.4)

where hab = gacgbdhcd. The physical spacetime (M̄ , ḡ) can then be described in terms

of a background spacetime with a dynamical field on it (M , g, h).

As we’ve mentioned before, GR is a di�eomorphism invariant theory. This means

that a space time and a stress energy tensor (M , g, T ) is physically equivalent to another

(M , „úg, „úT ) if „ : M æ M is a di�eomorphism. Now we are restricting our attention to

metrics of the form (6.3), and are hence interested in di�eomorphisms that preserve this
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form. Given a 1-parameter family of di�eomorphisms „t generated by a vector field X, for

t π 1 we’ll have for any tensor T

(„≠t)úT = T + tLXT

= T + L›T

where › = tX is assumed to be a first order quantity. In particular for the metric we

have

(„≠t)úḡ = g + h + L›g (6.5)

where L›h was neglected since it is a higher order quantity. Since („≠t)úḡ and ḡ are

physically equivalent, we see that linearized gravity has a gauge freedom: two perturbations

h and h + L›g will describe the same physics. Note also that any spacetime tensor T⁄ =

T + ⁄”T which vanishes in the unperturbed theory will be gauge invariant to first order

since

(„≠t)úT⁄ = T⁄ + L›T = T⁄ (6.6)

The metric ḡ = g⁄ will be a solution of Einstein equations

Gab(⁄) + Lgab(⁄) = 8fiTab(⁄) (6.7)

and hence perturbation h = ⁄”g will be a solution of the linearized Einstein equations

”Gab + L”gab = 8fi”Tab

”Rab ≠ 1
2 (R”gab + ”Rgab) + L”gab = 8fiTab

Note that since Tab(0) = 0 we will just denote ”Tab by Tab. We can use the results from

section 4.1 to write

≠1
2 (DdDdhab + DaDbh) + DaD(ahb)d≠

≠1
2gab(≠DaDah + DcDdhcd ≠ Lh) = 8fiTab
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where D is the connection of the background metric g. The field equations simplify

considerably if one considers the trace reversed perturbations h̄ab = hab ≠ 1
2gabh̄ab with

h̄ = ≠h

≠1
2 (DdDdh̄ab + gabD

cDdh̄cd) + DdD(ah̄b)d ≠ Lh̄ab = 8fiTab (6.8)

6.3 Solving the Einstein equations

Now, pick a coordinate system for O+. We take the conformal flat coordinates introduced

before so that

ḡab = gab + hab

= (
l

÷
)2(÷ab + “ab)

where we introduced “ = a(÷)≠2h with a(÷) = l/÷. Consider now the coordinate basis

(ˆ÷, ˆi). The ˆi wil be tangent to the slices of contant ÷, and ˆ÷ will be orthogonal. Since

g(g÷, ˆ÷) = ≠(l/÷)2, n = ≠(÷/l)ˆ÷ is the future poiting unit normal to these slices (note

that ÷ is negative in O+).

6.3.1 Source-free Eintein equations

As noted before, there is a gauge freedom in linearized gravity. One can use this freedom

to impose conditions on the perturbations h that simplify the equations. In minkowski

spacetime its common to impose the Lorentz gauge where ˆahab = 0, ÷abhab = 0 and

h0a = 0.

In the source-free case, these will be similarly useful. The natural generalization is

Òahab = 0 gabhab ˆa
÷ hab = 0

which leads to the following simplification of (6.8)

ÒcÒchab ≠ 2H2hab = 0 (6.9)

In terms of the field “ab these become even simpler. In fact, the gauge conditions will

be
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Da“ab = 0 “abˆa
÷ = 0 “ab÷

ab = 0

where D is the connection compatible to ÷ab; and the Einstein equations simplify to

DaDa“ab ≠ 2aÕ(÷)
a(÷)

“Õ

ab = DaDa“ab +
2
÷

“Õ

ab = 0 (6.10)

with DaDa = ÷abDaDb and f Õ = ˆa
÷ Daf .

These are just the equations satisfied by a linear perturbation h in Minkowski space,

with the exception of the term 2
÷ “Õ

ab. General solutions on O+ can be easily found in fourier

space (see for example [8]).

6.3.2 Einstein equations with a source

If a nonzero energy momentum tensor is considered, the previous gauge choice is also

possible, but not as useful. A generalization of the lorentz gauge will be considered

Òah̄ab = Bb (6.11)

with Bb =
2
l nah̄ab.

If we take the field ‰̄ab = a≠2h̄ab and decompose it in components adapted to the

cosmological slices ÷ = const the Einstein equations simplify significantly. Take

‰̃ = (÷a÷b + q̊ab)‰ab ‰a = ÷cq̊c
a‰bc ‰ab = q̊c

aq̊d
b ‰dc

T̃ = (÷a÷b + q̊ab)Tab Ta = ÷cq̊c
aTbc Tab = q̊c

aq̊d
b Tdc

where q̊ is the pullback of the metric ÷ab to the cosmological slices. Note that in the

previous decomposition, one took the pullback of a≠2g = ÷ and not gitself. In fact, like in

the previous case, the Einstein equations are more easily written in terms of the derivative

operators of ÷ab. Hence, the fields ‰ab are thought to be living in a spacetime (O+, ÷ab).

In the gauge we introduced, and using this decomposition, the Eintein equations are split

as follows (see [19])
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D̊2(
1
÷

‰̃) = ≠16fi

÷
T̃

D̊2(
1
÷

‰a) = ≠16fi

÷
Ta (6.12)

(D̊2 +
2
÷

ˆ÷)‰ab = ≠16fiTab

where again D̊ is the compatible with ÷ab, D̊2 = ÷abD̊aD̊b , and the gauge conditions

become

D̊a‰ab = ˆ÷‰b ≠ 2
÷

‰b (6.13)

D̊a‰a = ˆ÷(‰̃ ≠ ‰) ≠ 1
÷

‰̃

In the foliation of (O+, ÷ab) induced by the coordinates (÷, x), it can be seen explicitly

that (≠l/4÷)‰̃ is the perturbed lapse function and (l/÷)2qab‰b is the perturbed shilf field.

These are just gauge fields, that depend on the specific foliation consider and hence do not

contain any physical information. We thus see that the physical degrees of freedom are

only encoded in the spatial projection ‰ab.

Now, we wish to obtain solutions to the previous equations. To do so, we introduce the

Green’s funtion G(x, xÕ) of the operator D̊2 which obeys

D̊2G(x, xÕ) = ”(x ≠ xÕ) (6.14)

Given G(x, xÕ), solutions to the first of the equations in (6.12) are written as

‰̃(x) = ≠÷
⁄

‘̊G(x, xÕ)
T
÷Õ

(6.15)

Since, we are studying solutions on (O+, ÷ab) full translational invariance is assumed,

which implies G(x, xÕ) = G(x ≠ xÕ). In the physical context we are interested, radiation is

not expected to be present at E+(i≠), since it would only be possible if emmited by events

outside of O+. Hence, the retarded green’s function provides us the correct boundary

conditions. In fact its solution is already well known from Eletromagnetism

Gr(x ≠ xÕ) = ≠ 1
4fi|x ≠ xÕ|”(÷ ≠ ÷Õ ≠ |x ≠ x

Õ|) (6.16)

The solutions are then written
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‰̃(÷, x) = 4÷
⁄

S

‘̊

|x ≠ xÕ|
T̃ (÷r, x

Õ)
÷r

‰̃ā(÷, x) = 4÷
⁄

‘̊

|x ≠ xÕ|
T̃ā(÷r, x

Õ)

÷r

where ÷r = ÷ ≠ |x ≠ xÕ|. Note however, that this solution is only valid for the cartesian

components of ‰a. In ([19]) the Greens funtion satisfying

(D̊2 +
2
÷

ˆ÷)G(x, xÕ) = ≠(
÷

l
)2”(x ≠ xÕ) (6.17)

was computed. using methods from Quantum field theory. Given this solution, ‰āb̄

follows by

‰āb̄(x) =
⁄

d4xÕG(x, xÕ)(
l

÷Õ
)2Tāb̄ (6.18)

where there we again have to define a function to impose the boundary conditions. The

retarded green’s funtion is given

Gr(x, xÕ) =
÷÷Õ

4fil2|x ≠ xÕ|”(÷ ≠ ÷Õ ≠ |x ≠ x
Õ|) + 1

4fil2
◊(÷ ≠ ÷Õ ≠ |x ≠ x

Õ|) (6.19)

where ◊ is the usual step funtion. (6.19) can be simplified using the following identity

4fi(
l

÷Õ
)2Gr(x, xÕ) =(

1
|x ≠ xÕ|

÷

÷Õ
)”(÷ ≠ ÷Õ ≠ |x ≠ x

Õ|) + 1
÷Õ2 ◊(÷ ≠ ÷Õ ≠ |x ≠ x

Õ|)

=
1

|x ≠ xÕ|”(÷ ≠ ÷Õ ≠ |x ≠ x
Õ|) ≠ ˆ

ˆ÷Õ
(

1
÷Õ

◊(÷ ≠ ÷Õ ≠ |x ≠ x
Õ|))

With this we have, for the cartesian components of ‰ab

‰āb̄(÷, x) = 4
⁄

S
‘̊
Tāb̄(÷r, x

Õ)
|x ≠ xÕ| + 4

÷r⁄

≠Œ

d÷Õ
1
÷Õ

ˆ÷Õ

⁄

S
‘̊Tāb̄(÷

Õ, x
Õ) (6.20)

where we integrated by parts and discarded the boundary terms. Here, we see that

contrary to Minkowski, at first order the perturbation also has a term dependent on the

entire history of the source up to ÷r. This term which we call a tail term, is the result of

the back-scattering of the perturbation by the curvature of the background. Even though

it’s absent at first order, it also appears at higher orders in Minkowski.
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6.4 Approximations

One now wishes to look at this solution in a region near H. In order to procceed, one will

need to sharpen and clarify our notion of isolated system. As noted before, the physical

size of the region
q

wil be assumed to be bounded by some distante d on all slices (which

implies that the source will intersect I+ at i+. We also assume that this region is very

small compared to a cosmological scale D π l. We will also need to assume stationarity

of the source as it approaches i±; this can be done by assuming some fall-o� of LT Tab, but

to avoid convergence issues one can usethe stronger requirement that LT Tab should vanish

outside some finite interval [÷1, ÷2].

Consider a cosmological slice, and pick cartesian coordinantes on it such that the source

is at the origin. The sharp term can be treated just like in Minkowski. Since the source is

bounded to a region of proper size D and coordinate size d = D/a, far from the source we

have r © |x| ∫ |xÕ| ≥ d. So we can expand

|x ≠ x
Õ|2 = r2 ≠ 2x · x

Õ + x
Õ2 = r2(1 ≠ 2

r
x̂ · x

Õ + O(d2/r2)) (6.21)

and

|x ≠ x
Õ| = r ≠ x̂ · x

Õ + O(d2/r2) ∆ 1
|x ≠ xÕ| =

1
r
+

x̂ · x
Õ

r2

Inside the integral one can expand around xÕ = 0

Tab(÷ret ≠ x̂ · x
Õ, x

Õ)
|x ≠ xÕ| =(Tab(÷ret, x

Õ) + x̂ · x
Õˆ÷Tab(÷ret, x

Õ))(
1
r
+

x̂ · x
Õ

r2 ) + O(d2/r2)

=
Tab(÷ret, x

Õ)
r

+ x̂ · x
ÕÕ

Tab(÷ret, x
Õ)

r2 + x̂ · x
Õ
ˆ÷Tab(÷ret, x

Õ)
r

+ O(d2/r2)

where ÷ret = ÷ ≠ r and

4
⁄

S
‘̊
Tāb̄(÷r, x

Õ)
|x ≠ xÕ| =

4
r

⁄

S
‘̊(Tab(÷ret, x

Õ) +
x̂ · x

Õ

r
Tab(÷ret, x

Õ) + x̂ · x
Õˆ÷Tab(÷ret, x

Õ))

Now, let’s look at each term. Let · denote the time scale (measured in the ÷ coordinate)

on which Tab is varying so that ˆ÷Tab ≥ Tab/· . Note that d is also the coordinate time it

takes for light to transverse the source so that d
· ≥ v where v is the velocity of the source.

Hence we have
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4
⁄

S
‘̊
Tāb̄(÷r, x

Õ)
|x ≠ xÕ| ≥ 4

r

⁄

S
‘̊Tab(÷ret, x

Õ)(1 + d

r
+

d

·
)

and

d

r
= ≠D

l

÷R

r
=

D

l
(1 ≠ ÷

r
) (6.22)

Note that if we were interested in the behaviour of the source near I, in minkowski

we would just take the limite of high r. Take any r, one can chose a cosmological slice

such that (1 ≠ ÷
r ) is arbitrarily close to 1, so that has d

r ≥ D
l . In the present case, we are

interested in the approach to the cosmological horizon at ÷ = ≠r, so we immediately have
d
r ≥ D

l which we assumed much smaller than one. We will also assume that v π 1 that is

the source moves nonrelativistically. Hence, the second and third terms can be neglected

and

4
⁄

S
‘̊
Tāb̄(÷r, x

Õ)
|x ≠ xÕ| =

4
r

⁄

S
‘̊Tab(÷ret, x

Õ)

One can repeat the same procedure for the tail term which will end up in the replace-

ment ÷r æ ÷ret and we have

‰ab(÷, x) ¥ 4
r

⁄

S
‘̊Tab(÷ret, x

Õ) + 4
÷ret⁄

≠Œ

d÷Õ
1
÷Õ

ˆ÷Õ

⁄

S
‘̊Tab(÷

Õ, x
Õ) (6.23)

6.5 Quadrupole moments

The goal of this section is to relate the perturbation ‰ab with certain properties of the

source, in particular we want to relate it to multipole moments of the source. First we

need to discuss the equation of the conservation of the energy momentum tensor in the de

Sitter background, which will be used extensively. At first order in the perturbation we

will have

ÒaTab = 0 (6.24)

where Tab is the Energy momentum tensor that produces a first order perturbation.

We use planar coordinates (t, x) and project (6.24) along ˆt and q̊b
a where q̊ is the

spatial metric induced on a slice of constant t.



6. Linearized gravity with a cosmological constant 69

The time component of the conservation equation then reads

gcaÒcTa0 = ≠ˆ0T00 + e≠
2t

l ˆiTi0 ≠ 1
l
(3T00 + e≠2Ht

ÿ

i

Tii)

The spatial component reads

gcaÒcTai = ≠ˆ0T0i + e≠
2t

l ˆjTji ≠ 1
l
(3T0i)

And defining the matter density and pressures via

fl = Tabn
anb and pi = Tabˆ

axiˆbxi

it is easy to check that the previous two expressions can then be written in a coordinate

invariant fashion as

ˆtfl ≠ e≠3HtD̊aTa + H(3fl +
ÿ

i

pi) = 0

ˆtTa ≠ e≠HtD̊bTab + 2HTa = 0

where D̊a is the derivative operative compatible with flat spatial metric q̊ab. Note that

in this chart, these equations reduce to their minkowskian analogue in the L æ 0.

Quadrupole moments are defined for p and fli similarly as

Q
(fl)
āb̄

=
⁄

S

‘fl(t)x̄ax̄b (6.25)

Q
(p)
āb̄

=
⁄

S

‘(
ÿ

i

pi)x̄ax̄b (6.26)

where x̄a = a(t)xa. These should only depend on the slice considered and on the

physical geometry of the source.

One now wishes to write the integral
s

S ‘̊Tāb̄ in terms of Q
(fl)
āb̄

andQ
(p)
āb̄

. First note that
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⁄

S

‘̊Tāb̄ =
⁄

S

‘̊[D̊c(Tc̄āxb̄) ≠ (D̊cTc̄ā)xb̄]

= ≠
⁄

S

‘̊(D̊c̄Tc̄ā)xb̄

where we used the vanishing of the boundary term that arises using Stokes Theorem,

since the stress-energy tensor has compact spatial support.

⁄

S

‘̊Tāb̄ = ≠
⁄

S

‘̊eHt(ˆt + 2H)T(āxb̄)

= ≠1
2

⁄

S

‘̊eHt(ˆt + 2H)[D̊c̄(Tc̄xāxb̄) ≠ (D̊c̄Tc̄)xāxb̄]

=
1
2

⁄

S

‘̊eHt(ˆt + 2H)(D̊c̄Tc̄)xāxb̄

where we’ve used the spatial component of the conservation equation and dropped the

boundary term using the same argument. Now, we use the time component, and get an

expression for
s

S ‘̊Tāb̄ solely in terms of fl and
q

i pi:

⁄

S

‘̊Tāb̄ =
1
2

⁄

S

‘̊e4Ht[ˆ2
t fl + Hˆt(8fl +

ÿ

i

pi) + 5H2(3fl +
ÿ

i

pi)]xāxb̄

In terms of which we have

⁄

S

‘̊(xÕ)Tāb̄(t, xÕ) =
1

2a(t)
[ˆ2

t Q
(fl)
āb̄

≠ 2HˆtQ
(fl)
āb̄

+ HˆtQ
(p)
āb̄

](t) (6.27)

Here, the tensors components are written in the basis of the cartesian chart. In a

general chart we have

eā
aeb̄

b

⁄

S

‘̊(xÕ)Tāb̄(t, xÕ) =
1

2a(t)
[ˆ2

t Q
(fl)
ab ≠ 2HˆtQ

(fl)
ab + HˆtQ

(p)
ab ](t)

where eā
a are the basis 1-forms in cartesian coordinates. Note also that given any tensor

field Sab and T = ≠H(÷ˆ÷ + xˆx) = ˆt ≠ Hxˆx we have
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LT Sab = T cˆcSab ≠ 2HSab

= T cD̊cSab ≠ 2HSab

= ˆtQab ≠ 2HQab

In the first equality we used flat conformal coordinates (÷, x), the second equality

follows trivially, but being a tensorial equality in (M+
P , ÷) it should be valid in any set of

coordinates. The last euqality follows from the fact that Q
(i)
ab are only a function of the

slice St © S÷. It follows

ea
āea

b̄

⁄

S

‘̊Tāb̄ =
1
a
[LT LT Qab + 2HLT Qab + HLT Q̃ab + 2H2Q̃ab]

The solution can then be written as

‰ab(÷, x) ¥ 4
r

⁄

S
‘̊Tab(÷ret, x

Õ) + 4
÷ret⁄

≠Œ

d÷Õ
1
÷Õ

ˆ÷Õ

⁄

S
‘̊Tab(÷ret, x

Õ)

=
2H

r
÷ret[LT LT Qab + 2HLT Qab + HLT Q̃ab + 2H2Q̃ab](÷ret) (6.28)

+ 2
÷ret⁄

≠Œ

d÷Õ
1
÷Õ

ˆ÷Õ
1

a(÷Õ)
[LT LT Qab + 2HLT Qab + HLT Q̃ab + 2H2Q̃ab](÷

Õ)

6.6 Energy on the horizon

Now one turns to the main computation of these thesis. One wishes to use the formula

derived on section 4.5 to compute the flux of energy of gravitational waves in the cosmo-

logical horizon. Note that our framework obeys the assumptions used to derive (4.43).

Our perturbed metric can be seen as a 1-parameter family of metrics, the cosmological

horizon H is in fact expansion and shear free and the dilation T can be seen an a�ne

supertranslation. Note however that H does not necessarilly remain null relative to the

perturbed geometry. Fortunately, we can use the gauge freedom we have left to impose

T · h=̂0 (6.29)

which does the job. A direct calculation gives, using (4.43)
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FT =
1

16fi

⁄

H

‘q◊◊qÏÏ[(T · ˆh◊Ï)
2 ≠ T · ˆh◊◊T · ˆhÏÏ] (6.30)

and after gauge fixing

FT =
1

16fi

⁄

H

‘q◊◊qÏÏ[(T · ˆ(h◊Ï + L›g◊Ï))
2 ≠ T · ˆ(h◊◊ + L›g◊◊)T · ˆ(hÏÏ + L›gÏÏ)]

=
1

16fi

⁄

H

‘q◊◊qÏÏ[(T · ˆh◊Ï)
2 ≠ (T · ˆh◊◊)(T · ˆhÏÏ)]

+
1

16fi

⁄

H

‘q◊◊qÏÏ[2(T · ˆh◊Ï)(T · ˆL›g◊Ï) ≠ (T · ˆh◊◊)(T · ˆL›gÏÏ) ≠ (T · ˆhÏÏ)(T · ˆL›g◊◊)]

=
⁄

H

(fabcd
0 (T · ˆh)‰̇ab‰̇cd + fabcd

1 (T · ˆh, T · ˆL›g)‰̇ab‰cd)

By gauge fixing, one will be able to express L›gAB in terms of ‰ij and hence the flux

itself. As we saw in the previous section, one knows how to relate ‰ij with the quadrupole

moments, but not the time components ‰÷÷. In the next few sections we will proceed first

to use the gauge conditions imposed earlier (6.13) to relate ‰÷÷ to the quadrupole moments

and then to impose the gauge condition (6.29).

6.6.1 Time components

Note that we imposed the following gauge conditions

D̊a‰ab = ˆ÷‰b ≠ 2
÷

‰b

D̊a‰a = ˆ÷(‰̃ ≠ ‰) ≠ 1
÷

‰̃

with ‰̃ = ‰̄÷÷ +
q

i ‰̄ii and ‰ =
q

i ‰̄ii so that

ˆ÷‰̄÷÷ ≠ 1
÷

‰̄÷÷ = D̊a‰a +
1
÷

‰

which is a first order linear di�erential equation of the form ˆ÷f +P (÷)f = Q(÷) which

can be solved by

‰̄÷÷ = ÷[
⁄ ÷ d÷Õ

÷Õ
(D̊a‰a +

‰

÷Õ
) + C Õ]

= (≠H÷)[
⁄ t

dtÕ(D̊a‰a +
‰

÷(tÕ)
) + C]
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Similarly we have

‰a = ÷2(
⁄ ÷ d÷Õ

÷Õ2 D̊a‰ab + BÕ)

= (H÷)2(
⁄ t dtÕ

(≠H÷(tÕ))
D̊a‰ab + B)

Note that we imposed the vanishing of both ‰̃ and ‰ab (and hence ‰) on E+(i≠), which

implies the vanishing of both C and B.

We have

‰̄÷÷ = (≠H÷)
⁄ t

dtÕ[(H÷(tÕ))2(
⁄ tÕ

dtÕÕ

(≠H÷(tÕÕ))
D̊aD̊b‰ab) +

‰

÷(tÕ)
]

Note that we have ‰ab = g(Qab(÷ret)) = f(Qab(tret)) with ÷ret = ÷ ≠ r and tret =

≠ 1
H ln(≠H÷ret)). It is hence convenient to compute the following derivatives

ˆt[Qab(tret)] ≠ (ˆtQab)(tret)
e≠Ht

H÷ret

ˆr[Qab(tret)] =
(ˆtQab)(tret)

H÷ret
(6.31)

D̊a[Qab(tret)] =
(ˆtQab)(tret)

H÷ret
x̂b = (ˆtQab)(tret)d

a

where da © x̂a

H÷ret
and x̂a = xa/r. For our main computation, we will only need

(T · ˆ)‰̄÷÷ which is given by

(T · ˆ)‰̄÷÷ = H2÷
⁄ t

dtÕ[(H÷(tÕ))2(
⁄ tÕ

dtÕÕ

(≠H÷(tÕÕ))
D̊aD̊b‰ab) +

‰

÷(tÕ)
]

≠ (H÷)3
⁄ tÕ

dtÕÕ

(≠H÷(tÕÕ))
D̊aD̊b‰ab ≠ H‰

≠ (H÷)2
⁄ t

dtÕ[(H÷(tÕ))2(
⁄ tÕ

dtÕÕ

(≠H÷(tÕÕ))
ˆrD̊aD̊b‰ab) +

ˆr‰

÷(tÕ)
]

The plan is now to compute D̊aD̊b‰ab and ˆrD̊aD̊b‰ab in terms of the quadrupole

moments up to O(H2), and a direct but cumbersome computation will yield ‰̄÷÷. We start

with
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‰ab =
2
r
(≠H÷(tret))Aab(tret) + 2

⁄ ÷ret d÷Õ

÷Õ
ˆ÷Õ(≠H÷ÕAab(÷

Õ))

=
2
r
(≠H÷(t))Aab(tret) + 2H2

⁄ tret
dtÕHAab(t

Õ)

≥ 2
r
(≠H÷(t))Aab(tret) + 2H2ˆtQ

(fl)
ab (tret)

where Aab = ˆ2
t Q

(fl)
ab ≠ 2HˆtQ

(fl)
ab + HˆtQ

(p)
ab . We ought to ignore in the future terms

of higher order than O(H2). Since in the horizon we have r = e≠Ht/H we ignore terms

of order Hnr≠m with (n + m) Ø 3. Now note that D̊bxa = ”̃ab and

D̊br≠nda =
1

rn+1
”̃ab

H÷ret
+

H

rn
dadb ≠ n + 1

rn+1 dax̂b = O(H1+n)

since da ≥ x̂a ≥ O(H0). We get

D̊a‰ab = ≠ 2
r2 x̂ae≠Ht[Aab(t)](tret) +

2
r

dae≠Ht[ˆtAab(t)](tret) + 2H2da(ˆ2
t Q

(fl)
ab )(tret)

≥ ≠ 2
r2 x̂ae≠Ht[ˆ2

t Q
(fl)
ab (t)](tret) +

2
r

dae≠Ht[ˆtAab(t)](tret) + 2H2da(ˆ2
t Q

(fl)
ab )(tret)

and

D̊bD̊a‰ab ≥ 2( 1
r2

”̃ab

H÷ret
+

H

r
dadb ≠ 3

r2 dax̂b)e≠Ht[ˆ3
t Q

(fl)
ab ](tret)

+
2
r

dadbe≠Ht[ˆ2
t Aab](tret) + 2H2dadb[ˆ3

t Q
(fl)
ab ](tret)

and finally

ˆrD̊bD̊a‰ab ≥ 2( 1
r2

”̃ab

(H÷ret)2 +
H

r

dadb

H÷ret
≠ 3

r2 dadb)e≠Ht[ˆ4
t Q

(fl)
ab ](tret)

+ 2H2 dadb

H÷ret
[ˆ4

t Q
(fl)
ab ](tret) ≠ 2

r2 dadbe≠Ht[ˆ2
t Aab](tret)

+
4H

r

dadb

H÷ret
e≠Ht[ˆ2

t Aab](tret) +
2
r

dadb

H÷ret
e≠Ht[ˆ3

t Aab](tret)

where we’ve made extensive use of (6.31) and neglected higher order terms. To conclude

the computation one will need to integrate these terms. For that purpose we will use the

following
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⁄ t

dtÕAab
n (ˆnQab)(t

Õ

ret) =
⁄ t

dtÕAab
n ˆ(ˆn≠1Qab(t

Õ

ret))(≠H÷Õ

rete
HtÕ

)

= ≠eHtÕ
H÷retA

ab
n ˆn≠1Qab(t

Õ

ret)

+
⁄ t

ˆt(e
2HtÕ

H÷retA
ab
n )ˆn≠1Qab(t

Õ

ret)

where again we used (6.31) and integrated by parts. Note that in general the derivative

in the second term will increase the order of H by one. One also needs the trace of the

perturbation itself which in general will be multiplied by a term of O(H) and we will have

O(H)‰ ≥ O(H) 2
r e≠Htˆ2

t Q(fl).

The first line will be

≠He≠Ht
⁄ t

dtÕ[e≠2HtÕ
(
⁄ tÕ

dtÕÕeHtÕÕ
D̊aD̊b‰ab) ≠ HeHtÕ

‰] ≥ ≠e≠Ht 2H

r
x̂ax̂bˆ2

t Q
(fl)
ab (tret)

=̂ ≠ 2H2x̂ax̂b[ˆ2
t Q

(fl)
ab ](tret)

The second line will be just

e≠3Ht
⁄ tÕ

dtÕeHtÕ
D̊aD̊b‰ab ≠ H‰ ≥ ≠2( 1

r2 ”̃ab +
H

r
dax̂b ≠ 3

r2 x̂ax̂b)e≠2Htˆ2
t Q

(fl)
ab (tret)

≠ 2
r

dax̂be≠2Ht[ˆtAab](tret) ≠ 2H2dax̂be≠Ht[ˆ2
t Q

(fl)
ab ](tret)

≠ 2H(2 x̂ax̂b

r
+ Hx̂adb)e2Htˆ2

t Q
(fl)
ab (tret) ≠ 2H

r
e≠Htˆ2

t Q(fl)

=̂(≠4H2”̃ab + 7H2x̂ax̂b)ˆ2
t Q

(fl)
ab (tret) + Hx̂ax̂b[ˆtAab](tret)

and the third

≠ e≠2Ht
⁄ t

dtÕ[e≠2HtÕ
(
⁄ tÕ

dtÕÕeHtÕÕ
ˆrD̊bD̊a‰ab) +

ˆr‰

÷(tÕ)
]

≥ ≠2e≠2Ht((
1
r2 +

H

r
)”̃ab + (H2eHt +

H

r
)x̂adb ≠ 3

r2 x̂ax̂b)ˆ2
t Q

(fl)
ab (tret)

+ 2e≠2Ht(
1
r2 x̂ax̂b ≠ H

r
x̂ax̂beHt +

2H

r
x̂adbeHt)Aab(tret)

≠ 2
r

x̂adbe≠2HtˆtAab(tret)

=̂(≠4H2”̃ab + 5H2x̂ax̂b)ˆ2
t Q

(fl)
ab (tret) + Hx̂ax̂bˆtAab(tret)

Finally, adding all the terms we get
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(T · ˆ)‰̄÷÷ = (≠8H2”̃ab + 10H2x̂ax̂b)ˆ2
t Q

(fl)
ab (tret) + 2Hx̂ax̂bˆtAab(tret) (6.32)

and also

‰a = e≠2Ht(
⁄ t

dtÕeHtÕ
D̊a‰ab)

≥ ≠2Hx̂bˆ2
t Q

(fl)
ab (tret)

6.6.2 Gauge Fix

To impose the gauge fix, we use a new set of null coordinates v = ÷ ≠ r and u = ÷ + r. In

these coordinates the metric is

g =
1

H2(u + v)2 (≠4dudv + (v ≠ u)2dW2) (6.33)

with v = 0 the horizon. Note also that T = ≠(uˆu + vˆv) and T |H = ≠uˆu so that

T · h=̂0 æ (hua + L›gua)a ”=v = 0

This condition implies a di�erencial equation for the components of ›

huu ≠ 4
(Hu)2 ˆu›v = 0

hu◊ +
1

(Hu)2 (u
2ˆu›◊ ≠ 2ˆ◊›v) = 0

huÏ +
1

(Hu)2 (u
2 sin2 ◊ˆu›Ï ≠ 2ˆÏ›v) = 0

which can be solved by

›v =
1
4H2

u⁄
w2huudw

›◊ =

u⁄
(

2
w2 ˆ◊›v ≠ H2hu◊)dw

›Ï =
1

sin2 ◊

u⁄
(

2
w2 ˆÏ›v ≠ H2huÏ)dw
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Now, our goal is to express T · ˆ(L›gAB) in therms of ‰ij . First note that h̄ab =

hab ≠ 1
2gabh

a ”=væ h̄ua = hua, and h̄uc = ( 1
÷H )2La

uLb
c‰̄ab

huu = (
1

÷H
)2(‰÷÷ + x̂ix̂j‰ij ≠ x̂i‰÷i)

≥ (x̂ix̂j‰ij)

hu◊ = r(
1

÷H
)2(≠2x̂iˆ◊x̂j‰ij + 2ˆ◊x̂i‰÷i)

≥ 1
H
(≠x̂iˆ◊x̂j‰ij)

huÏ = r(
1

÷H
)2(≠2x̂iˆÏx̂j‰ij + 2ˆÏx̂i‰÷i)

≥ 1
H
[≠x̂iˆÏx̂j‰ij ]

where the computation was done only to leading order in H. Let’s focus first focus on

the ◊◊ component

L›g◊◊ = (2z + 2Hz2)›t + 2z2ˆ◊›◊

where zn © rnenHt, zn|H = H≠n and T · ˆ(zn) = 0. We have

T · ˆ(L›g◊◊) =
eHt

2 (2z + 2Hz2)(H + T · ˆ)›v + 2z2(T · ˆˆ◊›◊)

and

T · ˆ(L›g◊◊)|H =
8
H

e≠2Hthuu + 4eHt›v + 2eHtˆ2
◊ ›v ≠ 8e≠Htˆ◊hu◊

¥ 8
H

huu ≠ 8ˆ◊hu◊ =
8
H
(x̂ix̂j + ˆ◊(x̂

iˆ◊x̂j))‰ij

The component ◊Ï follows similarly

T · ˆ(L›g◊Ï) = h◊◊ + z2ˆÏ›◊ + z2 sin2 ◊ˆ◊›Ï

and
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T · ˆ(L›g◊Ï)|H = 2eHtˆÏˆ◊›v ≠ 2e≠Ht(ˆÏhu◊ + ˆ◊huÏ)

¥ ≠2(ˆÏhu◊ + ˆ◊huÏ) =
2
H
(ˆÏ(x̂

iˆ◊x̂j) + ˆ◊(x̂
iˆÏx̂j))‰ij

Finally, we have for the ÏÏ component

T · ˆ(L›gÏÏ) = h◊◊ + (2z + 2Hz2)›t sin2 ◊›t + 2z2 sin ◊ cos ◊›◊ + 2z2 sin2 ◊ˆÏ›Ï (6.34)

and

T · ˆ(L›gÏÏ)|H = sin2 ◊(
8
H

e≠2Hthuu + 4e≠Ht›v) + 4 sin ◊ cos ◊(eHtˆ◊›v ≠ 2e≠Hthu◊)

+ 4(eHtˆ2
Ï›v ≠ 2e≠HtˆÏhuÏ)

¥ sin2 ◊
8
H

huu ≠ 8 sin ◊ cos ◊hu◊ ≠ 8ˆÏhuÏ

=
8
H
(sin2 ◊x̂ix̂j + 8 sin ◊ cos ◊x̂iˆ◊x̂j + 8ˆÏ(x̂

iˆÏx̂j)) (6.35)

6.6.3 Quadrupole Formula

Now, one needs to express T · ˆhAB in terms of ‰ij . We have

hAB = (
1

÷H
)2Li

ALj
B [‰ij ≠ 1

2”ij(≠‰÷÷ +
ÿ

i

‰ii)]

=
1
2 (

1
÷H

)2[‰÷÷(
ÿ

i

Li
ALi

B) +
ÿ

i

‰ii(Li
ALi

B ≠
ÿ

j ”=i

Lj
ALj

B) + 2
ÿ

i”=j

‰ij(Li
ALj

B)]

= (hAB)
ab‰ab

where Li
A = rˆAx̂i . Denoting T · ˆh © ḣ we have

ḣAB = (hAB)
ab‰̇ab

since (hAB)ab is of the form f( r
÷H )g(xA) and T · ˆ(hAB)ab = 0.

Finally, we are ready to compute the flux of energy of gravitational waves in the cos-

mological horizon. The final calculation is a bit long, but quite direct. First we look at

the first part of the flux formula



6. Linearized gravity with a cosmological constant 79

⁄

H

(fabcd
0 (T · ˆh)‰̇ab‰̇cd =

1
48H2

⁄
dt(

ÿ

i

‰̇2
ii + 2

ÿ

i”=j

(2‰̇2
ij ≠ ‰̇ii‰̇jj)

≠ 1
64fiH2

⁄
dt

⁄
dÏ

⁄
d◊ sin ◊‰̇÷÷(‰̇÷÷ ≠ 2x̂ix̂j‰̇ij) (6.36)

where we used the fact that ‰ij © ‰ij(tret), and all the remaining angular integrals

were done. Note that the integral containing ‰̇÷÷ cannot be done immediatly since these

will depend on xA. The second part is

⁄

H

(fabcd
1 (T · ˆh, T · ˆL›g)‰̇ab‰cd) =

⁄

H

[f ijkp
1 (T · ˆh, T · ˆL›g))

≠ x̂ix̂jf÷÷kp
1 (T · ˆh, T · ˆL›g)]‰̇ij‰pk (6.37)

=
4

15H

⁄
dt{2

ÿ

i

‰ii‰̇ii + 6
ÿ

i”=j

(‰ij‰̇ij ≠ ‰ii‰̇jj)}

(6.38)

where again we used the fact that ‰ij © ‰ij(tret) and ‰̇÷÷ = x̂ix̂j‰̇ij + O(H2).From

these results, the quadrupole nature of gravitational waves becomes obvious, since it is

now a matter of substitution (using (6.28) and (6.32)) to get

FT =
2
15

⁄
dt{

ÿ

i

(
...
Q

(fl)
ii )2 + 3

ÿ

i”=j

(
...
Q

(fl)
ij )2 ≠

ÿ

i”=j

...
Q

(fl)
ii

...
Q

(fl)
jj )

≠ H [2
ÿ

i

...
Q

(fl)
ii (Q̈(fl)

ii + 7Q̈
(p)
ii ) +

ÿ

i”=j

(6
...
Q

(fl)
ij (Q̈(fl)

ij + 7Q̈
(p)
ij ) ≠

...
Q

(fl)
ii (Q̈(fl)

jj + 7Q̈
(p)
jj ))]}

which can be put in a much simpler form if we introduce a trace-free quadrupole moment

tensor

q
(i)
ab = Q

(i)
ab ≠ 1

2 ˚qabQ
(i) (6.39)

in terms of which the flux of energy can be simply written as

FT =
1
5

⁄
dt[

ÿ

ij

[(
...
q
(fl)
ij )2 + 2H

...
q
(fl)
ij (q̈(fl)ij + 7q̈

(p)
ij )]
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This is the proposed generalization of the Eintein quadrupole formula to first order in

H =
Ô

L, found in [24]. Note that in deriving these results, planar coordinates were used,

and hence the limit L æ 0 is trivial, and we get the Einstein quadrupole formula (1.15).

A few comments about these results are in order. We note that even tough corrections

from the cosmological constant appear, it is still quadrupolar like in Minkowski. Contrary

to the Eintein formula, contributions from the pressure quadrupole moment appear. Note

also that even tough the perturbations themselves have sharp propagation already at first

order, this dependency disappears in the flux formula (that’s not the case for higher orders).

The Einstein formula has received extensive validity from observation with very big

accuracy. Given how small L is assumed to be, one may suppose that the corrections can

be negleted. For most applications this is probably correct, but corrections can accumulate

over cosmological distances. For example consider the merger of two supermassive black

holes in the center of two di�erent galaxies. Since the time scale of such event is cosmo-

logical, corrections can become significant. Its important to note tough that such events

will not be detected in any forseable future.



Chapter 7

Conclusions and Outlook

One of the main goals of this line of research is to be able to define Bondi type charges

and respective fluxes in full non-linear GR with a positive L at I. Note that in the linear

case, since there is no incoming radiation across E+(i≠), the flux across E≠(i+) will equal

that across I. Also the time translation killing field considered is future pointing and

timelike inside the region bounded by these surfaces, and null on both surfaces. This

seems to mimick the behaviour of the time translation field on Minkowski spacetime. For

these reasons, and since E≠(i+) is null and could be taken to be in the ’far zone’, it was

suggested in [8, 9] that its analog in the non-linear theory could be the apropriate arena

to study gravitational waves. In this thesis we proposed to extend the works on [8, 9] in

the weak field regime to the cosmological horizon E≠(i+).

In order to do so, we started by reviewing the covariant phase space formalism following

[5, 12, 13]. The formalism is quite general and gives a prescription to compute charges

and their fluxes in a boudary, for any symmetry vector field. We continued by reviewing

the work of Chandrasekaran et al who in [13] applied the work of Wald and Zoupas [6] to

a general null surface, and derived expressions for charges and fluxes in terms of intrinsic

objects on the null surface. With expressions for the energy and its flux on E≠(i+) at

hand, we generalized the work of [9] to the computation of the energy flux of GW’s in the

cosmological horizon of a De Sitter background, and related this flux to the quadrupole

moments of a source.

To this end, we considerd a dynamic Tab sourcing the Einstein’s equations with posi-

tive L. We studied the linear case, and constructed retarded solutions which obeyd our

boundary conditions. To apply the work of [9], some work had to be done. First, since

only the space components of our solutions relate to the quadrupoles, we used the gauge
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conditions we had imposed to relate the space and time components, which appear in our

flux formula. Also, the formalism of Chandrasekaran et al is valid only when the boundary

of our spacetime is null, hence a gauge fixe had to be introduced, in order for us to ensure

that the cosmological horizon remained null even after perturbed. With these issued be-

hind our backs, we computed the generalized quadrupole formula to first order in
Ô

L. We

took the limit to minkowski and obtained the well known Einstein’s quadrupole formula.



Appendix A

Additional structures on a null

surface

The volume form ‘N of a non-null hypersurface N is defined as the unique 3-form on N

which gives 1 when applied to an orthonormal basis of TpN . Given a volume form ‘ of M ,

and a unit normal vector N , one can define the form

‘̃ = N · ‘ (A.1)

Given any orthonormal basis {X}p of TpN with the right orientation; {N ; X}p will

constitute an orthonormal basis of TpM , so that ‘̃ will be 1 when applied to it. This is

valid for any ponit p, and hence

‘̃ = N · ‘ (A.2)

is the unique volume form induced by M . Note also that, given a volume form ‘̃ on N

a volume form on M can be constructed by

‘ = N · ‘̃ (A.3)

Consider now, the case where N is null. First,notice that there is no unit normal, but

in fact a class of null normals. Secondly, given a choice of null normal l, the pull back of

‘̃ = l · ‘ is immediately zero since l is tangent to N . We consifer then a class of forms that

satisfy ‘ = l · ‘̃. A choice of ‘̃ is not unique, since ‘̃ + – where – is a 3-form such that

l · – = 0|N would also be permissible. Notice however that their pullback to N will be

unique. In coordinates it is given by
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‘ijk = Pa
i Pb

jPc
k ‘̃abc (A.4)

One can see explicitly that this choice is the one that allows to prove the divergence

theorem. We also define the antisymetric tensor so that

‘̃a1...an
‘̃a1...an = n! (A.5)

and

Â‘a1...ajaj+1...an ‘̃a1...ajbj+1...bn
= (n ≠ j)!j!”[aj+1

bj+1 ...”an]
bn

(A.6)

with n = 3.

Given a non-degenerate metric g, we know that there is a unique connection connection

D which is compatible with g , that is Dg = 0;we call it Levi-Civita connection. Since

the induced metric q to N is degenerate, there will be a class of compatible connections.

Given a vector field X in M , and a connection Ò, one might define a connection in N ,

by projection the (1,1) tensor ÒX, but since N is null, even tough one is able to define a

projector, such map depends on a choice of auxiliary vector field which is also not unique.

However, one knows how to define exterior derivatives of forms in N , and one can use

it to define a divergence operator. With a volume form, one can define the following maps

ú : Wr(M ) æ WÕn≠r(M )

(úS)a1...an≠r
=

1
r!

‘̃a1...an≠rb1...br
Sb1...br (A.7)

and ú : WÕr(M ) æ Wn≠r(M )

(úÊ)a1...an≠r =
1
r!

‘̃a1...an≠rb1...br Êb1...br
(A.8)

A divergence operator can then be defined as

DiX
i =: úd(úX)

=
1
2 ‘̃ijkD[i(‘̃jk]mXm)

=
1
2 ‘̃ijkDi(‘̃jkmXm)
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where D is any connection on N . This obviously independent of the choice of D, and

in fact we have

1
2 ‘̃ijkDi(‘̃jkmXm) =

1
2 ‘̃ijk ‘̃jkmDiX

m

= DiX
i
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